#include #include #include #include #include #include #include #include #include #include #include namespace a8 { a8::tick_t XGetTickCount() { #if 1 struct timeval tv; gettimeofday(&tv, NULL); long long time = tv.tv_usec; time /= 1000; time += (tv.tv_sec * 1000); return time; #else struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return (ts.tv_sec*1000 + ts.tv_nsec/(1000*1000)); #endif } long long XGetNanoSeconds() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return (ts.tv_sec*1000000000 + ts.tv_nsec); } long long GetMilliSecond() { struct timeval tv; gettimeofday(&tv, NULL); long long time = tv.tv_usec; time /= 1000; time += (tv.tv_sec * 1000); return time; } int HashString(const std::string& str) { return 0; } a8::XValue Get(std::map &map, const char* key, const char* defval) { auto itr = map.find(std::string(key)); return itr != map.end() ? itr->second : a8::XValue(defval); } int RandEx(int min, int max) { if (min == max) { return min; } if (min > max) { int tmp = min; min = max; max = tmp; } return min + std::max(0, rand() % (max - min + 1)); } int GetRangeValue(int src_value, int min, int max) { if (src_value < min) { return min; } if (src_value > max) { return max; } return rand() % max; } void SetBitFlag(int& flag_bits, int bit) { flag_bits |= (int)1 << bit; } void UnSetBitFlag(int& flag_bits, int bit) { flag_bits &= ~((int)1 << bit); } bool HasBitFlag(const int& flag_bits, int bit) { return (flag_bits & ((int)1 << bit)) != 0; } void SetBitFlag(long long& flag_bits, int bit) { flag_bits |= (long long)1 << bit; } void UnSetBitFlag(long long& flag_bits, int bit) { flag_bits &= ~((long long)1 << bit); } bool HasBitFlag(const long long& flag_bits, int bit) { return (flag_bits & ((long long)1 << bit)) != 0; } bool SameBitFlag(long long a_flag_bits, long long b_flag_bits, int bit) { return HasBitFlag(a_flag_bits, bit) == HasBitFlag(b_flag_bits, bit); } void XPrintf(const char* fmt, std::initializer_list args) { time_t nowtime = time(nullptr); struct tm tm_nowtime = {0}; struct tm *ptr = localtime_r(&nowtime, &tm_nowtime); char strtime[80]; strftime(strtime, 80, "%F %T ", ptr); std::string data; data.append((char*)strtime); data += a8::Format(fmt, args); printf("%s", data.c_str()); fflush(stdout); } bool MkDir(const std::string& path) { if (access(path.c_str(), W_OK) == 0) { return true; } int status = mkdir(path.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH); return status == 0; } void ForceCreateDir(const std::string& path) { if (access(path.c_str(), W_OK) == 0) { return; } std::vector strings; a8::Split(path, strings, '/'); std::string cur_dir = "/"; for (auto& tmp_str : strings) { cur_dir += tmp_str + "/"; if (access(cur_dir.c_str(), W_OK) != 0) { a8::MkDir(cur_dir); } } } std::string GetIpAddress(unsigned long ip_saddr) { in_addr addr; memset(&addr, 0, sizeof(addr)); addr.s_addr = ip_saddr; char buf[255]; buf[0] = '\0'; inet_ntop(AF_INET, &addr, buf, 255); return std::string(buf); } bool GetLocalIp(std::string& ip_address) { int sfd, intr; struct ifreq buf[16]; struct ifconf ifc; sfd = ::socket(AF_INET, SOCK_DGRAM, 0); if (sfd < 0) { return false; } ifc.ifc_len = sizeof(buf); ifc.ifc_buf = (caddr_t)buf; if (::ioctl(sfd, SIOCGIFCONF, (char *)&ifc)) { return false; } intr = ifc.ifc_len / sizeof(struct ifreq); while (intr-- > 0 && ::ioctl(sfd, SIOCGIFADDR, (char *)&buf[intr])); ::close(sfd); ip_address = inet_ntoa(((struct sockaddr_in*)(&buf[intr].ifr_addr))-> sin_addr); return true; } std::string FormatDateTime(time_t time_val) { struct tm tm_time = {0}; localtime_r(&time_val, &tm_time); char buff[256]; buff[0] = '\0'; strftime(buff, a8::ArraySize(buff), "%F %T", &tm_time); return std::string(buff); } std::string TimestampToDateTime(time_t time_val) { std::string datetime_str; { time_t nowtime = time_val; struct tm tm_time = {0}; localtime_r(&nowtime, &tm_time); char buff[256]; strftime(buff, a8::ArraySize(buff), "%F %T", &tm_time); datetime_str.append((char*)buff); } return datetime_str; } std::string TimestampToDate(time_t time_val) { std::string datetime_str; { time_t nowtime = time_val; struct tm tm_time = {0}; localtime_r(&nowtime, &tm_time); char buff[256]; strftime(buff, a8::ArraySize(buff), "%F", &tm_time); datetime_str.append((char*)buff); } return datetime_str; } time_t GetDaySeconds(time_t time_val, int incdays) { int g_time_zone = 8; return time_t((time_val + g_time_zone * 3600)/3600/24 + incdays) * 3600 * 24 - 3600 * g_time_zone; } time_t GetMondaySeconds(time_t time_val) { struct tm tm_time = {0}; struct tm *ptr = localtime_r(&time_val, &tm_time); if (!ptr) { abort(); } switch (tm_time.tm_wday) { case 1: case 2: case 3: case 4: case 5: case 6: return GetDaySeconds(time_val - (3600 * 24 * (tm_time.tm_wday - 1))); break; case 0: return GetDaySeconds(time_val - (3600 * 24 * 6)); break; default: abort(); return time_val; } } time_t BetweenDays(time_t time_val1, time_t time_val2) { int g_time_zone = 8; return (time_val1 + g_time_zone*3600)/3600/24 - (time_val2 + g_time_zone*3600)/3600/24; } time_t GetDateTimeSeconds(const char* datetime_str) { #if 0 int g_time_zone = 8; #endif struct tm stm = {0}; strptime(datetime_str, "%Y-%m-%d %H:%M:%S", &stm); long t = mktime(&stm); #if 1 return t; #else return t + g_time_zone*3600; #endif } time_t GetTimeDaySeconds(const char* time_str) { struct tm stm = {0}; char* p = strptime(time_str, "%Y-%m-%d %H:%M:%S", &stm); if (!p) { return -1; } long t = mktime(&stm); return GetDaySeconds(t); } long long MakeInt64(int low32, int high32) { return low32 + ((long long)high32 << 32); } int Low32(long long int64_val) { return (int)int64_val; } int High32(long long int64_val) { return (int)(int64_val >> 32); } int MkRgb(int red, int green, int blue) { return red | (green << 8) | (blue << 16) ; } float RandAngle() { float angle = 0.00001f + ((float)rand() / RAND_MAX) * 2.0f; return angle; } void ClearSendQueue(a8::SendQueueNode* node) { a8::SendQueueNode* tmp_node = node; while (tmp_node) { a8::SendQueueNode* pdelnode = tmp_node; tmp_node = pdelnode->next; if (pdelnode->buff) { free(pdelnode->buff); } free(pdelnode); } } void Abort() { abort(); } }