# Displaying final output format # from IPython.display import display, Markdown, Latex # LangChain Dependencies from langchain.prompts import PromptTemplate from langchain_core.output_parsers import JsonOutputParser, StrOutputParser from langchain_community.chat_models import ChatOllama from langgraph.graph import END, StateGraph # For State Graph from typing_extensions import TypedDict import os import json # Defining LLM local_llm = 'llama3.2' llama3 = ChatOllama(model=local_llm, temperature=0) llama3_json = ChatOllama(model=local_llm, format='json', temperature=0) # Generation Prompt generate_prompt = PromptTemplate( template=""" <|begin_of_text|> <|start_header_id|>system<|end_header_id|> You are an AI assistant for Research Question Tasks, that synthesizes web search results. Strictly use the following pieces of web search context to answer the question. If you don't know the answer, just say that you don't know. keep the answer concise, but provide all of the details you can in the form of a research report. Only make direct references to material if provided in the context. <|eot_id|> <|start_header_id|>user<|end_header_id|> Question: {question} Send Order Context: {context} Answer: <|eot_id|> <|start_header_id|>assistant<|end_header_id|>""", input_variables=["question", "context"], ) # Chain generate_chain = generate_prompt | llama3 | StrOutputParser() # Test Run # question = "who is Yan Lecun?" # context = "" # generation = generate_chain.invoke({"context": context, "question": question}) # print(generation) # Router router_prompt = PromptTemplate( template=""" <|begin_of_text|> <|start_header_id|>system<|end_header_id|> You are an expert at routing a user question to either the generation stage or send order. Use the send order for questions that user want buy CEC from you. Otherwise, you can skip and go straight to the generation phase to respond. You do not need to be stringent with the keywords in the question related to these topics. Give a binary choice 'send_order' or 'generate' based on the question. Return the JSON with a single key 'choice' with no premable or explanation. Question to route: {question} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> """, input_variables=["question"], ) # Chain question_router = router_prompt | llama3_json | JsonOutputParser() # Test Run # question = "What's up?" # print(question_router.invoke({"question": question})) # Query Transformation query_prompt = PromptTemplate( template=""" <|begin_of_text|> <|start_header_id|>system<|end_header_id|> You are an expert at sell CEC, Return the JSON with a single key 'count' with amount which user want to buy. Question to transform: {question} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> """, input_variables=["question"], ) # Chain query_chain = query_prompt | llama3_json | JsonOutputParser() # Test Run # question = "What's happened recently with Gaza?" # print(query_chain.invoke({"question": question})) # Graph State class GraphState(TypedDict): """ Represents the state of our graph. Attributes: question: question generation: LLM generation send_order: revised question for send order context: send_order result """ question : str generation : str send_order : str context : str # Node - Generate def generate(state): """ Generate answer Args: state (dict): The current graph state Returns: state (dict): New key added to state, generation, that contains LLM generation """ print("Step: Generating Final Response") question = state["question"] context = state.get("context", None) print(context) # TODO:: 根据context特定的内容生产答案 if context.index("orderinfo") != -1: return {"generation": context.replace("orderinfo:", "")} else: generation = generate_chain.invoke({"context": context, "question": question}) return {"generation": generation} # Node - Query Transformation def transform_query(state): """ Transform user question to order info Args: state (dict): The current graph state Returns: state (dict): Appended search query """ print("Step: Optimizing Query for Send Order") question = state['question'] gen_query = query_chain.invoke({"question": question}) search_query = gen_query["count"] print("send_order", search_query) return {"send_order": search_query} # Node - Send Order def send_order(state): """ Send order based on the question Args: state (dict): The current graph state Returns: state (dict): Appended web results to context """ print("Step: before Send Order") amount = state['send_order'] print(amount) print(f'Step: build order info for : "{amount}" CEC') order_info = {"amount": amount, "price": 0.1, "name": "CEC", "url": "https://www.example.com"} search_result = f"orderinfo:{json.dumps(order_info)}" return {"context": search_result} # Conditional Edge, Routing def route_question(state): """ route question to send order or generation. Args: state (dict): The current graph state Returns: str: Next node to call """ print("Step: Routing Query") question = state['question'] output = question_router.invoke({"question": question}) if output['choice'] == "send_order": print("Step: Routing Query to Send Order") return "sendorder" elif output['choice'] == 'generate': print("Step: Routing Query to Generation") return "generate" # Build the nodes workflow = StateGraph(GraphState) workflow.add_node("sendorder", send_order) workflow.add_node("transform_query", transform_query) workflow.add_node("generate", generate) # Build the edges workflow.set_conditional_entry_point( route_question, { "sendorder": "transform_query", "generate": "generate", }, ) workflow.add_edge("transform_query", "sendorder") workflow.add_edge("sendorder", "generate") workflow.add_edge("generate", END) # Compile the workflow local_agent = workflow.compile() def run_agent(query): output = local_agent.invoke({"question": query}) print("=======") print(output["generation"]) # display(Markdown(output["generation"])) run_agent("I want to buy 100 CEC") # run_agent("What the weather of New York today?")