code init

This commit is contained in:
CounterFire2023 2024-12-11 11:45:06 +08:00
commit c21de6bdda
7 changed files with 546 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
*.log
/logs
**__pycache__**

15
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,15 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: Current File",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal"
}
]
}

13
README.md Normal file
View File

@ -0,0 +1,13 @@
```bash
conda env create -f env/agent2.yaml
# conda create -n agent2 python
conda activate agent2
pip install -r env/requirements.txt
python app.py
streamlit run streamlit_app.py
```

257
app.py Normal file
View File

@ -0,0 +1,257 @@
# Displaying final output format
# from IPython.display import display, Markdown, Latex
# LangChain Dependencies
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langgraph.graph import END, StateGraph
# For State Graph
from typing_extensions import TypedDict
import os
# Defining LLM
local_llm = 'llama3.2'
llama3 = ChatOllama(model=local_llm, temperature=0)
llama3_json = ChatOllama(model=local_llm, format='json', temperature=0)
# Web Search Tool
wrapper = DuckDuckGoSearchAPIWrapper(max_results=25)
web_search_tool = DuckDuckGoSearchRun(api_wrapper=wrapper)
# Generation Prompt
generate_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant for Research Question Tasks, that synthesizes web search results.
Strictly use the following pieces of web search context to answer the question. If you don't know the answer, just say that you don't know.
keep the answer concise, but provide all of the details you can in the form of a research report.
Only make direct references to material if provided in the context.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: {question}
Web Search Context: {context}
Answer:
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question", "context"],
)
# Chain
generate_chain = generate_prompt | llama3 | StrOutputParser()
# Test Run
# question = "who is Yan Lecun?"
# context = ""
# generation = generate_chain.invoke({"context": context, "question": question})
# print(generation)
# Router
router_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert at routing a user question to either the generation stage or web search.
Use the web search for questions that require more context for a better answer, or recent events.
Otherwise, you can skip and go straight to the generation phase to respond.
You do not need to be stringent with the keywords in the question related to these topics.
Give a binary choice 'web_search' or 'generate' based on the question.
Return the JSON with a single key 'choice' with no premable or explanation.
Question to route: {question}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question"],
)
# Chain
question_router = router_prompt | llama3_json | JsonOutputParser()
# Test Run
# question = "What's up?"
# print(question_router.invoke({"question": question}))
# Query Transformation
query_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert at crafting web search queries for research questions.
More often than not, a user will ask a basic question that they wish to learn more about, however it might not be in the best format.
Reword their query to be the most effective web search string possible.
Return the JSON with a single key 'query' with no premable or explanation.
Question to transform: {question}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question"],
)
# Chain
query_chain = query_prompt | llama3_json | JsonOutputParser()
# Test Run
# question = "What's happened recently with Gaza?"
# print(query_chain.invoke({"question": question}))
# Graph State
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
search_query: revised question for web search
context: web_search result
"""
question : str
generation : str
search_query : str
context : str
# Node - Generate
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("Step: Generating Final Response")
question = state["question"]
context = state["context"]
print(context)
# TODO:: 根据context特定的内容生产答案
# Answer Generation
generation = generate_chain.invoke({"context": context, "question": question})
return {"generation": generation}
# Node - Query Transformation
def transform_query(state):
"""
Transform user question to web search
Args:
state (dict): The current graph state
Returns:
state (dict): Appended search query
"""
print("Step: Optimizing Query for Web Search")
question = state['question']
gen_query = query_chain.invoke({"question": question})
search_query = gen_query["query"]
return {"search_query": search_query}
# Node - Web Search
def web_search(state):
"""
Web search based on the question
Args:
state (dict): The current graph state
Returns:
state (dict): Appended web results to context
"""
# search_query = state['search_query']
# print(f'Step: Searching the Web for: "{search_query}"')
# # Web search tool call
# search_result = web_search_tool.invoke(search_query)
print("Step: Web Search")
search_result = "Web Search Results"
return {"context": search_result}
# Conditional Edge, Routing
def route_question(state):
"""
route question to web search or generation.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
print("Step: Routing Query")
question = state['question']
output = question_router.invoke({"question": question})
if output['choice'] == "web_search":
print("Step: Routing Query to Web Search")
return "websearch"
elif output['choice'] == 'generate':
print("Step: Routing Query to Generation")
return "generate"
# Build the nodes
workflow = StateGraph(GraphState)
workflow.add_node("websearch", web_search)
workflow.add_node("transform_query", transform_query)
workflow.add_node("generate", generate)
# Build the edges
workflow.set_conditional_entry_point(
route_question,
{
"websearch": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "websearch")
workflow.add_edge("websearch", "generate")
workflow.add_edge("generate", END)
# Compile the workflow
local_agent = workflow.compile()
def run_agent(query):
output = local_agent.invoke({"question": query})
print("=======")
print(output["generation"])
# display(Markdown(output["generation"]))
run_agent("What is Latest news About Open AI?")

8
env/agent2.yaml vendored Normal file
View File

@ -0,0 +1,8 @@
name: agent2
channels:
- defaults
- conda-forge
dependencies:
- python=3.10
- pip:
- streamlit==1.40.2

6
env/requirements.txt vendored Normal file
View File

@ -0,0 +1,6 @@
langchain==0.2.12
langgraph==0.2.2
langchain-ollama==0.1.1
langsmith== 0.1.98
langchain_community==0.2.11
duckduckgo-search==6.2.13

244
streamlit_app.py Normal file
View File

@ -0,0 +1,244 @@
# Displaying final output format
from IPython.display import display, Markdown, Latex
# LangChain Dependencies
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langgraph.graph import END, StateGraph
# For State Graph
from typing_extensions import TypedDict
import streamlit as st
import os
# Defining LLM
def configure_llm():
st.sidebar.header("Configure LLM")
# Model Selection
model_options = ["llama3.2"]
selected_model = st.sidebar.selectbox("Choose the LLM Model", options=model_options, index=0)
# Temperature Setting
temperature = st.sidebar.slider("Set the Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1)
# Create LLM Instances based on user selection
llama_model = ChatOllama(model=selected_model, temperature=temperature)
llama_model_json = ChatOllama(model=selected_model, format='json', temperature=temperature)
return llama_model, llama_model_json
# Streamlit Application Interface
st.title("Personal Research Assistant powered By Llama3.2")
llama3, llama3_json=configure_llm()
wrapper = DuckDuckGoSearchAPIWrapper(max_results=25)
web_search_tool = DuckDuckGoSearchRun(api_wrapper=wrapper)
generate_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant for Research Question Tasks, that synthesizes web search results.
Strictly use the following pieces of web search context to answer the question. If you don't know the answer, just say that you don't know.
keep the answer concise, but provide all of the details you can in the form of a research report.
Only make direct references to material if provided in the context.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: {question}
Web Search Context: {context}
Answer:
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question", "context"],
)
# Chain
generate_chain = generate_prompt | llama3 | StrOutputParser()
router_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert at routing a user question to either the generation stage or web search.
Use the web search for questions that require more context for a better answer, or recent events.
Otherwise, you can skip and go straight to the generation phase to respond.
You do not need to be stringent with the keywords in the question related to these topics.
Give a binary choice 'web_search' or 'generate' based on the question.
Return the JSON with a single key 'choice' with no premable or explanation.
Question to route: {question}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question"],
)
# Chain
question_router = router_prompt | llama3_json | JsonOutputParser()
query_prompt = PromptTemplate(
template="""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert at crafting web search queries for research questions.
More often than not, a user will ask a basic question that they wish to learn more about, however it might not be in the best format.
Reword their query to be the most effective web search string possible.
Return the JSON with a single key 'query' with no premable or explanation.
Question to transform: {question}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""",
input_variables=["question"],
)
# Chain
query_chain = query_prompt | llama3_json | JsonOutputParser()
# Graph State
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
search_query: revised question for web search
context: web_search result
"""
question : str
generation : str
search_query : str
context : str
# Node - Generate
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("Step: Generating Final Response")
question = state["question"]
context = state["context"]
# Answer Generation
generation = generate_chain.invoke({"context": context, "question": question})
return {"generation": generation}
# Node - Query Transformation
def transform_query(state):
"""
Transform user question to web search
Args:
state (dict): The current graph state
Returns:
state (dict): Appended search query
"""
print("Step: Optimizing Query for Web Search")
question = state['question']
gen_query = query_chain.invoke({"question": question})
search_query = gen_query["query"]
return {"search_query": search_query}
# Node - Web Search
def web_search(state):
"""
Web search based on the question
Args:
state (dict): The current graph state
Returns:
state (dict): Appended web results to context
"""
search_query = state['search_query']
print(f'Step: Searching the Web for: "{search_query}"')
# Web search tool call
search_result = web_search_tool.invoke(search_query)
return {"context": search_result}
# Conditional Edge, Routing
def route_question(state):
"""
route question to web search or generation.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
print("Step: Routing Query")
question = state['question']
output = question_router.invoke({"question": question})
if output['choice'] == "web_search":
print("Step: Routing Query to Web Search")
return "websearch"
elif output['choice'] == 'generate':
print("Step: Routing Query to Generation")
return "generate"
# Build the nodes
workflow = StateGraph(GraphState)
workflow.add_node("websearch", web_search)
workflow.add_node("transform_query", transform_query)
workflow.add_node("generate", generate)
# Build the edges
workflow.set_conditional_entry_point(
route_question,
{
"websearch": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "websearch")
workflow.add_edge("websearch", "generate")
workflow.add_edge("generate", END)
# Compile the workflow
local_agent = workflow.compile()
def run_agent(query):
output = local_agent.invoke({"question": query})
print("=======")
return output["generation"]
user_query = st.text_input("Enter your research question:", "")
if st.button("Run Query"):
if user_query:
st.write(run_agent(user_query))