63 lines
42 KiB
JSON
63 lines
42 KiB
JSON
{
|
|
"language": "Solidity",
|
|
"sources": {
|
|
"@openzeppelin/contracts/access/Ownable.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby disabling any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\nabstract contract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot's contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler's defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction's gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor() {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and making it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n _nonReentrantBefore();\n _;\n _nonReentrantAfter();\n }\n\n function _nonReentrantBefore() private {\n // On the first call to nonReentrant, _status will be _NOT_ENTERED\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n }\n\n function _nonReentrantAfter() private {\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Returns true if the reentrancy guard is currently set to \"entered\", which indicates there is a\n * `nonReentrant` function in the call stack.\n */\n function _reentrancyGuardEntered() internal view returns (bool) {\n return _status == _ENTERED;\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(address from, address to, uint256 amount) external returns (bool);\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/Context.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n\n function _contextSuffixLength() internal view virtual returns (uint256) {\n return 0;\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/cryptography/ECDSA.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../Strings.sol\";\n\n/**\n * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.\n *\n * These functions can be used to verify that a message was signed by the holder\n * of the private keys of a given address.\n */\nlibrary ECDSA {\n enum RecoverError {\n NoError,\n InvalidSignature,\n InvalidSignatureLength,\n InvalidSignatureS,\n InvalidSignatureV // Deprecated in v4.8\n }\n\n function _throwError(RecoverError error) private pure {\n if (error == RecoverError.NoError) {\n return; // no error: do nothing\n } else if (error == RecoverError.InvalidSignature) {\n revert(\"ECDSA: invalid signature\");\n } else if (error == RecoverError.InvalidSignatureLength) {\n revert(\"ECDSA: invalid signature length\");\n } else if (error == RecoverError.InvalidSignatureS) {\n revert(\"ECDSA: invalid signature 's' value\");\n }\n }\n\n /**\n * @dev Returns the address that signed a hashed message (`hash`) with\n * `signature` or error string. This address can then be used for verification purposes.\n *\n * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n * this function rejects them by requiring the `s` value to be in the lower\n * half order, and the `v` value to be either 27 or 28.\n *\n * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n * verification to be secure: it is possible to craft signatures that\n * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n * this is by receiving a hash of the original message (which may otherwise\n * be too long), and then calling {toEthSignedMessageHash} on it.\n *\n * Documentation for signature generation:\n * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]\n * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]\n *\n * _Available since v4.3._\n */\n function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {\n if (signature.length == 65) {\n bytes32 r;\n bytes32 s;\n uint8 v;\n // ecrecover takes the signature parameters, and the only way to get them\n // currently is to use assembly.\n /// @solidity memory-safe-assembly\n assembly {\n r := mload(add(signature, 0x20))\n s := mload(add(signature, 0x40))\n v := byte(0, mload(add(signature, 0x60)))\n }\n return tryRecover(hash, v, r, s);\n } else {\n return (address(0), RecoverError.InvalidSignatureLength);\n }\n }\n\n /**\n * @dev Returns the address that signed a hashed message (`hash`) with\n * `signature`. This address can then be used for verification purposes.\n *\n * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n * this function rejects them by requiring the `s` value to be in the lower\n * half order, and the `v` value to be either 27 or 28.\n *\n * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n * verification to be secure: it is possible to craft signatures that\n * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n * this is by receiving a hash of the original message (which may otherwise\n * be too long), and then calling {toEthSignedMessageHash} on it.\n */\n function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, signature);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.\n *\n * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]\n *\n * _Available since v4.3._\n */\n function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {\n bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);\n uint8 v = uint8((uint256(vs) >> 255) + 27);\n return tryRecover(hash, v, r, s);\n }\n\n /**\n * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.\n *\n * _Available since v4.2._\n */\n function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, r, vs);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Overload of {ECDSA-tryRecover} that receives the `v`,\n * `r` and `s` signature fields separately.\n *\n * _Available since v4.3._\n */\n function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {\n // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature\n // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines\n // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most\n // signatures from current libraries generate a unique signature with an s-value in the lower half order.\n //\n // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value\n // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or\n // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept\n // these malleable signatures as well.\n if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {\n return (address(0), RecoverError.InvalidSignatureS);\n }\n\n // If the signature is valid (and not malleable), return the signer address\n address signer = ecrecover(hash, v, r, s);\n if (signer == address(0)) {\n return (address(0), RecoverError.InvalidSignature);\n }\n\n return (signer, RecoverError.NoError);\n }\n\n /**\n * @dev Overload of {ECDSA-recover} that receives the `v`,\n * `r` and `s` signature fields separately.\n */\n function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, v, r, s);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Returns an Ethereum Signed Message, created from a `hash`. This\n * produces hash corresponding to the one signed with the\n * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n * JSON-RPC method as part of EIP-191.\n *\n * See {recover}.\n */\n function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {\n // 32 is the length in bytes of hash,\n // enforced by the type signature above\n /// @solidity memory-safe-assembly\n assembly {\n mstore(0x00, \"\\x19Ethereum Signed Message:\\n32\")\n mstore(0x1c, hash)\n message := keccak256(0x00, 0x3c)\n }\n }\n\n /**\n * @dev Returns an Ethereum Signed Message, created from `s`. This\n * produces hash corresponding to the one signed with the\n * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n * JSON-RPC method as part of EIP-191.\n *\n * See {recover}.\n */\n function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {\n return keccak256(abi.encodePacked(\"\\x19Ethereum Signed Message:\\n\", Strings.toString(s.length), s));\n }\n\n /**\n * @dev Returns an Ethereum Signed Typed Data, created from a\n * `domainSeparator` and a `structHash`. This produces hash corresponding\n * to the one signed with the\n * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]\n * JSON-RPC method as part of EIP-712.\n *\n * See {recover}.\n */\n function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {\n /// @solidity memory-safe-assembly\n assembly {\n let ptr := mload(0x40)\n mstore(ptr, \"\\x19\\x01\")\n mstore(add(ptr, 0x02), domainSeparator)\n mstore(add(ptr, 0x22), structHash)\n data := keccak256(ptr, 0x42)\n }\n }\n\n /**\n * @dev Returns an Ethereum Signed Data with intended validator, created from a\n * `validator` and `data` according to the version 0 of EIP-191.\n *\n * See {recover}.\n */\n function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {\n return keccak256(abi.encodePacked(\"\\x19\\x00\", validator, data));\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/math/Math.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Down, // Toward negative infinity\n Up, // Toward infinity\n Zero // Toward zero\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds up instead\n * of rounding down.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b - 1) / b can overflow on addition, so we distribute.\n return a == 0 ? 0 : (a - 1) / b + 1;\n }\n\n /**\n * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n * with further edits by Uniswap Labs also under MIT license.\n */\n function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {\n unchecked {\n // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = prod1 * 2^256 + prod0.\n uint256 prod0; // Least significant 256 bits of the product\n uint256 prod1; // Most significant 256 bits of the product\n assembly {\n let mm := mulmod(x, y, not(0))\n prod0 := mul(x, y)\n prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n }\n\n // Handle non-overflow cases, 256 by 256 division.\n if (prod1 == 0) {\n // Solidity will revert if denominator == 0, unlike the div opcode on its own.\n // The surrounding unchecked block does not change this fact.\n // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.\n return prod0 / denominator;\n }\n\n // Make sure the result is less than 2^256. Also prevents denominator == 0.\n require(denominator > prod1, \"Math: mulDiv overflow\");\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [prod1 prod0].\n uint256 remainder;\n assembly {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n prod1 := sub(prod1, gt(remainder, prod0))\n prod0 := sub(prod0, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n // See https://cs.stackexchange.com/q/138556/92363.\n\n // Does not overflow because the denominator cannot be zero at this stage in the function.\n uint256 twos = denominator & (~denominator + 1);\n assembly {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [prod1 prod0] by twos.\n prod0 := div(prod0, twos)\n\n // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from prod1 into prod0.\n prod0 |= prod1 * twos;\n\n // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv = 1 mod 2^4.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n // in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2^8\n inverse *= 2 - denominator * inverse; // inverse mod 2^16\n inverse *= 2 - denominator * inverse; // inverse mod 2^32\n inverse *= 2 - denominator * inverse; // inverse mod 2^64\n inverse *= 2 - denominator * inverse; // inverse mod 2^128\n inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n // is no longer required.\n result = prod0 * inverse;\n return result;\n }\n }\n\n /**\n * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {\n uint256 result = mulDiv(x, y, denominator);\n if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n result += 1;\n }\n return result;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n *\n * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n if (a == 0) {\n return 0;\n }\n\n // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n //\n // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n //\n // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n //\n // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n uint256 result = 1 << (log2(a) >> 1);\n\n // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n // into the expected uint128 result.\n unchecked {\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n return min(result, a / result);\n }\n }\n\n /**\n * @notice Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 2, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 128;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 64;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 32;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 16;\n }\n if (value >> 8 > 0) {\n value >>= 8;\n result += 8;\n }\n if (value >> 4 > 0) {\n value >>= 4;\n result += 4;\n }\n if (value >> 2 > 0) {\n value >>= 2;\n result += 2;\n }\n if (value >> 1 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 10, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10 ** 64) {\n value /= 10 ** 64;\n result += 64;\n }\n if (value >= 10 ** 32) {\n value /= 10 ** 32;\n result += 32;\n }\n if (value >= 10 ** 16) {\n value /= 10 ** 16;\n result += 16;\n }\n if (value >= 10 ** 8) {\n value /= 10 ** 8;\n result += 8;\n }\n if (value >= 10 ** 4) {\n value /= 10 ** 4;\n result += 4;\n }\n if (value >= 10 ** 2) {\n value /= 10 ** 2;\n result += 2;\n }\n if (value >= 10 ** 1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 256, rounded down, of a positive value.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 16;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 8;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 4;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 2;\n }\n if (value >> 8 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 256, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);\n }\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/math/SignedMath.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard signed math utilities missing in the Solidity language.\n */\nlibrary SignedMath {\n /**\n * @dev Returns the largest of two signed numbers.\n */\n function max(int256 a, int256 b) internal pure returns (int256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two signed numbers.\n */\n function min(int256 a, int256 b) internal pure returns (int256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two signed numbers without overflow.\n * The result is rounded towards zero.\n */\n function average(int256 a, int256 b) internal pure returns (int256) {\n // Formula from the book \"Hacker's Delight\"\n int256 x = (a & b) + ((a ^ b) >> 1);\n return x + (int256(uint256(x) >> 255) & (a ^ b));\n }\n\n /**\n * @dev Returns the absolute unsigned value of a signed value.\n */\n function abs(int256 n) internal pure returns (uint256) {\n unchecked {\n // must be unchecked in order to support `n = type(int256).min`\n return uint256(n >= 0 ? n : -n);\n }\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/Strings.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\nimport \"./math/SignedMath.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n uint8 private constant _ADDRESS_LENGTH = 20;\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n */\n function toString(uint256 value) internal pure returns (string memory) {\n unchecked {\n uint256 length = Math.log10(value) + 1;\n string memory buffer = new string(length);\n uint256 ptr;\n /// @solidity memory-safe-assembly\n assembly {\n ptr := add(buffer, add(32, length))\n }\n while (true) {\n ptr--;\n /// @solidity memory-safe-assembly\n assembly {\n mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n }\n value /= 10;\n if (value == 0) break;\n }\n return buffer;\n }\n }\n\n /**\n * @dev Converts a `int256` to its ASCII `string` decimal representation.\n */\n function toString(int256 value) internal pure returns (string memory) {\n return string(abi.encodePacked(value < 0 ? \"-\" : \"\", toString(SignedMath.abs(value))));\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n */\n function toHexString(uint256 value) internal pure returns (string memory) {\n unchecked {\n return toHexString(value, Math.log256(value) + 1);\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n */\n function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n bytes memory buffer = new bytes(2 * length + 2);\n buffer[0] = \"0\";\n buffer[1] = \"x\";\n for (uint256 i = 2 * length + 1; i > 1; --i) {\n buffer[i] = _SYMBOLS[value & 0xf];\n value >>= 4;\n }\n require(value == 0, \"Strings: hex length insufficient\");\n return string(buffer);\n }\n\n /**\n * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n */\n function toHexString(address addr) internal pure returns (string memory) {\n return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n }\n\n /**\n * @dev Returns true if the two strings are equal.\n */\n function equal(string memory a, string memory b) internal pure returns (bool) {\n return keccak256(bytes(a)) == keccak256(bytes(b));\n }\n}\n"
|
|
},
|
|
"contracts/activity/NFTClaimStage2.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.19;\n\nimport {ReentrancyGuard} from \"@openzeppelin/contracts/security/ReentrancyGuard.sol\";\nimport {IERC20} from \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\nimport {HasSignature} from \"../core/HasSignature.sol\";\n\n/**\n * Contract for the activity of NFT claim stage 2.\n */\ninterface IClaimAbleNFT {\n function safeMint(address to, uint256 tokenID) external;\n}\n\ncontract NFTClaimStage2 is HasSignature, ReentrancyGuard {\n struct MintConfig {\n uint256 parse1MaxSupply; // max supply for phase1\n uint256 maxSupply; // max supply for phase2\n address currency; // token address which user must pay to mint\n uint256 mintPrice; // in wei\n address feeToAddress; // wallet address to receive mint fee\n }\n // parse: 0: not open or end, 1: phase1, 2: phase2\n uint256 public mintParse = 0;\n\n uint256 public immutable _CACHED_CHAIN_ID;\n address public immutable _CACHED_THIS;\n address public immutable nftAddress;\n\n address public verifier;\n MintConfig public mintConfig;\n uint256 public parse1Count;\n uint256 public totalCount;\n\n event NFTClaimed(address indexed nftAddress, address indexed to, uint256[] ids);\n\n event ParseUpdated(uint256 _parse);\n event MintConfigUpdated(MintConfig config);\n event VerifierUpdated(address indexed verifier);\n\n constructor(address _nftAddress, address _verifier, MintConfig memory _mintConfig) {\n _CACHED_CHAIN_ID = block.chainid;\n _CACHED_THIS = address(this);\n nftAddress = _nftAddress;\n verifier = _verifier;\n mintConfig = _mintConfig;\n }\n\n modifier whenNotPaused() {\n require(mintParse > 0, \"NFTClaimer: not begin or ended\");\n _;\n }\n\n function updateMintParse(uint256 _mintParse) external onlyOwner {\n mintParse = _mintParse;\n emit ParseUpdated(_mintParse);\n }\n\n function updateMintConfig(MintConfig calldata config) external onlyOwner {\n mintConfig = config;\n emit MintConfigUpdated(config);\n }\n\n /**\n * @dev update verifier address\n */\n function updateVerifier(address _verifier) external onlyOwner {\n require(_verifier != address(0), \"NFTClaimer: address can not be zero\");\n verifier = _verifier;\n emit VerifierUpdated(_verifier);\n }\n\n /**\n * @dev claim NFT\n * Get whitelist signature from a third-party service, then call this method to claim NFT\n * @param saltNonce nonce\n * @param signature signature\n */\n function claim(\n uint256[] memory ids,\n uint256 tokenAmount,\n uint256 saltNonce,\n bytes calldata signature\n ) external nonReentrant whenNotPaused {\n // get current parse;\n uint256 count = ids.length;\n require(count > 0, \"NFTClaimer: ids length must be greater than 0\");\n if (mintParse == 1) {\n require(count <= mintConfig.parse1MaxSupply - parse1Count, \"NFTClaimer: exceed parse 1 max supply\");\n } else {\n require(count <= mintConfig.maxSupply - totalCount, \"NFTClaimer: exceed max supply\");\n }\n require(tokenAmount >= mintConfig.mintPrice * count, \"NFTClaimer: insufficient token amount\");\n address to = _msgSender();\n bytes32 criteriaMessageHash = getMessageHash(to, nftAddress, ids, tokenAmount, _CACHED_THIS, _CACHED_CHAIN_ID, saltNonce);\n checkSigner(verifier, criteriaMessageHash, signature);\n IERC20(mintConfig.currency).transferFrom(to, mintConfig.feeToAddress, tokenAmount);\n for (uint256 i = 0; i < count; ++i) {\n IClaimAbleNFT(nftAddress).safeMint(to, ids[i]);\n }\n // require(count > 2, \"run to here\");\n totalCount += count;\n if (mintParse == 1) {\n parse1Count += count;\n }\n _useSignature(signature);\n emit NFTClaimed(nftAddress, to, ids);\n }\n\n function getMessageHash(\n address _to,\n address _address,\n uint256[] memory _ids,\n uint256 _tokenAmount,\n address _contract,\n uint256 _chainId,\n uint256 _saltNonce\n ) public pure returns (bytes32) {\n bytes memory encoded = abi.encodePacked(_to, _address, _tokenAmount, _contract, _chainId, _saltNonce);\n for (uint256 i = 0; i < _ids.length; ++i) {\n encoded = bytes.concat(encoded, abi.encodePacked(_ids[i]));\n }\n return keccak256(encoded);\n }\n}\n"
|
|
},
|
|
"contracts/core/HasSignature.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.19;\nimport {ECDSA} from \"@openzeppelin/contracts/utils/cryptography/ECDSA.sol\";\nimport {Ownable} from \"@openzeppelin/contracts/access/Ownable.sol\";\n\ncontract HasSignature is Ownable {\n mapping(bytes signature => bool status) private _usedSignatures;\n\n function checkSigner(\n address signer,\n bytes32 hash,\n bytes memory signature\n ) public pure {\n bytes32 ethSignedMessageHash = ECDSA.toEthSignedMessageHash(hash);\n\n address recovered = ECDSA.recover(ethSignedMessageHash, signature);\n require(recovered == signer, \"invalid signature\");\n }\n\n modifier signatureValid(bytes calldata signature) {\n require(\n !_usedSignatures[signature],\n \"signature used. please send another transaction with new signature\"\n );\n _;\n }\n\n function _useSignature(bytes calldata signature) internal {\n if (!_usedSignatures[signature]) {\n _usedSignatures[signature] = true;\n }\n }\n}\n"
|
|
}
|
|
},
|
|
"settings": {
|
|
"optimizer": {
|
|
"enabled": true,
|
|
"runs": 200
|
|
},
|
|
"viaIR": true,
|
|
"outputSelection": {
|
|
"*": {
|
|
"*": [
|
|
"abi",
|
|
"evm.bytecode",
|
|
"evm.deployedBytecode",
|
|
"evm.methodIdentifiers",
|
|
"metadata",
|
|
"devdoc",
|
|
"userdoc",
|
|
"storageLayout",
|
|
"evm.gasEstimates"
|
|
],
|
|
"": [
|
|
"ast"
|
|
]
|
|
}
|
|
},
|
|
"metadata": {
|
|
"useLiteralContent": true
|
|
}
|
|
}
|
|
} |