add navigation component

This commit is contained in:
aozhiwei 2019-10-09 14:17:08 +08:00
parent d6038d8400
commit 9bc053e936
6 changed files with 1198 additions and 0 deletions

43
cpp/navigation.cc Normal file
View File

@ -0,0 +1,43 @@
#include "precompile.h"
#include "behaviac/behaviac.h"
#include "navigation.h"
namespace f8
{
void Navigation::Init()
{
}
void Navigation::UnInit()
{
}
f8::NavigationHandle* Navigation::LoadNavigation(const std::string& res_path,
const std::map<int, std::string>& params)
{
return nullptr;
}
bool Navigation::HasNavigation(const std::string& res_path)
{
return navhandles_.find(res_path) != navhandles_.end();
}
void Navigation::RemoveNavigation(const std::string& res_path)
{
auto itr = navhandles_.find(res_path);
if (itr != navhandles_.end()) {
navhandles_.erase(itr);
}
}
f8::NavigationHandle* Navigation::FindNavigation(const std::string& res_path)
{
auto itr = navhandles_.find(res_path);
return itr != navhandles_.end() ? itr->second : nullptr;
}
}

25
cpp/navigation.h Normal file
View File

@ -0,0 +1,25 @@
#pragma once
namespace f8
{
class NavigationHandle;
class Navigation : public a8::Singleton<Navigation>
{
private:
Navigation() {};
friend class a8::Singleton<Navigation>;
public:
void Init();
void UnInit();
f8::NavigationHandle* LoadNavigation(const std::string& res_path,
const std::map<int, std::string>& params);
bool HasNavigation(const std::string& res_path);
void RemoveNavigation(const std::string& res_path);
f8::NavigationHandle* FindNavigation(const std::string& res_path);
private:
std::map<std::string, f8::NavigationHandle*> navhandles_;
};
}

25
cpp/navigation_handle.cc Normal file
View File

@ -0,0 +1,25 @@
#include "precompile.h"
#include "navigation_handle.h"
namespace f8
{
int NavigationHandle::FindStraightPath(int layer, const a8::Vec3& start, const a8::Vec3& end,
std::vector<a8::Vec3>& path_list)
{
return 0;
}
int NavigationHandle::FindRandomPointAroundCircle(int layer, const a8::Vec3& center_pos,
std::vector<a8::Vec3>& points, int max_points, float max_radius)
{
return 0;
}
int NavigationHandle::Raycast(int layer, const a8::Vec3& start, const a8::Vec3& end,
std::vector<a8::Vec3>& hit_points)
{
return 0;
}
}

20
cpp/navigation_handle.h Normal file
View File

@ -0,0 +1,20 @@
#pragma once
#include <a8/vec3.h>
namespace f8
{
class NavigationHandle
{
public:
NavigationHandle() {};
~NavigationHandle() {};
int FindStraightPath(int layer, const a8::Vec3& start, const a8::Vec3& end,
std::vector<a8::Vec3>& path_list);
int FindRandomPointAroundCircle(int layer, const a8::Vec3& center_pos,
std::vector<a8::Vec3>& points, int max_points, float max_radius);
int Raycast(int layer, const a8::Vec3& start, const a8::Vec3& end,
std::vector<a8::Vec3>& hit_points);
};
}

833
stlastar.h Normal file
View File

@ -0,0 +1,833 @@
/*
A* Algorithm Implementation using STL is
Copyright (C)2001-2005 Justin Heyes-Jones
Permission is given by the author to freely redistribute and
include this code in any program as long as this credit is
given where due.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE
IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL
DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.
Use at your own risk!
*/
#ifndef STLASTAR_H
#define STLASTAR_H
// used for text debugging
#include <iostream>
#include <stdio.h>
//#include <conio.h>
#include <assert.h>
// stl includes
#include <algorithm>
#include <set>
#include <vector>
#include <cfloat>
using namespace std;
// fast fixed size memory allocator, used for fast node memory management
#include "stlstarfsa.h"
// Fixed size memory allocator can be disabled to compare performance
// Uses std new and delete instead if you turn it off
#define USE_FSA_MEMORY 1
// disable warning that debugging information has lines that are truncated
// occurs in stl headers
#if defined(WIN32) && defined(_WINDOWS)
#pragma warning( disable : 4786 )
#endif
template <class T> class AStarState;
// The AStar search class. UserState is the users state space type
template <class UserState> class AStarSearch
{
public: // data
enum
{
SEARCH_STATE_NOT_INITIALISED,
SEARCH_STATE_SEARCHING,
SEARCH_STATE_SUCCEEDED,
SEARCH_STATE_FAILED,
SEARCH_STATE_OUT_OF_MEMORY,
SEARCH_STATE_INVALID
};
// A node represents a possible state in the search
// The user provided state type is included inside this type
public:
class Node
{
public:
Node *parent; // used during the search to record the parent of successor nodes
Node *child; // used after the search for the application to view the search in reverse
float g; // cost of this node + it's predecessors
float h; // heuristic estimate of distance to goal
float f; // sum of cumulative cost of predecessors and self and heuristic
Node() :
parent( 0 ),
child( 0 ),
g( 0.0f ),
h( 0.0f ),
f( 0.0f )
{
}
UserState m_UserState;
};
// For sorting the heap the STL needs compare function that lets us compare
// the f value of two nodes
class HeapCompare_f
{
public:
bool operator() ( const Node *x, const Node *y ) const
{
return x->f > y->f;
}
};
public: // methods
// constructor just initialises private data
AStarSearch() :
m_State( SEARCH_STATE_NOT_INITIALISED ),
m_CurrentSolutionNode( NULL ),
#if USE_FSA_MEMORY
m_FixedSizeAllocator( 1000 ),
#endif
m_AllocateNodeCount(0),
m_CancelRequest( false )
{
}
AStarSearch( int MaxNodes ) :
m_State( SEARCH_STATE_NOT_INITIALISED ),
m_CurrentSolutionNode( NULL ),
#if USE_FSA_MEMORY
m_FixedSizeAllocator( MaxNodes ),
#endif
m_AllocateNodeCount(0),
m_CancelRequest( false )
{
}
// call at any time to cancel the search and free up all the memory
void CancelSearch()
{
m_CancelRequest = true;
}
// Set Start and goal states
void SetStartAndGoalStates( UserState &Start, UserState &Goal )
{
m_CancelRequest = false;
m_Start = AllocateNode();
m_Goal = AllocateNode();
assert((m_Start != NULL && m_Goal != NULL));
m_Start->m_UserState = Start;
m_Goal->m_UserState = Goal;
m_State = SEARCH_STATE_SEARCHING;
// Initialise the AStar specific parts of the Start Node
// The user only needs fill out the state information
m_Start->g = 0;
m_Start->h = m_Start->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
m_Start->f = m_Start->g + m_Start->h;
m_Start->parent = 0;
// Push the start node on the Open list
m_OpenList.push_back( m_Start ); // heap now unsorted
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
// Initialise counter for search steps
m_Steps = 0;
}
// Advances search one step
unsigned int SearchStep()
{
// Firstly break if the user has not initialised the search
assert( (m_State > SEARCH_STATE_NOT_INITIALISED) &&
(m_State < SEARCH_STATE_INVALID) );
// Next I want it to be safe to do a searchstep once the search has succeeded...
if( (m_State == SEARCH_STATE_SUCCEEDED) ||
(m_State == SEARCH_STATE_FAILED)
)
{
return m_State;
}
// Failure is defined as emptying the open list as there is nothing left to
// search...
// New: Allow user abort
if( m_OpenList.empty() || m_CancelRequest )
{
FreeAllNodes();
m_State = SEARCH_STATE_FAILED;
return m_State;
}
// Incremement step count
m_Steps ++;
// Pop the best node (the one with the lowest f)
Node *n = m_OpenList.front(); // get pointer to the node
pop_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
m_OpenList.pop_back();
// Check for the goal, once we pop that we're done
if( n->m_UserState.IsGoal( m_Goal->m_UserState ) )
{
// The user is going to use the Goal Node he passed in
// so copy the parent pointer of n
m_Goal->parent = n->parent;
m_Goal->g = n->g;
// A special case is that the goal was passed in as the start state
// so handle that here
if( false == n->m_UserState.IsSameState( m_Start->m_UserState ) )
{
FreeNode( n );
// set the child pointers in each node (except Goal which has no child)
Node *nodeChild = m_Goal;
Node *nodeParent = m_Goal->parent;
do
{
nodeParent->child = nodeChild;
nodeChild = nodeParent;
nodeParent = nodeParent->parent;
}
while( nodeChild != m_Start ); // Start is always the first node by definition
}
// delete nodes that aren't needed for the solution
FreeUnusedNodes();
m_State = SEARCH_STATE_SUCCEEDED;
return m_State;
}
else // not goal
{
// We now need to generate the successors of this node
// The user helps us to do this, and we keep the new nodes in
// m_Successors ...
m_Successors.clear(); // empty vector of successor nodes to n
// User provides this functions and uses AddSuccessor to add each successor of
// node 'n' to m_Successors
bool ret = n->m_UserState.GetSuccessors( this, n->parent ? &n->parent->m_UserState : NULL );
if( !ret )
{
typename vector< Node * >::iterator successor;
// free the nodes that may previously have been added
for( successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
FreeNode( (*successor) );
}
m_Successors.clear(); // empty vector of successor nodes to n
// free up everything else we allocated
FreeNode( (n) );
FreeAllNodes();
m_State = SEARCH_STATE_OUT_OF_MEMORY;
return m_State;
}
// Now handle each successor to the current node ...
for( typename vector< Node * >::iterator successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
// The g value for this successor ...
float newg = n->g + n->m_UserState.GetCost( (*successor)->m_UserState );
// Now we need to find whether the node is on the open or closed lists
// If it is but the node that is already on them is better (lower g)
// then we can forget about this successor
// First linear search of open list to find node
typename vector< Node * >::iterator openlist_result;
for( openlist_result = m_OpenList.begin(); openlist_result != m_OpenList.end(); openlist_result ++ )
{
if( (*openlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( openlist_result != m_OpenList.end() )
{
// we found this state on open
if( (*openlist_result)->g <= newg )
{
FreeNode( (*successor) );
// the one on Open is cheaper than this one
continue;
}
}
typename vector< Node * >::iterator closedlist_result;
for( closedlist_result = m_ClosedList.begin(); closedlist_result != m_ClosedList.end(); closedlist_result ++ )
{
if( (*closedlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( closedlist_result != m_ClosedList.end() )
{
// we found this state on closed
if( (*closedlist_result)->g <= newg )
{
// the one on Closed is cheaper than this one
FreeNode( (*successor) );
continue;
}
}
// This node is the best node so far with this particular state
// so lets keep it and set up its AStar specific data ...
(*successor)->parent = n;
(*successor)->g = newg;
(*successor)->h = (*successor)->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
(*successor)->f = (*successor)->g + (*successor)->h;
// Successor in closed list
// 1 - Update old version of this node in closed list
// 2 - Move it from closed to open list
// 3 - Sort heap again in open list
if( closedlist_result != m_ClosedList.end() )
{
// Update closed node with successor node AStar data
//*(*closedlist_result) = *(*successor);
(*closedlist_result)->parent = (*successor)->parent;
(*closedlist_result)->g = (*successor)->g;
(*closedlist_result)->h = (*successor)->h;
(*closedlist_result)->f = (*successor)->f;
// Free successor node
FreeNode( (*successor) );
// Push closed node into open list
m_OpenList.push_back( (*closedlist_result) );
// Remove closed node from closed list
m_ClosedList.erase( closedlist_result );
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
// Fix thanks to ...
// Greg Douglas <gregdouglasmail@gmail.com>
// who noticed that this code path was incorrect
// Here we have found a new state which is already CLOSED
}
// Successor in open list
// 1 - Update old version of this node in open list
// 2 - sort heap again in open list
else if( openlist_result != m_OpenList.end() )
{
// Update open node with successor node AStar data
//*(*openlist_result) = *(*successor);
(*openlist_result)->parent = (*successor)->parent;
(*openlist_result)->g = (*successor)->g;
(*openlist_result)->h = (*successor)->h;
(*openlist_result)->f = (*successor)->f;
// Free successor node
FreeNode( (*successor) );
// re-make the heap
// make_heap rather than sort_heap is an essential bug fix
// thanks to Mike Ryynanen for pointing this out and then explaining
// it in detail. sort_heap called on an invalid heap does not work
make_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
// New successor
// 1 - Move it from successors to open list
// 2 - sort heap again in open list
else
{
// Push successor node into open list
m_OpenList.push_back( (*successor) );
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
}
// push n onto Closed, as we have expanded it now
m_ClosedList.push_back( n );
} // end else (not goal so expand)
return m_State; // Succeeded bool is false at this point.
}
// User calls this to add a successor to a list of successors
// when expanding the search frontier
bool AddSuccessor( UserState &State )
{
Node *node = AllocateNode();
if( node )
{
node->m_UserState = State;
m_Successors.push_back( node );
return true;
}
return false;
}
// Free the solution nodes
// This is done to clean up all used Node memory when you are done with the
// search
void FreeSolutionNodes()
{
Node *n = m_Start;
if( m_Start->child )
{
do
{
Node *del = n;
n = n->child;
FreeNode( del );
del = NULL;
} while( n != m_Goal );
FreeNode( n ); // Delete the goal
}
else
{
// if the start node is the solution we need to just delete the start and goal
// nodes
FreeNode( m_Start );
FreeNode( m_Goal );
}
}
// Functions for traversing the solution
// Get start node
UserState *GetSolutionStart()
{
m_CurrentSolutionNode = m_Start;
if( m_Start )
{
return &m_Start->m_UserState;
}
else
{
return NULL;
}
}
// Get next node
UserState *GetSolutionNext()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->child )
{
Node *child = m_CurrentSolutionNode->child;
m_CurrentSolutionNode = m_CurrentSolutionNode->child;
return &child->m_UserState;
}
}
return NULL;
}
// Get end node
UserState *GetSolutionEnd()
{
m_CurrentSolutionNode = m_Goal;
if( m_Goal )
{
return &m_Goal->m_UserState;
}
else
{
return NULL;
}
}
// Step solution iterator backwards
UserState *GetSolutionPrev()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->parent )
{
Node *parent = m_CurrentSolutionNode->parent;
m_CurrentSolutionNode = m_CurrentSolutionNode->parent;
return &parent->m_UserState;
}
}
return NULL;
}
// Get final cost of solution
// Returns FLT_MAX if goal is not defined or there is no solution
float GetSolutionCost()
{
if( m_Goal && m_State == SEARCH_STATE_SUCCEEDED )
{
return m_Goal->g;
}
else
{
return FLT_MAX;
}
}
// For educational use and debugging it is useful to be able to view
// the open and closed list at each step, here are two functions to allow that.
UserState *GetOpenListStart()
{
float f,g,h;
return GetOpenListStart( f,g,h );
}
UserState *GetOpenListStart( float &f, float &g, float &h )
{
iterDbgOpen = m_OpenList.begin();
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetOpenListNext()
{
float f,g,h;
return GetOpenListNext( f,g,h );
}
UserState *GetOpenListNext( float &f, float &g, float &h )
{
iterDbgOpen++;
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetClosedListStart()
{
float f,g,h;
return GetClosedListStart( f,g,h );
}
UserState *GetClosedListStart( float &f, float &g, float &h )
{
iterDbgClosed = m_ClosedList.begin();
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
UserState *GetClosedListNext()
{
float f,g,h;
return GetClosedListNext( f,g,h );
}
UserState *GetClosedListNext( float &f, float &g, float &h )
{
iterDbgClosed++;
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
// Get the number of steps
int GetStepCount() { return m_Steps; }
void EnsureMemoryFreed()
{
#if USE_FSA_MEMORY
assert(m_AllocateNodeCount == 0);
#endif
}
private: // methods
// This is called when a search fails or is cancelled to free all used
// memory
void FreeAllNodes()
{
// iterate open list and delete all nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
FreeNode( n );
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
FreeNode( n );
}
m_ClosedList.clear();
// delete the goal
FreeNode(m_Goal);
}
// This call is made by the search class when the search ends. A lot of nodes may be
// created that are still present when the search ends. They will be deleted by this
// routine once the search ends
void FreeUnusedNodes()
{
// iterate open list and delete unused nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
}
m_ClosedList.clear();
}
// Node memory management
Node *AllocateNode()
{
#if !USE_FSA_MEMORY
m_AllocateNodeCount ++;
Node *p = new Node;
return p;
#else
Node *address = m_FixedSizeAllocator.alloc();
if( !address )
{
return NULL;
}
m_AllocateNodeCount ++;
Node *p = new (address) Node;
return p;
#endif
}
void FreeNode( Node *node )
{
m_AllocateNodeCount --;
#if !USE_FSA_MEMORY
delete node;
#else
node->~Node();
m_FixedSizeAllocator.free( node );
#endif
}
private: // data
// Heap (simple vector but used as a heap, cf. Steve Rabin's game gems article)
vector< Node *> m_OpenList;
// Closed list is a vector.
vector< Node * > m_ClosedList;
// Successors is a vector filled out by the user each type successors to a node
// are generated
vector< Node * > m_Successors;
// State
unsigned int m_State;
// Counts steps
int m_Steps;
// Start and goal state pointers
Node *m_Start;
Node *m_Goal;
Node *m_CurrentSolutionNode;
#if USE_FSA_MEMORY
// Memory
FixedSizeAllocator<Node> m_FixedSizeAllocator;
#endif
//Debug : need to keep these two iterators around
// for the user Dbg functions
typename vector< Node * >::iterator iterDbgOpen;
typename vector< Node * >::iterator iterDbgClosed;
// debugging : count memory allocation and free's
int m_AllocateNodeCount;
bool m_CancelRequest;
};
template <class T> class AStarState
{
public:
virtual ~AStarState() {}
virtual float GoalDistanceEstimate( T &nodeGoal ) = 0; // Heuristic function which computes the estimated cost to the goal node
virtual bool IsGoal( T &nodeGoal ) = 0; // Returns true if this node is the goal node
virtual bool GetSuccessors( AStarSearch<T> *astarsearch, T *parent_node ) = 0; // Retrieves all successors to this node and adds them via astarsearch.addSuccessor()
virtual float GetCost( T &successor ) = 0; // Computes the cost of travelling from this node to the successor node
virtual bool IsSameState( T &rhs ) = 0; // Returns true if this node is the same as the rhs node
};
#endif

252
stlstarfsa.h Normal file
View File

@ -0,0 +1,252 @@
/*
A* Algorithm Implementation using STL is
Copyright (C)2001-2005 Justin Heyes-Jones
Permission is given by the author to freely redistribute and
include this code in any program as long as this credit is
given where due.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE
IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL
DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.
Use at your own risk!
FixedSizeAllocator class
Copyright 2001 Justin Heyes-Jones
This class is a constant time O(1) memory manager for objects of
a specified type. The type is specified using a template class.
Memory is allocated from a fixed size buffer which you can specify in the
class constructor or use the default.
Using GetFirst and GetNext it is possible to iterate through the elements
one by one, and this would be the most common use for the class.
I would suggest using this class when you want O(1) add and delete
and you don't do much searching, which would be O(n). Structures such as binary
trees can be used instead to get O(logn) access time.
*/
#ifndef STLSTARFSA_H
#define STLSTARFSA_H
#include <string.h>
#include <stdio.h>
template <class USER_TYPE> class FixedSizeAllocator
{
public:
// Constants
enum
{
FSA_DEFAULT_SIZE = 100
};
// This class enables us to transparently manage the extra data
// needed to enable the user class to form part of the double-linked
// list class
struct FSA_ELEMENT
{
USER_TYPE UserType;
FSA_ELEMENT *pPrev;
FSA_ELEMENT *pNext;
};
public: // methods
FixedSizeAllocator( unsigned int MaxElements = FSA_DEFAULT_SIZE ) :
m_pFirstUsed( NULL ),
m_MaxElements( MaxElements )
{
// Allocate enough memory for the maximum number of elements
char *pMem = new char[ m_MaxElements * sizeof(FSA_ELEMENT) ];
m_pMemory = (FSA_ELEMENT *) pMem;
// Set the free list first pointer
m_pFirstFree = m_pMemory;
// Clear the memory
memset( (void*)m_pMemory, 0, sizeof( FSA_ELEMENT ) * m_MaxElements );
// Point at first element
FSA_ELEMENT *pElement = m_pFirstFree;
// Set the double linked free list
for( unsigned int i=0; i<m_MaxElements; i++ )
{
pElement->pPrev = pElement-1;
pElement->pNext = pElement+1;
pElement++;
}
// first element should have a null prev
m_pFirstFree->pPrev = NULL;
// last element should have a null next
(pElement-1)->pNext = NULL;
}
~FixedSizeAllocator()
{
// Free up the memory
delete [] (char *) m_pMemory;
}
// Allocate a new USER_TYPE and return a pointer to it
USER_TYPE *alloc()
{
FSA_ELEMENT *pNewNode = NULL;
if( !m_pFirstFree )
{
return NULL;
}
else
{
pNewNode = m_pFirstFree;
m_pFirstFree = pNewNode->pNext;
// if the new node points to another free node then
// change that nodes prev free pointer...
if( pNewNode->pNext )
{
pNewNode->pNext->pPrev = NULL;
}
// node is now on the used list
pNewNode->pPrev = NULL; // the allocated node is always first in the list
if( m_pFirstUsed == NULL )
{
pNewNode->pNext = NULL; // no other nodes
}
else
{
m_pFirstUsed->pPrev = pNewNode; // insert this at the head of the used list
pNewNode->pNext = m_pFirstUsed;
}
m_pFirstUsed = pNewNode;
}
return reinterpret_cast<USER_TYPE*>(pNewNode);
}
// Free the given user type
// For efficiency I don't check whether the user_data is a valid
// pointer that was allocated. I may add some debug only checking
// (To add the debug check you'd need to make sure the pointer is in
// the m_pMemory area and is pointing at the start of a node)
void free( USER_TYPE *user_data )
{
FSA_ELEMENT *pNode = reinterpret_cast<FSA_ELEMENT*>(user_data);
// manage used list, remove this node from it
if( pNode->pPrev )
{
pNode->pPrev->pNext = pNode->pNext;
}
else
{
// this handles the case that we delete the first node in the used list
m_pFirstUsed = pNode->pNext;
}
if( pNode->pNext )
{
pNode->pNext->pPrev = pNode->pPrev;
}
// add to free list
if( m_pFirstFree == NULL )
{
// free list was empty
m_pFirstFree = pNode;
pNode->pPrev = NULL;
pNode->pNext = NULL;
}
else
{
// Add this node at the start of the free list
m_pFirstFree->pPrev = pNode;
pNode->pNext = m_pFirstFree;
m_pFirstFree = pNode;
}
}
// For debugging this displays both lists (using the prev/next list pointers)
void Debug()
{
printf( "free list " );
FSA_ELEMENT *p = m_pFirstFree;
while( p )
{
printf( "%x!%x ", p->pPrev, p->pNext );
p = p->pNext;
}
printf( "\n" );
printf( "used list " );
p = m_pFirstUsed;
while( p )
{
printf( "%x!%x ", p->pPrev, p->pNext );
p = p->pNext;
}
printf( "\n" );
}
// Iterators
USER_TYPE *GetFirst()
{
return reinterpret_cast<USER_TYPE *>(m_pFirstUsed);
}
USER_TYPE *GetNext( USER_TYPE *node )
{
return reinterpret_cast<USER_TYPE *>
(
(reinterpret_cast<FSA_ELEMENT *>(node))->pNext
);
}
public: // data
private: // methods
private: // data
FSA_ELEMENT *m_pFirstFree;
FSA_ELEMENT *m_pFirstUsed;
unsigned int m_MaxElements;
FSA_ELEMENT *m_pMemory;
};
#endif // defined STLSTARFSA_H