import streamlit as st from agent_util import config_agent, configure_llm # Streamlit Application Interface st.sidebar.header("Configure LLM") st.title("CEC Seller Assistant") # Model Selection model_options = ["llama3.2"] selected_model = st.sidebar.selectbox( "Choose the LLM Model", options=model_options, index=0) # Temperature Setting temperature = st.sidebar.slider( "Set the Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1) llama3, llama3_json = configure_llm(selected_model, temperature) local_agent = config_agent(llama3, llama3_json) def run_agent(query): config = {"configurable": {"thread_id": "1", "user_id": "1"}} output = local_agent.invoke({"question": [query]}, config) print(list(local_agent.get_state_history(config))) # output = local_agent.invoke({"question": ['hi, my name is cz', query]}) print("=======") return output["generation"] user_query = st.text_input("Enter your research question:", "") if st.button("Run Query"): if user_query: st.write(run_agent(user_query))