This commit is contained in:
axelrodR 2014-06-24 22:55:04 +03:00
commit 86328ced48
5 changed files with 142 additions and 144 deletions

View File

@ -63,6 +63,8 @@ struct dtTileCacheParams
struct dtTileCacheMeshProcess
{
virtual ~dtTileCacheMeshProcess() { }
virtual void process(struct dtNavMeshCreateParams* params,
unsigned char* polyAreas, unsigned short* polyFlags) = 0;
};

View File

@ -78,6 +78,8 @@ struct dtTileCachePolyMesh
struct dtTileCacheAlloc
{
virtual ~dtTileCacheAlloc() { }
virtual void reset()
{
}
@ -95,6 +97,8 @@ struct dtTileCacheAlloc
struct dtTileCacheCompressor
{
virtual ~dtTileCacheCompressor() { }
virtual int maxCompressedSize(const int bufferSize) = 0;
virtual dtStatus compress(const unsigned char* buffer, const int bufferSize,
unsigned char* compressed, const int maxCompressedSize, int* compressedSize) = 0;

View File

@ -37,7 +37,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
unsigned int regs[4] = {0,0,0,0};
// Combine region and area codes in order to prevent
// border vertices which are in between two areas to be removed.
// border vertices which are in between two areas to be removed.
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
@ -188,27 +188,6 @@ static float distancePtSeg(const int x, const int z,
const int px, const int pz,
const int qx, const int qz)
{
/* float pqx = (float)(qx - px);
float pqy = (float)(qy - py);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dy = (float)(y - py);
float dz = (float)(z - pz);
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dy = py + t*pqy - y;
dz = pz + t*pqz - z;
return dx*dx + dy*dy + dz*dz;*/
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
@ -258,13 +237,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified.push(points[i*4+2]);
simplified.push(i);
}
}
}
}
if (simplified.size() == 0)
{
// If there is no connections at all,
// create some initial points for the simplification process.
// create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
@ -315,7 +294,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
int ax = simplified[i*4+0];
int az = simplified[i*4+2];
int ai = simplified[i*4+3];
int bx = simplified[ii*4+0];
int bz = simplified[ii*4+2];
int bi = simplified[ii*4+3];
@ -324,7 +303,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
float maxd = 0;
int maxi = -1;
int ci, cinc, endi;
// Traverse the segment in lexilogical order so that the
// max deviation is calculated similarly when traversing
// opposite segments.
@ -400,11 +379,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
int maxi = -1;
int ci = (ai+1) % pn;
// Tessellate only outer edges or edges between areas.
bool tess = false;
// Wall edges.
@ -576,7 +555,7 @@ static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, con
const int* p1 = &verts[k1 * 4];
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
continue;
if (intersect(d0, d1, p0, p1))
return true;
}
@ -630,9 +609,9 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
if (!verts)
return false;
int nv = 0;
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
@ -660,7 +639,7 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
rcFree(ca.verts);
ca.verts = verts;
ca.nverts = nv;
rcFree(cb.verts);
cb.verts = 0;
cb.nverts = 0;
@ -747,7 +726,7 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
int maxVerts = region.outline->nverts;
for (int i = 0; i < region.nholes; i++)
maxVerts += region.holes[i].contour->nverts;
@ -758,9 +737,9 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
return;
}
rcContour* outline = region.outline;
// Merge holes into the outline one by one.
for (int i = 0; i < region.nholes; i++)
{
@ -793,7 +772,7 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
}
// Sort potential diagonals by distance, we want to make the connection as short as possible.
qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
// Find a diagonal that is not intersecting the outline not the remaining holes.
index = -1;
for (int j = 0; j < ndiags; j++)
@ -834,13 +813,13 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
/// parameters control how closely the simplified contours will match the raw contours.
///
/// Simplified contours are generated such that the vertices for portals between areas match up.
/// Simplified contours are generated such that the vertices for portals between areas match up.
/// (They are considered mandatory vertices.)
///
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
///
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
///
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
@ -943,17 +922,17 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
verts.resize(0);
simplified.resize(0);
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
walkContour(x, y, i, chf, flags, verts);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
removeDegenerateSegments(simplified);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
@ -974,10 +953,10 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
rcFree(cset.conts);
cset.conts = newConts;
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
}
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
@ -1024,7 +1003,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
}
}
// Merge holes if needed.
if (cset.nconts > 0)
{
@ -1057,7 +1036,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
return false;
}
memset(regions, 0, sizeof(rcContourRegion)*nregions);
rcScopedDelete<rcContourHole> holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP);
if (!holes)
{
@ -1065,7 +1044,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
return false;
}
memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
@ -1102,8 +1081,20 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
// Finally merge each regions holes into the outline.
for (int i = 0; i < nregions; i++)
{
if (regions[i].nholes > 0)
mergeRegionHoles(ctx, regions[i]);
rcContourRegion& reg = regions[i];
if (!reg.nholes) continue;
if (reg.outline)
{
mergeRegionHoles(ctx, reg);
}
else
{
// The region does not have an outline.
// This can happen if the contour becaomes selfoverlapping because of
// too aggressive simplification settings.
ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
}
}
}

View File

@ -1537,7 +1537,7 @@ bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
return false;
}
memcpy(dst.flags, src.flags, sizeof(unsigned char)*src.npolys);
memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
return true;
}

View File

@ -56,7 +56,7 @@ inline float vdist2(const float* p, const float* q)
}
inline float vcross2(const float* p1, const float* p2, const float* p3)
{
{
const float u1 = p2[0] - p1[0];
const float v1 = p2[2] - p1[2];
const float u2 = p3[0] - p1[0];
@ -68,21 +68,27 @@ static bool circumCircle(const float* p1, const float* p2, const float* p3,
float* c, float& r)
{
static const float EPS = 1e-6f;
// Calculate the circle relative to p1, to avoid some precision issues.
const float v1[3] = {0,0,0};
float v2[3], v3[3];
rcVsub(v2, p2,p1);
rcVsub(v3, p3,p1);
const float cp = vcross2(p1, p2, p3);
const float cp = vcross2(v1, v2, v3);
if (fabsf(cp) > EPS)
{
const float p1Sq = vdot2(p1,p1);
const float p2Sq = vdot2(p2,p2);
const float p3Sq = vdot2(p3,p3);
c[0] = (p1Sq*(p2[2]-p3[2]) + p2Sq*(p3[2]-p1[2]) + p3Sq*(p1[2]-p2[2])) / (2*cp);
c[2] = (p1Sq*(p3[0]-p2[0]) + p2Sq*(p1[0]-p3[0]) + p3Sq*(p2[0]-p1[0])) / (2*cp);
r = vdist2(c, p1);
const float v1Sq = vdot2(v1,v1);
const float v2Sq = vdot2(v2,v2);
const float v3Sq = vdot2(v3,v3);
c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
c[1] = 0;
c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
r = vdist2(c, v1);
rcVadd(c, c, p1);
return true;
}
c[0] = p1[0];
c[2] = p1[2];
rcVcopy(c, p1);
r = 0;
return false;
}
@ -93,7 +99,7 @@ static float distPtTri(const float* p, const float* a, const float* b, const flo
rcVsub(v0, c,a);
rcVsub(v1, b,a);
rcVsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
@ -178,7 +184,7 @@ static float distToTriMesh(const float* p, const float* verts, const int /*nvert
static float distToPoly(int nvert, const float* verts, const float* p)
{
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
@ -216,22 +222,13 @@ static unsigned short getHeight(const float fx, const float fy, const float fz,
if (nx < 0 || nz < 0 || nx >= hp.width || nz >= hp.height) continue;
const unsigned short nh = hp.data[nx+nz*hp.width];
if (nh == RC_UNSET_HEIGHT) continue;
const float d = fabsf(nh*ch - fy);
if (d < dmin)
{
h = nh;
dmin = d;
}
/* const float dx = (nx+0.5f)*cs - fx;
const float dz = (nz+0.5f)*cs - fz;
const float d = dx*dx+dz*dz;
if (d < dmin)
{
h = nh;
dmin = d;
} */
}
}
return h;
@ -263,7 +260,7 @@ static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges,
return UNDEF;
}
// Add edge if not already in the triangulation.
// Add edge if not already in the triangulation.
int e = findEdge(edges, nedges, s, t);
if (e == UNDEF)
{
@ -286,7 +283,7 @@ static void updateLeftFace(int* e, int s, int t, int f)
e[2] = f;
else if (e[1] == s && e[0] == t && e[3] == UNDEF)
e[3] = f;
}
}
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
{
@ -298,7 +295,7 @@ static int overlapSegSeg2d(const float* a, const float* b, const float* c, const
float a4 = a3 + a2 - a1;
if (a3 * a4 < 0.0f)
return 1;
}
}
return 0;
}
@ -320,7 +317,7 @@ static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1,
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
{
static const float EPS = 1e-5f;
int* edge = &edges[e*4];
// Cache s and t.
@ -337,11 +334,11 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
else
{
// Edge already completed.
// Edge already completed.
return;
}
// Find best point on left of edge.
// Find best point on left of edge.
int pt = npts;
float c[3] = {0,0,0};
float r = -1;
@ -385,20 +382,20 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
}
// Add new triangle or update edge info if s-t is on hull.
// Add new triangle or update edge info if s-t is on hull.
if (pt < npts)
{
// Update face information of edge being completed.
// Update face information of edge being completed.
updateLeftFace(&edges[e*4], s, t, nfaces);
// Add new edge or update face info of old edge.
// Add new edge or update face info of old edge.
e = findEdge(edges, nedges, pt, s);
if (e == UNDEF)
addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, UNDEF);
else
updateLeftFace(&edges[e*4], pt, s, nfaces);
// Add new edge or update face info of old edge.
// Add new edge or update face info of old edge.
e = findEdge(edges, nedges, t, pt);
if (e == UNDEF)
addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, UNDEF);
@ -434,7 +431,7 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
currentEdge++;
}
// Create tris
tris.resize(nfaces*4);
for (int i = 0; i < nfaces*4; ++i)
@ -523,16 +520,18 @@ inline int prev(int i, int n)
static void triangulateHull(const int nverts, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
{
int start = 0, left = 1, right = nhull-1;
// Start from shortest ear.
float dmin = FLT_MAX;
// Start from an ear with shortest perimeter.
// This tends to favor well formed triangles as starting point.
float dmin = 0;
for (int i = 0; i < nhull; i++)
{
int pi = prev(i, nhull);
int ni = next(i, nhull);
const float* pv = &verts[hull[pi]*3];
const float* cv = &verts[hull[i]*3];
const float* nv = &verts[hull[ni]*3];
const float d = vdistSq2(pv, nv);
const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
if (d < dmin)
{
start = i;
@ -547,22 +546,24 @@ static void triangulateHull(const int nverts, const float* verts, const int nhul
tris.push(hull[left]);
tris.push(hull[right]);
tris.push(0);
// Triangulate the polygon by adding the shortest diagonal
// by moving left or right.
// Triangulate the polygon by moving left or right,
// depending on which triangle has shorter perimeter.
// This heuristic was chose emprically, since it seems
// handle tesselated straight edges well.
while (next(left, nhull) != right)
{
// Check to see if se should advance left or right.
int nleft = next(left, nhull);
int nright = prev(right, nhull);
const float* cvleft = &verts[hull[left]*3];
const float* nvleft = &verts[hull[nleft]*3];
const float* cvright = &verts[hull[right]*3];
const float* nvright = &verts[hull[nright]*3];
const float dleft = vdistSq2(nvleft, cvright);
const float dright = vdistSq2(cvleft, nvright);
const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
if (dleft < dright)
{
tris.push(hull[left]);
@ -605,19 +606,19 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
float edge[(MAX_VERTS_PER_EDGE+1)*3];
int hull[MAX_VERTS];
int nhull = 0;
nverts = 0;
for (int i = 0; i < nin; ++i)
rcVcopy(&verts[i*3], &in[i*3]);
nverts = nin;
edges.resize(0);
tris.resize(0);
const float cs = chf.cs;
const float ics = 1.0f/cs;
// Calculate minimum extents of the polygon based on input data.
float minExtent = polyMinExtent(verts, nverts);
@ -726,27 +727,27 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
}
}
}
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
if (minExtent < sampleDist*2)
{
triangulateHull(nverts, verts, nhull, hull, tris);
return true;
}
// Tessellate the base mesh.
// We're using the triangulateHull instead of delaunayHull as it tends to
// create a bit better triangulation for long thing triangles when there
// are no internal points.
triangulateHull(nverts, verts, nhull, hull, tris);
if (tris.size() == 0)
{
// Could not triangulate the poly, make sure there is some valid data there.
ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
return true;
}
if (sampleDist > 0)
{
// Create sample locations in a grid.
@ -779,7 +780,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
samples.push(0); // Not added
}
}
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
@ -788,7 +789,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
{
if (nverts >= MAX_VERTS)
break;
// Find sample with most error.
float bestpt[3] = {0,0,0};
float bestd = 0;
@ -826,24 +827,24 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
edges.resize(0);
tris.resize(0);
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
}
}
}
const int ntris = tris.size()/4;
if (ntris > MAX_TRIS)
{
tris.resize(MAX_TRIS*4);
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
}
return true;
}
static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
const unsigned short* poly, const int npoly,
const unsigned short* verts, const int bs,
rcHeightPatch& hp, rcIntArray& stack)
const unsigned short* poly, const int npoly,
const unsigned short* verts, const int bs,
rcHeightPatch& hp, rcIntArray& stack)
{
// Floodfill the heightfield to get 2D height data,
// starting at vertex locations as seeds.
@ -947,7 +948,7 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
continue;
const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
hp.data[idx] = 1;
@ -956,9 +957,9 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
stack.push(ai);
}
}
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
// Mark start locations.
for (int i = 0; i < stack.size(); i += 3)
{
@ -968,8 +969,8 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
const rcCompactSpan& cs = chf.spans[ci];
hp.data[idx] = cs.y;
// getHeightData seeds are given in coordinates with borders
// getHeightData seeds are given in coordinates with borders
stack[i+0] += bs;
stack[i+1] += bs;
}
@ -986,12 +987,12 @@ static void getHeightData(const rcCompactHeightfield& chf,
{
// Note: Reads to the compact heightfield are offset by border size (bs)
// since border size offset is already removed from the polymesh vertices.
stack.resize(0);
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
bool empty = true;
// Copy the height from the same region, and mark region borders
// as seed points to fill the rest.
for (int hy = 0; hy < hp.height; hy++)
@ -1009,7 +1010,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
// Store height
hp.data[hx + hy*hp.width] = s.y;
empty = false;
// If any of the neighbours is not in same region,
// add the current location as flood fill start
bool border = false;
@ -1038,8 +1039,8 @@ static void getHeightData(const rcCompactHeightfield& chf,
}
}
}
}
}
// if the polygon does not contian any points from the current region (rare, but happens)
// then use the cells closest to the polygon vertices as seeds to fill the height field
if (empty)
@ -1061,7 +1062,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
memmove(&stack[0], &stack[RETRACT_SIZE*3], sizeof(int)*(stack.size()-RETRACT_SIZE*3));
stack.resize(stack.size()-RETRACT_SIZE*3);
}
const rcCompactSpan& cs = chf.spans[ci];
for (int dir = 0; dir < 4; ++dir)
{
@ -1080,9 +1081,9 @@ static void getHeightData(const rcCompactHeightfield& chf,
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
const rcCompactSpan& as = chf.spans[ai];
hp.data[hx + hy*hp.width] = as.y;
stack.push(ax);
stack.push(ay);
stack.push(ai);
@ -1097,7 +1098,7 @@ static unsigned char getEdgeFlags(const float* va, const float* vb,
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
@ -1126,7 +1127,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
@ -1205,10 +1206,10 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
return false;
}
int vcap = nPolyVerts+nPolyVerts/2;
int tcap = vcap*2;
dmesh.nverts = 0;
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!dmesh.verts)
@ -1217,7 +1218,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
return false;
}
dmesh.ntris = 0;
dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char*)*tcap*4, RC_ALLOC_PERM);
dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
if (!dmesh.tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
@ -1256,7 +1257,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
{
return false;
}
// Move detail verts to world space.
for (int j = 0; j < nverts; ++j)
{
@ -1271,21 +1272,21 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
poly[j*3+1] += orig[1];
poly[j*3+2] += orig[2];
}
// Store detail submesh.
const int ntris = tris.size()/4;
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned int)nverts;
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
dmesh.meshes[i*4+3] = (unsigned int)ntris;
dmesh.meshes[i*4+3] = (unsigned int)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!newv)
{
@ -1331,9 +1332,9 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
dmesh.ntris++;
}
}
ctx->stopTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
return true;
}
@ -1343,11 +1344,11 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
@ -1355,7 +1356,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
mesh.nmeshes = 0;
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
if (!mesh.meshes)
@ -1363,7 +1364,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
mesh.ntris = 0;
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
if (!mesh.tris)
@ -1371,7 +1372,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
mesh.nverts = 0;
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
if (!mesh.verts)
@ -1395,7 +1396,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
dst[3] = src[3];
mesh.nmeshes++;
}
for (int k = 0; k < dm->nverts; ++k)
{
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
@ -1410,7 +1411,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
mesh.ntris++;
}
}
ctx->stopTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
return true;