reformat code
This commit is contained in:
parent
3d2e96c1fa
commit
2b9e07caa3
259
agent_util.py
259
agent_util.py
@ -3,18 +3,22 @@ from langchain.prompts import PromptTemplate
|
|||||||
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
|
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
|
||||||
from langgraph.graph import END, StateGraph
|
from langgraph.graph import END, StateGraph
|
||||||
from langchain_community.chat_models import ChatOllama
|
from langchain_community.chat_models import ChatOllama
|
||||||
# For State Graph
|
from langgraph.checkpoint.memory import MemorySaver
|
||||||
|
# For State Graph
|
||||||
from typing_extensions import TypedDict
|
from typing_extensions import TypedDict
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
def configure_llm(model, temperature):
|
def configure_llm(model, temperature):
|
||||||
llama3 = ChatOllama(model=model, temperature=temperature)
|
llama3 = ChatOllama(model=model, temperature=temperature)
|
||||||
llama3_json = ChatOllama(model=model, format='json', temperature=temperature)
|
llama3_json = ChatOllama(
|
||||||
return llama3, llama3_json
|
model=model, format='json', temperature=temperature)
|
||||||
|
return llama3, llama3_json
|
||||||
|
|
||||||
|
|
||||||
def config_agent(llama3, llama3_json):
|
def config_agent(llama3, llama3_json):
|
||||||
generate_prompt = PromptTemplate(
|
generate_prompt = PromptTemplate(
|
||||||
template="""
|
template="""
|
||||||
|
|
||||||
<|begin_of_text|>
|
<|begin_of_text|>
|
||||||
|
|
||||||
@ -49,13 +53,13 @@ def config_agent(llama3, llama3_json):
|
|||||||
<|eot_id|>
|
<|eot_id|>
|
||||||
|
|
||||||
<|start_header_id|>assistant<|end_header_id|>""",
|
<|start_header_id|>assistant<|end_header_id|>""",
|
||||||
input_variables=["question", "context"],
|
input_variables=["question", "context"],
|
||||||
)
|
)
|
||||||
|
|
||||||
# Chain
|
# Chain
|
||||||
generate_chain = generate_prompt | llama3 | StrOutputParser()
|
generate_chain = generate_prompt | llama3 | StrOutputParser()
|
||||||
router_prompt = PromptTemplate(
|
router_prompt = PromptTemplate(
|
||||||
template="""
|
template="""
|
||||||
|
|
||||||
<|begin_of_text|>
|
<|begin_of_text|>
|
||||||
|
|
||||||
@ -77,14 +81,14 @@ def config_agent(llama3, llama3_json):
|
|||||||
<|start_header_id|>assistant<|end_header_id|>
|
<|start_header_id|>assistant<|end_header_id|>
|
||||||
|
|
||||||
""",
|
""",
|
||||||
input_variables=["question"],
|
input_variables=["question"],
|
||||||
)
|
)
|
||||||
|
|
||||||
# Chain
|
# Chain
|
||||||
question_router = router_prompt | llama3_json | JsonOutputParser()
|
question_router = router_prompt | llama3_json | JsonOutputParser()
|
||||||
|
|
||||||
query_prompt = PromptTemplate(
|
query_prompt = PromptTemplate(
|
||||||
template="""
|
template="""
|
||||||
|
|
||||||
<|begin_of_text|>
|
<|begin_of_text|>
|
||||||
|
|
||||||
@ -100,132 +104,137 @@ def config_agent(llama3, llama3_json):
|
|||||||
<|start_header_id|>assistant<|end_header_id|>
|
<|start_header_id|>assistant<|end_header_id|>
|
||||||
|
|
||||||
""",
|
""",
|
||||||
input_variables=["question"],
|
input_variables=["question"],
|
||||||
)
|
)
|
||||||
|
|
||||||
# Chain
|
# Chain
|
||||||
query_chain = query_prompt | llama3_json | JsonOutputParser()
|
query_chain = query_prompt | llama3_json | JsonOutputParser()
|
||||||
# Graph State
|
# Graph State
|
||||||
class GraphState(TypedDict):
|
|
||||||
"""
|
|
||||||
Represents the state of our graph.
|
|
||||||
|
|
||||||
Attributes:
|
class GraphState(TypedDict):
|
||||||
question: question
|
"""
|
||||||
generation: LLM generation
|
Represents the state of our graph.
|
||||||
send_order: revised question for send order
|
|
||||||
context: send_order result
|
|
||||||
"""
|
|
||||||
question : str
|
|
||||||
generation : str
|
|
||||||
send_order : str
|
|
||||||
context : str
|
|
||||||
|
|
||||||
# Node - Generate
|
Attributes:
|
||||||
|
question: question
|
||||||
|
generation: LLM generation
|
||||||
|
send_order: revised question for send order
|
||||||
|
context: send_order result
|
||||||
|
"""
|
||||||
|
question: str
|
||||||
|
generation: str
|
||||||
|
send_order: str
|
||||||
|
context: str
|
||||||
|
|
||||||
def generate(state):
|
# Node - Generate
|
||||||
"""
|
|
||||||
Generate answer
|
|
||||||
|
|
||||||
Args:
|
def generate(state):
|
||||||
state (dict): The current graph state
|
"""
|
||||||
|
Generate answer
|
||||||
|
|
||||||
Returns:
|
Args:
|
||||||
state (dict): New key added to state, generation, that contains LLM generation
|
state (dict): The current graph state
|
||||||
"""
|
|
||||||
|
|
||||||
print("Step: Generating Final Response")
|
|
||||||
question = state["question"]
|
|
||||||
context = state.get("context", None)
|
|
||||||
print(context)
|
|
||||||
# TODO:: 根据context特定的内容生产答案
|
|
||||||
if context is not None and context.index("orderinfo") != -1:
|
|
||||||
return {"generation": context.replace("orderinfo:", "")}
|
|
||||||
else:
|
|
||||||
generation = generate_chain.invoke({"context": context, "question": question})
|
|
||||||
return {"generation": generation}
|
|
||||||
|
|
||||||
# Node - Query Transformation
|
Returns:
|
||||||
|
state (dict): New key added to state, generation, that contains LLM generation
|
||||||
|
"""
|
||||||
|
|
||||||
def transform_query(state):
|
print("Step: Generating Final Response")
|
||||||
"""
|
question = state["question"]
|
||||||
Transform user question to order info
|
context = state.get("context", None)
|
||||||
|
print(context)
|
||||||
|
# TODO:: 根据context特定的内容生产答案
|
||||||
|
if context is not None and context.index("orderinfo") != -1:
|
||||||
|
return {"generation": context.replace("orderinfo:", "")}
|
||||||
|
else:
|
||||||
|
generation = generate_chain.invoke(
|
||||||
|
{"context": context, "question": question})
|
||||||
|
return {"generation": generation}
|
||||||
|
|
||||||
Args:
|
# Node - Query Transformation
|
||||||
state (dict): The current graph state
|
|
||||||
|
|
||||||
Returns:
|
def transform_query(state):
|
||||||
state (dict): Appended amount of CEC to context
|
"""
|
||||||
"""
|
Transform user question to order info
|
||||||
|
|
||||||
print("Step: Optimizing Query for Send Order")
|
|
||||||
question = state['question']
|
|
||||||
gen_query = query_chain.invoke({"question": question})
|
|
||||||
search_query = gen_query["count"]
|
|
||||||
print("send_order", search_query)
|
|
||||||
return {"send_order": search_query}
|
|
||||||
|
|
||||||
# Node - Send Order
|
Args:
|
||||||
|
state (dict): The current graph state
|
||||||
|
|
||||||
def send_order(state):
|
Returns:
|
||||||
"""
|
state (dict): Appended amount of CEC to context
|
||||||
Send order based on the question
|
"""
|
||||||
|
|
||||||
Args:
|
print("Step: Optimizing Query for Send Order")
|
||||||
state (dict): The current graph state
|
question = state['question']
|
||||||
|
gen_query = query_chain.invoke({"question": question})
|
||||||
|
search_query = gen_query["count"]
|
||||||
|
print("send_order", search_query)
|
||||||
|
return {"send_order": search_query}
|
||||||
|
|
||||||
Returns:
|
# Node - Send Order
|
||||||
state (dict): Appended Order Info to context
|
|
||||||
"""
|
|
||||||
print("Step: before Send Order")
|
|
||||||
amount = state['send_order']
|
|
||||||
print(amount)
|
|
||||||
print(f'Step: build order info for : "{amount}" CEC')
|
|
||||||
order_info = {"amount": amount, "price": 0.1, "name": "CEC", "url": "https://www.example.com"}
|
|
||||||
search_result = f"orderinfo:{json.dumps(order_info)}"
|
|
||||||
return {"context": search_result}
|
|
||||||
|
|
||||||
# Conditional Edge, Routing
|
def send_order(state):
|
||||||
|
"""
|
||||||
|
Send order based on the question
|
||||||
|
|
||||||
def route_question(state):
|
Args:
|
||||||
"""
|
state (dict): The current graph state
|
||||||
route question to send order or generation.
|
|
||||||
|
|
||||||
Args:
|
Returns:
|
||||||
state (dict): The current graph state
|
state (dict): Appended Order Info to context
|
||||||
|
"""
|
||||||
|
print("Step: before Send Order")
|
||||||
|
amount = state['send_order']
|
||||||
|
print(amount)
|
||||||
|
print(f'Step: build order info for : "{amount}" CEC')
|
||||||
|
order_info = {"amount": amount, "price": 0.1,
|
||||||
|
"name": "CEC", "url": "https://www.example.com"}
|
||||||
|
search_result = f"orderinfo:{json.dumps(order_info)}"
|
||||||
|
return {"context": search_result}
|
||||||
|
|
||||||
Returns:
|
# Conditional Edge, Routing
|
||||||
str: Next node to call
|
|
||||||
"""
|
|
||||||
|
|
||||||
print("Step: Routing Query")
|
def route_question(state):
|
||||||
question = state['question']
|
"""
|
||||||
output = question_router.invoke({"question": question})
|
route question to send order or generation.
|
||||||
if output['choice'] == "send_order":
|
|
||||||
print("Step: Routing Query to Send Order")
|
|
||||||
return "sendorder"
|
|
||||||
elif output['choice'] == 'generate':
|
|
||||||
print("Step: Routing Query to Generation")
|
|
||||||
return "generate"
|
|
||||||
|
|
||||||
# Build the nodes
|
Args:
|
||||||
workflow = StateGraph(GraphState)
|
state (dict): The current graph state
|
||||||
workflow.add_node("sendorder", send_order)
|
|
||||||
workflow.add_node("transform_query", transform_query)
|
|
||||||
workflow.add_node("generate", generate)
|
|
||||||
|
|
||||||
# Build the edges
|
Returns:
|
||||||
workflow.set_conditional_entry_point(
|
str: Next node to call
|
||||||
route_question,
|
"""
|
||||||
{
|
|
||||||
"sendorder": "transform_query",
|
|
||||||
"generate": "generate",
|
|
||||||
},
|
|
||||||
)
|
|
||||||
workflow.add_edge("transform_query", "sendorder")
|
|
||||||
workflow.add_edge("sendorder", "generate")
|
|
||||||
workflow.add_edge("generate", END)
|
|
||||||
|
|
||||||
# Compile the workflow
|
print("Step: Routing Query")
|
||||||
local_agent = workflow.compile()
|
question = state['question']
|
||||||
return local_agent
|
output = question_router.invoke({"question": question})
|
||||||
|
if output['choice'] == "send_order":
|
||||||
|
print("Step: Routing Query to Send Order")
|
||||||
|
return "sendorder"
|
||||||
|
elif output['choice'] == 'generate':
|
||||||
|
print("Step: Routing Query to Generation")
|
||||||
|
return "generate"
|
||||||
|
|
||||||
|
# Build the nodes
|
||||||
|
workflow = StateGraph(GraphState)
|
||||||
|
workflow.add_node("sendorder", send_order)
|
||||||
|
workflow.add_node("transform_query", transform_query)
|
||||||
|
workflow.add_node("generate", generate)
|
||||||
|
|
||||||
|
# Build the edges
|
||||||
|
workflow.set_conditional_entry_point(
|
||||||
|
route_question,
|
||||||
|
{
|
||||||
|
"sendorder": "transform_query",
|
||||||
|
"generate": "generate",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
workflow.add_edge("transform_query", "sendorder")
|
||||||
|
workflow.add_edge("sendorder", "generate")
|
||||||
|
workflow.add_edge("generate", END)
|
||||||
|
|
||||||
|
# Compile the workflow
|
||||||
|
memory = MemorySaver()
|
||||||
|
# local_agent = workflow.compile(checkpointer=memory)
|
||||||
|
local_agent = workflow.compile()
|
||||||
|
return local_agent
|
||||||
|
4
app.py
4
app.py
@ -7,12 +7,14 @@ llama3, llama3_json = configure_llm(local_llm, 0)
|
|||||||
|
|
||||||
local_agent = config_agent(llama3, llama3_json)
|
local_agent = config_agent(llama3, llama3_json)
|
||||||
|
|
||||||
|
|
||||||
def run_agent(query):
|
def run_agent(query):
|
||||||
output = local_agent.invoke({"question": query})
|
output = local_agent.invoke({"question": query})
|
||||||
print("=======")
|
print("=======")
|
||||||
print(output["generation"])
|
print(output["generation"])
|
||||||
# display(Markdown(output["generation"]))
|
# display(Markdown(output["generation"]))
|
||||||
|
|
||||||
|
|
||||||
# run_agent("I want to buy 100 CEC")
|
# run_agent("I want to buy 100 CEC")
|
||||||
run_agent("I'm Cz, I want to buy 100 CEC, how about the price?")
|
run_agent("I'm Cz, I want to buy 100 CEC, how about the price?")
|
||||||
# run_agent("I'm Cz, How about CEC?")
|
# run_agent("I'm Cz, How about CEC?")
|
||||||
|
@ -7,22 +7,29 @@ st.sidebar.header("Configure LLM")
|
|||||||
st.title("CEC Seller Assistant")
|
st.title("CEC Seller Assistant")
|
||||||
# Model Selection
|
# Model Selection
|
||||||
model_options = ["llama3.2"]
|
model_options = ["llama3.2"]
|
||||||
selected_model = st.sidebar.selectbox("Choose the LLM Model", options=model_options, index=0)
|
selected_model = st.sidebar.selectbox(
|
||||||
|
"Choose the LLM Model", options=model_options, index=0)
|
||||||
|
|
||||||
# Temperature Setting
|
# Temperature Setting
|
||||||
temperature = st.sidebar.slider("Set the Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1)
|
temperature = st.sidebar.slider(
|
||||||
|
"Set the Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1)
|
||||||
|
|
||||||
llama3, llama3_json=configure_llm(selected_model, temperature)
|
llama3, llama3_json = configure_llm(selected_model, temperature)
|
||||||
|
|
||||||
local_agent = config_agent(llama3, llama3_json)
|
local_agent = config_agent(llama3, llama3_json)
|
||||||
|
|
||||||
|
|
||||||
def run_agent(query):
|
def run_agent(query):
|
||||||
|
# config = {"configurable": {"thread_id": "1"}}
|
||||||
|
# output = local_agent.invoke({"question": query}, config)
|
||||||
|
# print(list(local_agent.get_state_history(config)))
|
||||||
output = local_agent.invoke({"question": query})
|
output = local_agent.invoke({"question": query})
|
||||||
print("=======")
|
print("=======")
|
||||||
|
|
||||||
return output["generation"]
|
return output["generation"]
|
||||||
|
|
||||||
|
|
||||||
user_query = st.text_input("Enter your research question:", "")
|
user_query = st.text_input("Enter your research question:", "")
|
||||||
|
|
||||||
if st.button("Run Query"):
|
if st.button("Run Query"):
|
||||||
if user_query:
|
if user_query:
|
||||||
st.write(run_agent(user_query))
|
st.write(run_agent(user_query))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user