Recast: New API documentation, and standardized tab/space use.
Documented DetourAlloc.h and most members in DetourCommon.h. Added warning related to issue 180. (Limitation on use of dtNavmeshQuery::findNearestPoly.) Standardized the use of tab/space indenting in the API documentation.
This commit is contained in:
parent
79a61cbdb1
commit
923098b43c
@ -19,18 +19,41 @@
|
||||
#ifndef DETOURALLOCATOR_H
|
||||
#define DETOURALLOCATOR_H
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum dtAllocHint
|
||||
{
|
||||
DT_ALLOC_PERM, ///< Memory persist after a function call.
|
||||
DT_ALLOC_TEMP ///< Memory used temporarily within a function.
|
||||
};
|
||||
|
||||
/// A memory allocation function.
|
||||
// @param[in] size The size, in bytes of memory, to allocate.
|
||||
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
|
||||
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void* (dtAllocFunc)(int size, dtAllocHint hint);
|
||||
|
||||
/// A memory deallocation function.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAllocFunc.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void (dtFreeFunc)(void* ptr);
|
||||
|
||||
/// Sets the base custom allocation functions to be used by Detour.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #dtAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #dtFree
|
||||
void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtFree
|
||||
void* dtAlloc(int size, dtAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAlloc.
|
||||
/// @see dtAlloc
|
||||
void dtFree(void* ptr);
|
||||
|
||||
#endif
|
||||
|
@ -19,22 +19,66 @@
|
||||
#ifndef DETOURCOMMON_H
|
||||
#define DETOURCOMMON_H
|
||||
|
||||
/**
|
||||
* @defgroup detour Detour
|
||||
* Classes and functions related to path planning.
|
||||
* @note This is a summary list. Use the index or documentation search
|
||||
* functionality to find minor elements.
|
||||
*/
|
||||
/**
|
||||
@defgroup detour Detour
|
||||
|
||||
Members in this module are used to create, manipulate, and query navigation
|
||||
meshes.
|
||||
|
||||
@note This is a summary list of members. Use the index or search
|
||||
feature to find minor members.
|
||||
*/
|
||||
|
||||
/// @name General helper functions
|
||||
/// @{
|
||||
|
||||
/// Swaps the values of the two parameters.
|
||||
/// @param[in,out] a Value A
|
||||
/// @param[in,out] b Value B
|
||||
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
||||
|
||||
/// Returns the minimum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The minimum of the two values.
|
||||
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
|
||||
|
||||
/// Returns the maximum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The maximum of the two values.
|
||||
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
|
||||
|
||||
/// Returns the absolute value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The absolute value of the specified value.
|
||||
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
|
||||
|
||||
/// Returns the square of the value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The square of the value.
|
||||
template<class T> inline T dtSqr(T a) { return a*a; }
|
||||
|
||||
/// Clamps the value to the specified range.
|
||||
/// @param[in] v The value to clamp.
|
||||
/// @param[in] mn The minimum permitted return value.
|
||||
/// @param[in] mx The maximum permitted return value.
|
||||
/// @return The value, clamped to the specified range.
|
||||
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
||||
|
||||
/// Returns the square root of the value.
|
||||
/// @param[in] x The value.
|
||||
/// @return The square root of the vlaue.
|
||||
float dtSqrt(float x);
|
||||
|
||||
/// @}
|
||||
/// @name Vector helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the cross product of two vectors. (@p v1 x @p v2)
|
||||
/// @param[out] dest The cross product. [(x, y, z)]
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
inline void dtVcross(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||||
@ -42,11 +86,20 @@ inline void dtVcross(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors. (@p v1 . @p v2)
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
/// @return The dot product.
|
||||
inline float dtVdot(const float* v1, const float* v2)
|
||||
{
|
||||
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
||||
}
|
||||
|
||||
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
||||
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
||||
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0]*s;
|
||||
@ -54,6 +107,11 @@ inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
||||
dest[2] = v1[2]+v2[2]*s;
|
||||
}
|
||||
|
||||
/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, x)]
|
||||
/// @param[in] v1 The starting vector.
|
||||
/// @param[in] v2 The destination vector.
|
||||
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
||||
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
|
||||
{
|
||||
dest[0] = v1[0]+(v2[0]-v1[0])*t;
|
||||
@ -61,6 +119,10 @@ inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t
|
||||
dest[2] = v1[2]+(v2[2]-v1[2])*t;
|
||||
}
|
||||
|
||||
/// Performs a vector addition. (@p v1 + @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
|
||||
inline void dtVadd(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0];
|
||||
@ -68,6 +130,10 @@ inline void dtVadd(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[2]+v2[2];
|
||||
}
|
||||
|
||||
/// Performs a vector subtraction. (@p v1 - @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
|
||||
inline void dtVsub(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]-v2[0];
|
||||
@ -75,6 +141,10 @@ inline void dtVsub(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[2]-v2[2];
|
||||
}
|
||||
|
||||
/// Scales the vector by the specified value. (@p v * @p t)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v The vector to scale. [(x, y, z)]
|
||||
/// @param[in] t The scaling factor.
|
||||
inline void dtVscale(float* dest, const float* v, const float t)
|
||||
{
|
||||
dest[0] = v[0]*t;
|
||||
@ -82,6 +152,9 @@ inline void dtVscale(float* dest, const float* v, const float t)
|
||||
dest[2] = v[2]*t;
|
||||
}
|
||||
|
||||
/// Selects the minimum value of each element from the specified vectors.
|
||||
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmin(float* mn, const float* v)
|
||||
{
|
||||
mn[0] = dtMin(mn[0], v[0]);
|
||||
@ -89,6 +162,9 @@ inline void dtVmin(float* mn, const float* v)
|
||||
mn[2] = dtMin(mn[2], v[2]);
|
||||
}
|
||||
|
||||
/// Selects the maximum value of each element from the specified vectors.
|
||||
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmax(float* mx, const float* v)
|
||||
{
|
||||
mx[0] = dtMax(mx[0], v[0]);
|
||||
@ -96,11 +172,19 @@ inline void dtVmax(float* mx, const float* v)
|
||||
mx[2] = dtMax(mx[2], v[2]);
|
||||
}
|
||||
|
||||
/// Sets the vector elements to the specified values.
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] x The x-value of the vector.
|
||||
/// @param[in] y The y-value of the vector.
|
||||
/// @param[in] z The z-value of the vector.
|
||||
inline void dtVset(float* dest, const float x, const float y, const float z)
|
||||
{
|
||||
dest[0] = x; dest[1] = y; dest[2] = z;
|
||||
}
|
||||
|
||||
/// Performs a vector copy.
|
||||
/// @param[out] dest The result. [(x, y, z)]
|
||||
/// @param[in] a The vector to copy. [(x, y, z)]
|
||||
inline void dtVcopy(float* dest, const float* a)
|
||||
{
|
||||
dest[0] = a[0];
|
||||
@ -108,16 +192,26 @@ inline void dtVcopy(float* dest, const float* a)
|
||||
dest[2] = a[2];
|
||||
}
|
||||
|
||||
/// Derives the scalar length of the vector.
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The scalar length of the vector.
|
||||
inline float dtVlen(const float* v)
|
||||
{
|
||||
return dtSqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
||||
}
|
||||
|
||||
/// Derives the square of the scalar length of the vector. (len * len)
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The square of the scalar length of the vector.
|
||||
inline float dtVlenSqr(const float* v)
|
||||
{
|
||||
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||||
}
|
||||
|
||||
/// Returns the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the two points.
|
||||
inline float dtVdist(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@ -126,6 +220,10 @@ inline float dtVdist(const float* v1, const float* v2)
|
||||
return dtSqrt(dx*dx + dy*dy + dz*dz);
|
||||
}
|
||||
|
||||
/// Returns the square of the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the two points.
|
||||
inline float dtVdistSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@ -134,6 +232,12 @@ inline float dtVdistSqr(const float* v1, const float* v2)
|
||||
return dx*dx + dy*dy + dz*dz;
|
||||
}
|
||||
|
||||
/// Derives the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the point on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdist2D(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@ -141,6 +245,10 @@ inline float dtVdist2D(const float* v1, const float* v2)
|
||||
return dtSqrt(dx*dx + dz*dz);
|
||||
}
|
||||
|
||||
/// Derives the square of the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the point on the xz-plane.
|
||||
inline float dtVdist2DSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@ -148,6 +256,8 @@ inline float dtVdist2DSqr(const float* v1, const float* v2)
|
||||
return dx*dx + dz*dz;
|
||||
}
|
||||
|
||||
/// Normalizes the vector.
|
||||
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
||||
inline void dtVnormalize(float* v)
|
||||
{
|
||||
float d = 1.0f / dtSqrt(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
|
||||
@ -156,6 +266,13 @@ inline void dtVnormalize(float* v)
|
||||
v[2] *= d;
|
||||
}
|
||||
|
||||
/// Performs a 'sloppy' colocation check of the specified points.
|
||||
/// @param[in] p0 A point. [(x, y, z)]
|
||||
/// @param[in] p1 A point. [(x, y, z)]
|
||||
/// @return True if the points are considered to be at the same location.
|
||||
///
|
||||
/// Basically, this function will return true if the specified points are
|
||||
/// close enough to eachother to be considered colocated.
|
||||
inline bool dtVequal(const float* p0, const float* p1)
|
||||
{
|
||||
static const float thr = dtSqr(1.0f/16384.0f);
|
||||
@ -163,6 +280,134 @@ inline bool dtVequal(const float* p0, const float* p1)
|
||||
return d < thr;
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
||||
/// @param[in] u A vector [(x, y, z)]
|
||||
/// @param[in] v A vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdot2D(const float* u, const float* v)
|
||||
{
|
||||
return u[0]*v[0] + u[2]*v[2];
|
||||
}
|
||||
|
||||
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
||||
/// @param[in] u The LHV vector [(x, y, z)]
|
||||
/// @param[in] v The RHV vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVperp2D(const float* u, const float* v)
|
||||
{
|
||||
return u[2]*v[0] - u[0]*v[2];
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Computational geometry helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
|
||||
/// @param[in] a Vertex A. [(x, y, z)]
|
||||
/// @param[in] b Vertex B. [(x, y, z)]
|
||||
/// @param[in] c Vertex C. [(x, y, z)]
|
||||
/// @return The signed xz-plane area of the triangle.
|
||||
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
{
|
||||
const float abx = b[0] - a[0];
|
||||
const float abz = b[2] - a[2];
|
||||
const float acx = c[0] - a[0];
|
||||
const float acz = c[2] - a[2];
|
||||
return acx*abz - abx*acz;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapBounds
|
||||
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
||||
const unsigned short bmin[3], const unsigned short bmax[3])
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapQuantBounds
|
||||
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
||||
const float* bmin, const float* bmax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Derives the closest point on a triangle from the specified reference point.
|
||||
/// @param[out] closest The closest point on the triangle.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c);
|
||||
|
||||
/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
/// @param[out] h The resulting height.
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax);
|
||||
|
||||
/// Determines if the specified point is inside the convex polygon on the xz-plane.
|
||||
/// @param[in] pt The point to check. [(x, y, z)]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices. [Limit: >= 3]
|
||||
/// @return True if the point is inside the polygon.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et);
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
||||
|
||||
/// Derives the centroid of a convex polygon.
|
||||
/// @param[out] tc The centroid of the polgyon. [(x, y, z)]
|
||||
/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
|
||||
/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
||||
|
||||
/// Determines if the two convex polygons overlap on the xz-plane.
|
||||
/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
|
||||
/// @param[in] npolya The number of vertices in polygon A.
|
||||
/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
|
||||
/// @param[in] npolyb The number of vertices in polygon B.
|
||||
/// @return True if the two polygons overlap.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb);
|
||||
|
||||
/// @}
|
||||
/// @name Miscellanious functions.
|
||||
/// @{
|
||||
|
||||
inline unsigned int dtNextPow2(unsigned int v)
|
||||
{
|
||||
v--;
|
||||
@ -191,65 +436,51 @@ inline int dtAlign4(int x) { return (x+3) & ~3; }
|
||||
|
||||
inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
|
||||
|
||||
inline float dtVdot2D(const float* u, const float* v)
|
||||
{
|
||||
return u[0]*v[0] + u[2]*v[2];
|
||||
}
|
||||
|
||||
inline float dtVperp2D(const float* u, const float* v)
|
||||
{
|
||||
return u[2]*v[0] - u[0]*v[2];
|
||||
}
|
||||
|
||||
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
{
|
||||
const float abx = b[0] - a[0];
|
||||
const float abz = b[2] - a[2];
|
||||
const float acx = c[0] - a[0];
|
||||
const float acz = c[2] - a[2];
|
||||
return acx*abz - abx*acz;
|
||||
}
|
||||
|
||||
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
||||
const unsigned short bmin[3], const unsigned short bmax[3])
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
||||
const float* bmin, const float* bmax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c);
|
||||
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax);
|
||||
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et);
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
||||
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
||||
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb);
|
||||
/// @}
|
||||
|
||||
#endif // DETOURCOMMON_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@fn float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
@par
|
||||
|
||||
The vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
|
||||
This is a low cost function than can be used for various purposes. Its main purpose
|
||||
is for point/line relationship testing.
|
||||
|
||||
In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
|
||||
(On the xz-plane.)
|
||||
|
||||
When used for point/line relationship tests, AB usually represents a line against which
|
||||
the C point is to be tested. In this case:
|
||||
|
||||
A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
|
||||
A negative value indicates that point C is to the right of lineAB, looking from A toward B.
|
||||
|
||||
When used for evaluating a triangle:
|
||||
|
||||
The absolute value of the return value is two times the area of the triangle when it is
|
||||
projected onto the xz-plane.
|
||||
|
||||
A positive return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
|
||||
<li>The triangle's 3D face normal is in the general up direction.</li>
|
||||
</ul>
|
||||
|
||||
A negative return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
|
||||
<li>The triangle's 3D face normal is in the general down direction.</li>
|
||||
</ul>
|
||||
|
||||
*/
|
||||
|
@ -22,9 +22,8 @@
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
|
||||
// Note: If you want to use 64-bit refs, change the types of both dtPolyRef & dtTileRef.
|
||||
// It is also recommended to change dtHashRef() to proper 64-bit hash too.
|
||||
// It is also recommended that you change dtHashRef() to a proper 64-bit hash.
|
||||
|
||||
/// A handle to a polygon within a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
@ -103,7 +102,7 @@ enum dtPolyTypes
|
||||
struct dtPoly
|
||||
{
|
||||
/// Index to first link in linked list. (Or #DT_NULL_LINK if there is no link.)
|
||||
unsigned int firstLink;
|
||||
unsigned int firstLink;
|
||||
|
||||
/// The indices of the polygon's vertices.
|
||||
/// The actual vertices are located in dtMeshTile::verts.
|
||||
@ -138,10 +137,10 @@ struct dtPoly
|
||||
/// Defines the location of detail sub-mesh data within a dtMeshTile.
|
||||
struct dtPolyDetail
|
||||
{
|
||||
unsigned int vertBase; ///< The offset of the vertices in the dtMeshTile::detailVerts array.
|
||||
unsigned int triBase; ///< The offset of the triangles in the dtMeshTile::detailTris array.
|
||||
unsigned char vertCount; ///< The number of vertices in the sub-mesh.
|
||||
unsigned char triCount; ///< The number of triangles in the sub-mesh.
|
||||
unsigned int vertBase; ///< The offset of the vertices in the dtMeshTile::detailVerts array.
|
||||
unsigned int triBase; ///< The offset of the triangles in the dtMeshTile::detailTris array.
|
||||
unsigned char vertCount; ///< The number of vertices in the sub-mesh.
|
||||
unsigned char triCount; ///< The number of triangles in the sub-mesh.
|
||||
};
|
||||
|
||||
/// Defines a link between polygons.
|
||||
@ -149,12 +148,12 @@ struct dtPolyDetail
|
||||
/// @see dtMeshTile
|
||||
struct dtLink
|
||||
{
|
||||
dtPolyRef ref; ///< Neighbour reference. (The neighbor that is linked to.)
|
||||
unsigned int next; ///< Index of the next link.
|
||||
unsigned char edge; ///< Index of the polygon edge that owns this link.
|
||||
unsigned char side; ///< If a boundary link, defines on which side the link is.
|
||||
unsigned char bmin; ///< If a boundary link, defines the minimum sub-edge area.
|
||||
unsigned char bmax; ///< If a boundary link, defines the maximum sub-edge area.
|
||||
dtPolyRef ref; ///< Neighbour reference. (The neighbor that is linked to.)
|
||||
unsigned int next; ///< Index of the next link.
|
||||
unsigned char edge; ///< Index of the polygon edge that owns this link.
|
||||
unsigned char side; ///< If a boundary link, defines on which side the link is.
|
||||
unsigned char bmin; ///< If a boundary link, defines the minimum sub-edge area.
|
||||
unsigned char bmax; ///< If a boundary link, defines the maximum sub-edge area.
|
||||
};
|
||||
|
||||
/// Bounding volume node.
|
||||
@ -162,9 +161,9 @@ struct dtLink
|
||||
/// @see dtMeshTile
|
||||
struct dtBVNode
|
||||
{
|
||||
unsigned short bmin[3]; ///< Minimum bounds of the node's AABB. [(x, y, z)]
|
||||
unsigned short bmax[3]; ///< Maximum bounds of the node's AABB. [(x, y, z)]
|
||||
int i; ///< The node's index. (Negative for escape sequence.)
|
||||
unsigned short bmin[3]; ///< Minimum bounds of the node's AABB. [(x, y, z)]
|
||||
unsigned short bmax[3]; ///< Maximum bounds of the node's AABB. [(x, y, z)]
|
||||
int i; ///< The node's index. (Negative for escape sequence.)
|
||||
};
|
||||
|
||||
/// Defines an navigation mesh off-mesh connection within a dtMeshTile object.
|
||||
@ -175,7 +174,7 @@ struct dtOffMeshConnection
|
||||
float pos[6];
|
||||
|
||||
/// The radius of the endpoints. [Limit: >= 0]
|
||||
float rad;
|
||||
float rad;
|
||||
|
||||
/// The polygon reference of the connection within the tile.
|
||||
unsigned short poly;
|
||||
@ -196,49 +195,49 @@ struct dtOffMeshConnection
|
||||
/// @ingroup detour
|
||||
struct dtMeshHeader
|
||||
{
|
||||
int magic; ///< Tile magic number. (Used to identify the data format.)
|
||||
int version; ///< Tile data format version number.
|
||||
int x; ///< The x-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int y; ///< The y-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int layer; ///< The layer of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int polyCount; ///< The number of polygons in the tile.
|
||||
int vertCount; ///< The number of vertices in the tile.
|
||||
int maxLinkCount; ///< The number of allocated links.
|
||||
int detailMeshCount; ///< The number of sub-meshes in the detail mesh.
|
||||
int magic; ///< Tile magic number. (Used to identify the data format.)
|
||||
int version; ///< Tile data format version number.
|
||||
int x; ///< The x-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int y; ///< The y-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int layer; ///< The layer of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int polyCount; ///< The number of polygons in the tile.
|
||||
int vertCount; ///< The number of vertices in the tile.
|
||||
int maxLinkCount; ///< The number of allocated links.
|
||||
int detailMeshCount; ///< The number of sub-meshes in the detail mesh.
|
||||
|
||||
/// The number of unique vertices in the detail mesh. (In addition to the polygon vertices.)
|
||||
int detailVertCount;
|
||||
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
int bvNodeCount; ///< The number of bounding volume nodes. (Zero if bounding volumes are disabled.)
|
||||
int offMeshConCount; ///< The number of off-mesh connections.
|
||||
int offMeshBase; ///< The index of the first polygon which is an off-mesh connection.
|
||||
float walkableHeight; ///< The height of the agents using the tile.
|
||||
float walkableRadius; ///< The radius of the agents using the tile.
|
||||
float walkableClimb; ///< The maximum climb height of the agents using the tile.
|
||||
float bmin[3]; ///< The minimum bounds of the tile's AABB. [(x, y, z)]
|
||||
float bmax[3]; ///< The maximum bounds of the tile's AABB. [(x, y, z)]
|
||||
int detailVertCount;
|
||||
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
int bvNodeCount; ///< The number of bounding volume nodes. (Zero if bounding volumes are disabled.)
|
||||
int offMeshConCount; ///< The number of off-mesh connections.
|
||||
int offMeshBase; ///< The index of the first polygon which is an off-mesh connection.
|
||||
float walkableHeight; ///< The height of the agents using the tile.
|
||||
float walkableRadius; ///< The radius of the agents using the tile.
|
||||
float walkableClimb; ///< The maximum climb height of the agents using the tile.
|
||||
float bmin[3]; ///< The minimum bounds of the tile's AABB. [(x, y, z)]
|
||||
float bmax[3]; ///< The maximum bounds of the tile's AABB. [(x, y, z)]
|
||||
|
||||
/// The bounding volume quantization factor.
|
||||
float bvQuantFactor;
|
||||
float bvQuantFactor;
|
||||
};
|
||||
|
||||
/// Defines a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
struct dtMeshTile
|
||||
{
|
||||
unsigned int salt; ///< Counter describing modifications to the tile.
|
||||
unsigned int salt; ///< Counter describing modifications to the tile.
|
||||
|
||||
unsigned int linksFreeList; ///< Index to the next free link.
|
||||
dtMeshHeader* header; ///< The tile header.
|
||||
dtPoly* polys; ///< The tile polygons. [Size: dtMeshHeader::polyCount]
|
||||
float* verts; ///< The tile vertices. [Size: dtMeshHeader::vertCount]
|
||||
dtLink* links; ///< The tile links. [Size: dtMeshHeader::maxLinkCount]
|
||||
dtPolyDetail* detailMeshes; ///< The tile's detail sub-meshes. [Size: dtMeshHeader::detailMeshCount]
|
||||
unsigned int linksFreeList; ///< Index to the next free link.
|
||||
dtMeshHeader* header; ///< The tile header.
|
||||
dtPoly* polys; ///< The tile polygons. [Size: dtMeshHeader::polyCount]
|
||||
float* verts; ///< The tile vertices. [Size: dtMeshHeader::vertCount]
|
||||
dtLink* links; ///< The tile links. [Size: dtMeshHeader::maxLinkCount]
|
||||
dtPolyDetail* detailMeshes; ///< The tile's detail sub-meshes. [Size: dtMeshHeader::detailMeshCount]
|
||||
|
||||
/// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount]
|
||||
float* detailVerts;
|
||||
float* detailVerts;
|
||||
|
||||
/// The detail mesh's triangles. [(vertA, vertB, vertC) * dtMeshHeader::detailTriCount]
|
||||
unsigned char* detailTris;
|
||||
@ -247,11 +246,11 @@ struct dtMeshTile
|
||||
/// (Will be null if bounding volumes are disabled.)
|
||||
dtBVNode* bvTree;
|
||||
|
||||
dtOffMeshConnection* offMeshCons; ///< The tile off-mesh connections. [Size: dtMeshHeader::offMeshConCount]
|
||||
dtOffMeshConnection* offMeshCons; ///< The tile off-mesh connections. [Size: dtMeshHeader::offMeshConCount]
|
||||
|
||||
unsigned char* data; ///< The tile data. (Not directly accessed under normal situations.)
|
||||
int dataSize; ///< Size of the tile data.
|
||||
int flags; ///< Tile flags. (See: #dtTileFlags)
|
||||
int flags; ///< Tile flags. (See: #dtTileFlags)
|
||||
dtMeshTile* next; ///< The next free tile, or the next tile in the spatial grid.
|
||||
};
|
||||
|
||||
@ -262,8 +261,8 @@ struct dtMeshTile
|
||||
struct dtNavMeshParams
|
||||
{
|
||||
float orig[3]; ///< The world space origin of the navigation mesh's tile space. [(x, y, z)]
|
||||
float tileWidth; ///< The width of each tile. (Along the x-axis.)
|
||||
float tileHeight; ///< The height of each tile. (Along the z-axis.)
|
||||
float tileWidth; ///< The width of each tile. (Along the x-axis.)
|
||||
float tileHeight; ///< The height of each tile. (Along the z-axis.)
|
||||
int maxTiles; ///< The maximum number of tiles the navigation mesh can contain.
|
||||
int maxPolys; ///< The maximum number of polygons each tile can contain.
|
||||
};
|
||||
@ -280,15 +279,15 @@ public:
|
||||
/// @name Initialization and Tile Management
|
||||
|
||||
/// Initializes the navigation mesh for tiled use.
|
||||
/// @param[in] params Initialization parameters.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] params Initialization parameters.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus init(const dtNavMeshParams* params);
|
||||
|
||||
/// Initializes the navigation mesh for single tile use.
|
||||
/// @param[in] data Data of the new tile. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize The data size of the new tile.
|
||||
/// @param[in] flags The tile flags. (See: #dtTileFlags)
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] data Data of the new tile. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize The data size of the new tile.
|
||||
/// @param[in] flags The tile flags. (See: #dtTileFlags)
|
||||
/// @return The status flags for the operation.
|
||||
/// @see dtCreateNavMeshData
|
||||
dtStatus init(unsigned char* data, const int dataSize, const int flags);
|
||||
|
||||
@ -296,19 +295,19 @@ public:
|
||||
const dtNavMeshParams* getParams() const;
|
||||
|
||||
/// Adds a tile to the navigation mesh.
|
||||
/// @param[in] data Data for the new tile mesh. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize Data size of the new tile mesh.
|
||||
/// @param[in] flags Tile flags. (See: #dtTileFlags)
|
||||
/// @param[in] lastRef The desired reference for the tile. (When reloading a tile.) [opt] [Default: 0]
|
||||
/// @param[out] result The tile reference. (If the tile was succesfully added.) [opt]
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] data Data for the new tile mesh. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize Data size of the new tile mesh.
|
||||
/// @param[in] flags Tile flags. (See: #dtTileFlags)
|
||||
/// @param[in] lastRef The desired reference for the tile. (When reloading a tile.) [opt] [Default: 0]
|
||||
/// @param[out] result The tile reference. (If the tile was succesfully added.) [opt]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef, dtTileRef* result);
|
||||
|
||||
/// Removes the specified tile from the navigation mesh.
|
||||
/// @param[in] ref The reference of the tile to remove.
|
||||
/// @param[out] data Data associated with deleted tile.
|
||||
/// @param[out] dataSize Size of the data associated with deleted tile.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The reference of the tile to remove.
|
||||
/// @param[out] data Data associated with deleted tile.
|
||||
/// @param[out] dataSize Size of the data associated with deleted tile.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus removeTile(dtTileRef ref, unsigned char** data, int* dataSize);
|
||||
|
||||
/// @}
|
||||
@ -317,88 +316,88 @@ public:
|
||||
/// @name Query Functions
|
||||
|
||||
/// Calculates the tile grid location for the specified world position.
|
||||
/// @param[in] pos The world position for the query. [(x, y, z)]
|
||||
/// @param[out] tx The tile's x-location. (x, y)
|
||||
/// @param[out] ty The tile's y-location. (x, y)
|
||||
/// @param[in] pos The world position for the query. [(x, y, z)]
|
||||
/// @param[out] tx The tile's x-location. (x, y)
|
||||
/// @param[out] ty The tile's y-location. (x, y)
|
||||
void calcTileLoc(const float* pos, int* tx, int* ty) const;
|
||||
|
||||
/// Gets the tile at the specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile, or null if the tile does not exist.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile, or null if the tile does not exist.
|
||||
const dtMeshTile* getTileAt(const int x, const int y, const int layer) const;
|
||||
|
||||
/// Gets all tiles at the specified grid location. (All layers.)
|
||||
/// @param[in] x The tile's x-location. (x, y)
|
||||
/// @param[in] y The tile's y-location. (x, y)
|
||||
/// @param[out] tiles A pointer to an array of tiles that will hold the result.
|
||||
/// @param[in] maxTiles The maximum tiles the tiles parameter can hold.
|
||||
/// @return The number of tiles returned in the tiles array.
|
||||
/// @param[in] x The tile's x-location. (x, y)
|
||||
/// @param[in] y The tile's y-location. (x, y)
|
||||
/// @param[out] tiles A pointer to an array of tiles that will hold the result.
|
||||
/// @param[in] maxTiles The maximum tiles the tiles parameter can hold.
|
||||
/// @return The number of tiles returned in the tiles array.
|
||||
int getTilesAt(const int x, const int y,
|
||||
dtMeshTile const** tiles, const int maxTiles) const;
|
||||
|
||||
/// Gets the tile reference for the tile at specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile reference of the tile, or 0 if there is none.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile reference of the tile, or 0 if there is none.
|
||||
dtTileRef getTileRefAt(int x, int y, int layer) const;
|
||||
|
||||
/// Gets the tile reference for the specified tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The tile reference of the tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The tile reference of the tile.
|
||||
dtTileRef getTileRef(const dtMeshTile* tile) const;
|
||||
|
||||
/// Gets the tile for the specified tile reference.
|
||||
/// @param[in] ref The tile reference of the tile to retrieve.
|
||||
/// @return The tile for the specified reference, or null if the
|
||||
/// reference is invalid.
|
||||
/// @param[in] ref The tile reference of the tile to retrieve.
|
||||
/// @return The tile for the specified reference, or null if the
|
||||
/// reference is invalid.
|
||||
const dtMeshTile* getTileByRef(dtTileRef ref) const;
|
||||
|
||||
/// The maximum number of tiles supported by the navigation mesh.
|
||||
/// @return The maximum number of tiles supported by the navigation mesh.
|
||||
/// @return The maximum number of tiles supported by the navigation mesh.
|
||||
int getMaxTiles() const;
|
||||
|
||||
/// Gets the tile at the specified index.
|
||||
/// @param[in] i The tile index. [Limit: 0 >= index < #getMaxTiles()]
|
||||
/// @return The tile at the specified index.
|
||||
/// @param[in] i The tile index. [Limit: 0 >= index < #getMaxTiles()]
|
||||
/// @return The tile at the specified index.
|
||||
const dtMeshTile* getTile(int i) const;
|
||||
|
||||
/// Gets the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref The reference for the a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The reference for the a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
/// Returns the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref A known valid reference for a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
/// @param[in] ref A known valid reference for a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
void getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
/// Checks the validity of a polygon reference.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @return True if polygon reference is valid for the navigation mesh.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @return True if polygon reference is valid for the navigation mesh.
|
||||
bool isValidPolyRef(dtPolyRef ref) const;
|
||||
|
||||
/// Gets the polygon reference for the tile's base polygon.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The polygon reference for the base polygon in the specified tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The polygon reference for the base polygon in the specified tile.
|
||||
dtPolyRef getPolyRefBase(const dtMeshTile* tile) const;
|
||||
|
||||
/// Gets the endpoints for an off-mesh connection, ordered by "direction of travel".
|
||||
/// @param[in] prevRef The reference of the polygon before the connection.
|
||||
/// @param[in] polyRef The reference of the off-mesh connection polygon.
|
||||
/// @param[out] startPos The start position of the off-mesh connection. [(x, y, z)]
|
||||
/// @param[out] endPos The end position of the off-mesh connection. [(x, y, z)]
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] prevRef The reference of the polygon before the connection.
|
||||
/// @param[in] polyRef The reference of the off-mesh connection polygon.
|
||||
/// @param[out] startPos The start position of the off-mesh connection. [(x, y, z)]
|
||||
/// @param[out] endPos The end position of the off-mesh connection. [(x, y, z)]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const;
|
||||
|
||||
/// Gets the specified off-mesh connection.
|
||||
/// @param[in] ref The polygon reference of the off-mesh connection.
|
||||
/// @return The specified off-mesh connection, or null if the polygon reference is not valid.
|
||||
/// @param[in] ref The polygon reference of the off-mesh connection.
|
||||
/// @return The specified off-mesh connection, or null if the polygon reference is not valid.
|
||||
const dtOffMeshConnection* getOffMeshConnectionByRef(dtPolyRef ref) const;
|
||||
|
||||
/// @}
|
||||
@ -408,46 +407,46 @@ public:
|
||||
/// These functions do not effect #dtTileRef or #dtPolyRef's.
|
||||
|
||||
/// Sets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] flags The new flags for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] flags The new flags for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyFlags(dtPolyRef ref, unsigned short flags);
|
||||
|
||||
/// Gets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultFlags The polygon flags.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultFlags The polygon flags.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const;
|
||||
|
||||
/// Sets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] area The new area id for the polygon. [Limit: < #DT_MAX_AREAS]
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] area The new area id for the polygon. [Limit: < #DT_MAX_AREAS]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyArea(dtPolyRef ref, unsigned char area);
|
||||
|
||||
/// Gets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultArea The area id for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultArea The area id for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyArea(dtPolyRef ref, unsigned char* resultArea) const;
|
||||
|
||||
/// Gets the size of the buffer required by #storeTileState to store the specified tile's state.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The size of the buffer required to store the state.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The size of the buffer required to store the state.
|
||||
int getTileStateSize(const dtMeshTile* tile) const;
|
||||
|
||||
/// Stores the non-structural state of the tile in the specified buffer. (Flags, area ids, etc.)
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[out] data The buffer to store the tile's state in.
|
||||
/// @param[in] maxDataSize The size of the data buffer. [Limit: >= #getTileStateSize]
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[out] data The buffer to store the tile's state in.
|
||||
/// @param[in] maxDataSize The size of the data buffer. [Limit: >= #getTileStateSize]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const;
|
||||
|
||||
/// Restores the state of the tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[in] data The new state. (Obtained from #storeTileState.)
|
||||
/// @param[in] maxDataSize The size of the state within the data buffer.
|
||||
/// @return The status flags for the operation.
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[in] data The new state. (Obtained from #storeTileState.)
|
||||
/// @param[in] maxDataSize The size of the state within the data buffer.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize);
|
||||
|
||||
/// @}
|
||||
@ -458,9 +457,9 @@ public:
|
||||
|
||||
/// Derives a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] salt The tile's salt value.
|
||||
/// @param[in] it The index of the tile.
|
||||
/// @param[in] ip The index of the polygon within the tile.
|
||||
/// @param[in] salt The tile's salt value.
|
||||
/// @param[in] it The index of the tile.
|
||||
/// @param[in] ip The index of the polygon within the tile.
|
||||
inline dtPolyRef encodePolyId(unsigned int salt, unsigned int it, unsigned int ip) const
|
||||
{
|
||||
return ((dtPolyRef)salt << (m_polyBits+m_tileBits)) | ((dtPolyRef)it << m_polyBits) | (dtPolyRef)ip;
|
||||
@ -468,10 +467,10 @@ public:
|
||||
|
||||
/// Decodes a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference to decode.
|
||||
/// @param[out] salt The tile's salt value.
|
||||
/// @param[out] it The index of the tile.
|
||||
/// @param[out] ip The index of the polygon within the tile.
|
||||
/// @param[in] ref The polygon reference to decode.
|
||||
/// @param[out] salt The tile's salt value.
|
||||
/// @param[out] it The index of the tile.
|
||||
/// @param[out] ip The index of the polygon within the tile.
|
||||
/// @see #encodePolyId
|
||||
inline void decodePolyId(dtPolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip) const
|
||||
{
|
||||
@ -485,7 +484,7 @@ public:
|
||||
|
||||
/// Extracts a tile's salt value from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdSalt(dtPolyRef ref) const
|
||||
{
|
||||
@ -495,7 +494,7 @@ public:
|
||||
|
||||
/// Extracts the tile's index from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdTile(dtPolyRef ref) const
|
||||
{
|
||||
@ -505,7 +504,7 @@ public:
|
||||
|
||||
/// Extracts the polygon's index (within its tile) from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdPoly(dtPolyRef ref) const
|
||||
{
|
||||
@ -576,12 +575,12 @@ private:
|
||||
};
|
||||
|
||||
/// Allocates a navigation mesh object using the Detour allocator.
|
||||
/// @return A navigation mesh that is ready for initialization, or null on failure.
|
||||
/// @return A navigation mesh that is ready for initialization, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMesh* dtAllocNavMesh();
|
||||
|
||||
/// Frees the specified navigation mesh object using the Detour allocator.
|
||||
/// @param[in] navmesh A navigation mesh allocated using #dtAllocNavMesh
|
||||
/// @param[in] navmesh A navigation mesh allocated using #dtAllocNavMesh
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMesh(dtNavMesh* navmesh);
|
||||
|
||||
@ -589,92 +588,95 @@ void dtFreeNavMesh(dtNavMesh* navmesh);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for types that don't have
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/// @typedef dtPolyRef
|
||||
/// @par
|
||||
///
|
||||
/// Polygon references are subject to the same invalidate/preserve/restore
|
||||
/// rules that apply to #dtTileRef's. If the #dtTileRef for the polygon's
|
||||
/// tile changes, the polygon reference becomes invalid.
|
||||
///
|
||||
/// Changing a polygon's flags, area id, etc. does not impact its polygon
|
||||
/// reference.
|
||||
/**
|
||||
|
||||
/// @typedef dtTileRef
|
||||
/// @par
|
||||
///
|
||||
/// The following changes will invalidate a tile reference:
|
||||
///
|
||||
/// - The referenced tile has been removed from the navigation mesh.
|
||||
/// - The navigation mesh has been initialized using a different set
|
||||
/// of #dtNavMeshParams.
|
||||
///
|
||||
/// A tile reference is preserved/restored if the tile is added to a navigation
|
||||
/// mesh initialized with the original #dtNavMeshParams and is added at the
|
||||
/// original reference location. (E.g. The lastRef parameter is used with
|
||||
/// dtNavMesh::addTile.)
|
||||
///
|
||||
/// Basically, if the storage structure of a tile changes, its associated
|
||||
/// tile reference changes.
|
||||
///
|
||||
@typedef dtPolyRef
|
||||
@par
|
||||
|
||||
/// @var unsigned short dtPoly::neis[DT_VERTS_PER_POLYGON]
|
||||
/// @par
|
||||
///
|
||||
/// Each entry represents data for the edge starting at the vertex of the same index.
|
||||
/// E.g. The entry at index n represents the edge data for vertex[n] to vertex[n+1].
|
||||
///
|
||||
/// A value of zero indicates the edge has no polygon connection. (It makes up the
|
||||
/// border of the navigation mesh.)
|
||||
///
|
||||
/// The information can be extracted as follows:
|
||||
/// @code
|
||||
/// neighborRef = neis[n] & 0xff; // Get the neighbor polygon reference.
|
||||
///
|
||||
/// if (neis[n] & #DT_EX_LINK)
|
||||
/// {
|
||||
/// // The edge is an external (portal) edge.
|
||||
/// }
|
||||
/// @endcode
|
||||
Polygon references are subject to the same invalidate/preserve/restore
|
||||
rules that apply to #dtTileRef's. If the #dtTileRef for the polygon's
|
||||
tile changes, the polygon reference becomes invalid.
|
||||
|
||||
/// @var float dtMeshHeader::bvQuantFactor
|
||||
/// @par
|
||||
///
|
||||
/// This value is used for converting between world and bounding volume coordinates.
|
||||
/// For example:
|
||||
/// @code
|
||||
/// const float cs = 1.0f / tile->header->bvQuantFactor;
|
||||
/// const dtBVNode* n = &tile->bvTree[i];
|
||||
/// if (n->i >= 0)
|
||||
/// {
|
||||
/// // This is a leaf node.
|
||||
/// float worldMinX = tile->header->bmin[0] + n->bmin[0]*cs;
|
||||
/// float worldMinY = tile->header->bmin[0] + n->bmin[1]*cs;
|
||||
/// // Etc...
|
||||
/// }
|
||||
/// @endcode
|
||||
Changing a polygon's flags, area id, etc. does not impact its polygon
|
||||
reference.
|
||||
|
||||
/// @struct dtMeshTile
|
||||
/// @par
|
||||
///
|
||||
/// Tiles generally only exist within the context of a dtNavMesh object.
|
||||
///
|
||||
/// Some tile content is optional. For example, a tile may not contain any
|
||||
/// off-mesh connections. In this case the associated pointer will be null.
|
||||
///
|
||||
/// If a detail mesh exists it will share vertices with the base polygon mesh.
|
||||
/// Only the vertices unique to the detail mesh will be stored in #detailVerts.
|
||||
///
|
||||
/// @warning Tiles returned by a dtNavMesh object are not guarenteed to be populated.
|
||||
/// For example: The tile at a location might not have been loaded yet, or may have been removed.
|
||||
/// In this case, pointers will be null. So if in doubt, check the polygon count in the
|
||||
/// tile's header to determine if a tile has polygons defined.
|
||||
@typedef dtTileRef
|
||||
@par
|
||||
|
||||
/// @var float dtOffMeshConnection::pos[6]
|
||||
/// @par
|
||||
///
|
||||
/// For a properly built navigation mesh, vertex A will always be within the bounds of the mesh.
|
||||
/// Vertex B is not required to be within the bounds of the mesh.
|
||||
///
|
||||
The following changes will invalidate a tile reference:
|
||||
|
||||
- The referenced tile has been removed from the navigation mesh.
|
||||
- The navigation mesh has been initialized using a different set
|
||||
of #dtNavMeshParams.
|
||||
|
||||
A tile reference is preserved/restored if the tile is added to a navigation
|
||||
mesh initialized with the original #dtNavMeshParams and is added at the
|
||||
original reference location. (E.g. The lastRef parameter is used with
|
||||
dtNavMesh::addTile.)
|
||||
|
||||
Basically, if the storage structure of a tile changes, its associated
|
||||
tile reference changes.
|
||||
|
||||
|
||||
@var unsigned short dtPoly::neis[DT_VERTS_PER_POLYGON]
|
||||
@par
|
||||
|
||||
Each entry represents data for the edge starting at the vertex of the same index.
|
||||
E.g. The entry at index n represents the edge data for vertex[n] to vertex[n+1].
|
||||
|
||||
A value of zero indicates the edge has no polygon connection. (It makes up the
|
||||
border of the navigation mesh.)
|
||||
|
||||
The information can be extracted as follows:
|
||||
@code
|
||||
neighborRef = neis[n] & 0xff; // Get the neighbor polygon reference.
|
||||
|
||||
if (neis[n] & #DT_EX_LINK)
|
||||
{
|
||||
// The edge is an external (portal) edge.
|
||||
}
|
||||
@endcode
|
||||
|
||||
@var float dtMeshHeader::bvQuantFactor
|
||||
@par
|
||||
|
||||
This value is used for converting between world and bounding volume coordinates.
|
||||
For example:
|
||||
@code
|
||||
const float cs = 1.0f / tile->header->bvQuantFactor;
|
||||
const dtBVNode* n = &tile->bvTree[i];
|
||||
if (n->i >= 0)
|
||||
{
|
||||
// This is a leaf node.
|
||||
float worldMinX = tile->header->bmin[0] + n->bmin[0]*cs;
|
||||
float worldMinY = tile->header->bmin[0] + n->bmin[1]*cs;
|
||||
// Etc...
|
||||
}
|
||||
@endcode
|
||||
|
||||
@struct dtMeshTile
|
||||
@par
|
||||
|
||||
Tiles generally only exist within the context of a dtNavMesh object.
|
||||
|
||||
Some tile content is optional. For example, a tile may not contain any
|
||||
off-mesh connections. In this case the associated pointer will be null.
|
||||
|
||||
If a detail mesh exists it will share vertices with the base polygon mesh.
|
||||
Only the vertices unique to the detail mesh will be stored in #detailVerts.
|
||||
|
||||
@warning Tiles returned by a dtNavMesh object are not guarenteed to be populated.
|
||||
For example: The tile at a location might not have been loaded yet, or may have been removed.
|
||||
In this case, pointers will be null. So if in doubt, check the polygon count in the
|
||||
tile's header to determine if a tile has polygons defined.
|
||||
|
||||
@var float dtOffMeshConnection::pos[6]
|
||||
@par
|
||||
|
||||
For a properly built navigation mesh, vertex A will always be within the bounds of the mesh.
|
||||
Vertex B is not required to be within the bounds of the mesh.
|
||||
|
||||
*/
|
||||
|
@ -41,10 +41,10 @@ class dtQueryFilter
|
||||
public:
|
||||
dtQueryFilter();
|
||||
|
||||
/// Returns true if the polygon can be visited. (I.e. Is traversable.)
|
||||
/// @param[in] ref The reference id of the polygon test.
|
||||
/// @param[in] tile The tile containing the polygon.
|
||||
/// @param[in] poly The polygon to test.
|
||||
/// Returns true if the polygon can be visited. (I.e. Is traversable.)
|
||||
/// @param[in] ref The reference id of the polygon test.
|
||||
/// @param[in] tile The tile containing the polygon.
|
||||
/// @param[in] poly The polygon to test.
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual bool passFilter(const dtPolyRef ref,
|
||||
const dtMeshTile* tile,
|
||||
@ -56,18 +56,18 @@ public:
|
||||
#endif
|
||||
|
||||
/// Returns cost to move from the beginning to the end of a line segment
|
||||
/// that is fully contained within a polygon.
|
||||
/// @param[in] pa The start position on the edge of the previous and current polygon. [(x, y, z)]
|
||||
/// @param[in] pb The end position on the edge of the current and next polygon. [(x, y, z)]
|
||||
/// @param[in] prevRef The reference id of the previous polygon. [opt]
|
||||
/// @param[in] prevTile The tile containing the previous polygon. [opt]
|
||||
/// @param[in] prevPoly The previous polygon. [opt]
|
||||
/// @param[in] curRef The reference id of the current polygon.
|
||||
/// @param[in] curTile The tile containing the current polygon.
|
||||
/// @param[in] curPoly The current polygon.
|
||||
/// @param[in] nextRef The refernece id of the next polygon. [opt]
|
||||
/// @param[in] nextTile The tile containing the next polygon. [opt]
|
||||
/// @param[in] nextPoly The next polygon. [opt]
|
||||
/// that is fully contained within a polygon.
|
||||
/// @param[in] pa The start position on the edge of the previous and current polygon. [(x, y, z)]
|
||||
/// @param[in] pb The end position on the edge of the current and next polygon. [(x, y, z)]
|
||||
/// @param[in] prevRef The reference id of the previous polygon. [opt]
|
||||
/// @param[in] prevTile The tile containing the previous polygon. [opt]
|
||||
/// @param[in] prevPoly The previous polygon. [opt]
|
||||
/// @param[in] curRef The reference id of the current polygon.
|
||||
/// @param[in] curTile The tile containing the current polygon.
|
||||
/// @param[in] curPoly The current polygon.
|
||||
/// @param[in] nextRef The refernece id of the next polygon. [opt]
|
||||
/// @param[in] nextTile The tile containing the next polygon. [opt]
|
||||
/// @param[in] nextPoly The next polygon. [opt]
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual float getCost(const float* pa, const float* pb,
|
||||
const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly,
|
||||
@ -84,31 +84,31 @@ public:
|
||||
///@{
|
||||
|
||||
/// Returns the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @returns The traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @returns The traversal cost of the area.
|
||||
inline float getAreaCost(const int i) const { return m_areaCost[i]; }
|
||||
|
||||
/// Sets the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @param[in] cost The new cost of traversing the area.
|
||||
/// Sets the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @param[in] cost The new cost of traversing the area.
|
||||
inline void setAreaCost(const int i, const float cost) { m_areaCost[i] = cost; }
|
||||
|
||||
/// Returns the include flags for the filter.
|
||||
/// Any polygons that include one or more of these flags will be
|
||||
/// included in the operation.
|
||||
/// Returns the include flags for the filter.
|
||||
/// Any polygons that include one or more of these flags will be
|
||||
/// included in the operation.
|
||||
inline unsigned short getIncludeFlags() const { return m_includeFlags; }
|
||||
|
||||
/// Sets the include flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
/// Sets the include flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setIncludeFlags(const unsigned short flags) { m_includeFlags = flags; }
|
||||
|
||||
/// Returns the exclude flags for the filter.
|
||||
/// Any polygons that include one ore more of these flags will be
|
||||
/// excluded from the operation.
|
||||
/// Returns the exclude flags for the filter.
|
||||
/// Any polygons that include one ore more of these flags will be
|
||||
/// excluded from the operation.
|
||||
inline unsigned short getExcludeFlags() const { return m_excludeFlags; }
|
||||
|
||||
/// Sets the exclude flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
/// Sets the exclude flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setExcludeFlags(const unsigned short flags) { m_excludeFlags = flags; }
|
||||
|
||||
///@}
|
||||
@ -125,275 +125,275 @@ public:
|
||||
~dtNavMeshQuery();
|
||||
|
||||
/// Initializes the query object.
|
||||
/// @param[in] nav Pointer to the dtNavMesh object to use for all queries.
|
||||
/// @param[in] maxNodes Maximum number of search nodes. [Limits: 0 < value <= 65536]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] nav Pointer to the dtNavMesh object to use for all queries.
|
||||
/// @param[in] maxNodes Maximum number of search nodes. [Limits: 0 < value <= 65536]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus init(const dtNavMesh* nav, const int maxNodes);
|
||||
|
||||
/// @name Standard Pathfinding Functions
|
||||
// /@{
|
||||
/// @name Standard Pathfinding Functions
|
||||
// /@{
|
||||
|
||||
/// Finds a path from the start polygon to the end polygon.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
dtStatus findPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
/// Finds the straight path from the start to the end position within the polygon corridor.
|
||||
/// @param[in] startPos Path start position. [(x, y, z)]
|
||||
/// @param[in] endPos Path end position. [(x, y, z)]
|
||||
/// @param[in] path An array of polygon references that represent the path corridor.
|
||||
/// @param[in] pathSize The number of polygons in the @p path array.
|
||||
/// @param[out] straightPath Points describing the straight path. [(x, y, z) * @p straightPathCount].
|
||||
/// @param[out] straightPathFlags Flags describing each point. (See: #dtStraightPathFlags) [opt]
|
||||
/// @param[out] straightPathRefs The reference id of the polygon that is being entered at each point. [opt]
|
||||
/// @param[out] straightPathCount The number of points in the straight path.
|
||||
/// @param[in] maxStraightPath The maximum number of points the straight path arrays can hold. [Limit: > 0]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startPos Path start position. [(x, y, z)]
|
||||
/// @param[in] endPos Path end position. [(x, y, z)]
|
||||
/// @param[in] path An array of polygon references that represent the path corridor.
|
||||
/// @param[in] pathSize The number of polygons in the @p path array.
|
||||
/// @param[out] straightPath Points describing the straight path. [(x, y, z) * @p straightPathCount].
|
||||
/// @param[out] straightPathFlags Flags describing each point. (See: #dtStraightPathFlags) [opt]
|
||||
/// @param[out] straightPathRefs The reference id of the polygon that is being entered at each point. [opt]
|
||||
/// @param[out] straightPathCount The number of points in the straight path.
|
||||
/// @param[in] maxStraightPath The maximum number of points the straight path arrays can hold. [Limit: > 0]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findStraightPath(const float* startPos, const float* endPos,
|
||||
const dtPolyRef* path, const int pathSize,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath) const;
|
||||
|
||||
///@}
|
||||
/// @name Sliced Pathfinding Functions
|
||||
/// Common use case:
|
||||
/// -# Call initSlicedFindPath() to initialize the sliced path query.
|
||||
/// -# Call updateSlicedFindPath() until it returns complete.
|
||||
/// -# Call finalizeSlicedFindPath() to get the path.
|
||||
///@{
|
||||
///@}
|
||||
/// @name Sliced Pathfinding Functions
|
||||
/// Common use case:
|
||||
/// -# Call initSlicedFindPath() to initialize the sliced path query.
|
||||
/// -# Call updateSlicedFindPath() until it returns complete.
|
||||
/// -# Call finalizeSlicedFindPath() to get the path.
|
||||
///@{
|
||||
|
||||
/// Intializes a sliced path query.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter);
|
||||
|
||||
/// Updates an in-progress sliced path query.
|
||||
/// @param[in] maxIter The maximum number of iterations to perform.
|
||||
/// @param[out] doneIters The actual number of iterations completed. [opt]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] maxIter The maximum number of iterations to perform.
|
||||
/// @param[out] doneIters The actual number of iterations completed. [opt]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus updateSlicedFindPath(const int maxIter, int* doneIters);
|
||||
|
||||
/// Finalizes and returns the results of a sliced path query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
/// Finalizes and returns the results of an incomplete sliced path query, returning the path to the furthest
|
||||
/// polygon on the existing path that was visited during the search.
|
||||
/// @param[out] existing An array of polygon references for the existing path.
|
||||
/// @param[out] existingSize The number of polygon in the @p existing array.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[out] existing An array of polygon references for the existing path.
|
||||
/// @param[out] existingSize The number of polygon in the @p existing array.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
///@}
|
||||
/// @name Dijkstra Search Functions
|
||||
/// @{
|
||||
|
||||
///@}
|
||||
/// @name Dijkstra Search Functions
|
||||
/// @{
|
||||
|
||||
/// Finds the polygons along the navigation graph that touch the specified circle.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from @p centerPos to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found. [opt]
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from @p centerPos to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found. [opt]
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Finds the polygons along the naviation graph that touch the specified convex polygon.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] verts The vertices describing the convex polygon. (CCW)
|
||||
/// [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices in the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the search polygon. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result. Zero if a
|
||||
/// result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from the centroid point to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] verts The vertices describing the convex polygon. (CCW)
|
||||
/// [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices in the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the search polygon. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result. Zero if a
|
||||
/// result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from the centroid point to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// @}
|
||||
/// @}
|
||||
/// @name Local Query Functions
|
||||
///@{
|
||||
|
||||
///@{
|
||||
|
||||
/// Finds the polygon nearest to the specified center point.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. [opt] [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. [opt] [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findNearestPoly(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const;
|
||||
|
||||
/// Finds polygons that overlap the search box.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] polys The reference ids of the polygons that overlap the query box.
|
||||
/// @param[out] polyCount The number of polygons in the search result.
|
||||
/// @param[in] maxPolys The maximum number of polygons the search result can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] polys The reference ids of the polygons that overlap the query box.
|
||||
/// @param[out] polyCount The number of polygons in the search result.
|
||||
/// @param[in] maxPolys The maximum number of polygons the search result can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus queryPolygons(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* polys, int* polyCount, const int maxPolys) const;
|
||||
|
||||
/// Finds the non-overlapping navigation polygons in the local neighbourhood around the center position.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the query circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the query circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle.
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the query circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the query circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle.
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Moves from the start to the end position constrained to the navigation mesh.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position of the mover within the start polygon. [(x, y, x)]
|
||||
/// @param[in] endPos The desired end position of the mover. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultPos The result position of the mover. [(x, y, z)]
|
||||
/// @param[out] visited The reference ids of the polygons visited during the move.
|
||||
/// @param[out] visitedCount The number of polygons visited during the move.
|
||||
/// @param[in] maxVisitedSize The maximum number of polygons the @p visited array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position of the mover within the start polygon. [(x, y, x)]
|
||||
/// @param[in] endPos The desired end position of the mover. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultPos The result position of the mover. [(x, y, z)]
|
||||
/// @param[out] visited The reference ids of the polygons visited during the move.
|
||||
/// @param[out] visitedCount The number of polygons visited during the move.
|
||||
/// @param[in] maxVisitedSize The maximum number of polygons the @p visited array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const;
|
||||
|
||||
/// Casts a 'walkability' ray along the surface of the navigation mesh from
|
||||
/// the start position toward the end position.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position within the start polygon representing
|
||||
/// the start of the ray. [(x, y, z)]
|
||||
/// @param[in] endPos The position to cast the ray toward. [(x, y, z)]
|
||||
/// @param[out] t The hit parameter. (FLT_MAX if no wall hit.)
|
||||
/// @param[out] hitNormal The normal of the nearest wall hit. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path The reference ids of the visited polygons. [opt]
|
||||
/// @param[out] pathCount The number of visited polygons. [opt]
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// the start position toward the end position.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position within the start polygon representing
|
||||
/// the start of the ray. [(x, y, z)]
|
||||
/// @param[in] endPos The position to cast the ray toward. [(x, y, z)]
|
||||
/// @param[out] t The hit parameter. (FLT_MAX if no wall hit.)
|
||||
/// @param[out] hitNormal The normal of the nearest wall hit. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path The reference ids of the visited polygons. [opt]
|
||||
/// @param[out] pathCount The number of visited polygons. [opt]
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
/// Finds the distance from the specified position to the nearest polygon wall.
|
||||
/// @param[in] startRef The reference id of the polygon containing @p centerPos.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] maxRadius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] hitDist The distance to the nearest wall from @p centerPos.
|
||||
/// @param[out] hitPos The nearest position on the wall that was hit. [(x, y, z)]
|
||||
/// @param[out] hitNormal The normalized ray formed from the wall point to the
|
||||
/// source point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] startRef The reference id of the polygon containing @p centerPos.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] maxRadius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] hitDist The distance to the nearest wall from @p centerPos.
|
||||
/// @param[out] hitPos The nearest position on the wall that was hit. [(x, y, z)]
|
||||
/// @param[out] hitNormal The normalized ray formed from the wall point to the
|
||||
/// source point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter,
|
||||
float* hitDist, float* hitPos, float* hitNormal) const;
|
||||
|
||||
/// Returns the segments for the specified polygon, optionally including portals.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] segmentVerts The segments. [(ax, ay, az, bx, by, bz) * segmentCount]
|
||||
/// @param[out] segmentRefs The reference ids of each segment's neighbor polygon.
|
||||
/// Or zero if the segment is a wall. [opt] [(parentRef) * @p segmentCount]
|
||||
/// @param[out] segmentCount The number of segments returned.
|
||||
/// @param[in] maxSegments The maximum number of segments the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] segmentVerts The segments. [(ax, ay, az, bx, by, bz) * segmentCount]
|
||||
/// @param[out] segmentRefs The reference ids of each segment's neighbor polygon.
|
||||
/// Or zero if the segment is a wall. [opt] [(parentRef) * @p segmentCount]
|
||||
/// @param[out] segmentCount The number of segments returned.
|
||||
/// @param[in] maxSegments The maximum number of segments the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
|
||||
float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
|
||||
const int maxSegments) const;
|
||||
|
||||
/// Finds the closest point on the specified polygon.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point on the polygon. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point on the polygon. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const;
|
||||
|
||||
/// Returns a point on the boundary closest to the source point if the source point is outside the
|
||||
/// polygon's xz-bounds.
|
||||
/// @param[in] ref The reference id to the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
/// polygon's xz-bounds.
|
||||
/// @param[in] ref The reference id to the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const;
|
||||
|
||||
/// Gets the height of the polygon at the provided position using the height detail. (Most accurate.)
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos A position within the xz-bounds of the polygon. [(x, y, z)]
|
||||
/// @param[out] height The height at the surface of the polygon.
|
||||
/// @returns The status flags for the query.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos A position within the xz-bounds of the polygon. [(x, y, z)]
|
||||
/// @param[out] height The height at the surface of the polygon.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyHeight(dtPolyRef ref, const float* pos, float* height) const;
|
||||
|
||||
/// @}
|
||||
/// @name Miscellaneous Functions
|
||||
/// @{
|
||||
/// @}
|
||||
/// @name Miscellaneous Functions
|
||||
/// @{
|
||||
|
||||
/// Returns true if the polygon reference is valid and passes the filter restrictions.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @param[in] filter The filter to apply.
|
||||
bool isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const;
|
||||
/// Returns true if the polygon reference is valid and passes the filter restrictions.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @param[in] filter The filter to apply.
|
||||
bool isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const;
|
||||
|
||||
/// Returns true if the polygon reference is in the closed list.
|
||||
/// @param[in] ref The reference id of the polygon to check.
|
||||
/// @returns True if the polygon is in closed list.
|
||||
/// Returns true if the polygon reference is in the closed list.
|
||||
/// @param[in] ref The reference id of the polygon to check.
|
||||
/// @returns True if the polygon is in closed list.
|
||||
bool isInClosedList(dtPolyRef ref) const;
|
||||
|
||||
/// Gets the node pool.
|
||||
/// @returns The node pool.
|
||||
/// Gets the node pool.
|
||||
/// @returns The node pool.
|
||||
class dtNodePool* getNodePool() const { return m_nodePool; }
|
||||
|
||||
/// Gets the navigation mesh the query object is using.
|
||||
/// @return The navigation mesh the query object is using.
|
||||
/// Gets the navigation mesh the query object is using.
|
||||
/// @return The navigation mesh the query object is using.
|
||||
const dtNavMesh* getAttachedNavMesh() const { return m_nav; }
|
||||
|
||||
/// @}
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
||||
@ -441,13 +441,13 @@ private:
|
||||
};
|
||||
|
||||
/// Allocates a query object using the Detour allocator.
|
||||
/// @return An allocated query object, or null on failure.
|
||||
/// @ingroup detour
|
||||
/// @return An allocated query object, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMeshQuery* dtAllocNavMeshQuery();
|
||||
|
||||
/// Frees the specified query object using the Detour allocator.
|
||||
/// @param[in] query A query object allocated using #dtAllocNavMeshQuery
|
||||
/// @ingroup detour
|
||||
/// @param[in] query A query object allocated using #dtAllocNavMeshQuery
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMeshQuery(dtNavMeshQuery* query);
|
||||
|
||||
#endif // DETOURNAVMESHQUERY_H
|
||||
|
@ -238,6 +238,9 @@ bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b
|
||||
return false;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All points are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts)
|
||||
{
|
||||
// TODO: Replace pnpoly with triArea2D tests?
|
||||
@ -291,6 +294,9 @@ inline bool overlapRange(const float amin, const float amax,
|
||||
return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb)
|
||||
{
|
||||
|
@ -439,6 +439,9 @@ dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* h
|
||||
/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check
|
||||
/// @p nearestRef before using @p nearestPt.
|
||||
///
|
||||
/// @warning This function is not suitable for large area searches. If the search
|
||||
/// extents overlaps more than 128 polygons it may return an invalid result.
|
||||
///
|
||||
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const
|
||||
|
Loading…
x
Reference in New Issue
Block a user