diff --git a/DebugUtils/Include/RecastDebugDraw.h b/DebugUtils/Include/RecastDebugDraw.h index f75802d..6a55fa6 100644 --- a/DebugUtils/Include/RecastDebugDraw.h +++ b/DebugUtils/Include/RecastDebugDraw.h @@ -33,10 +33,6 @@ void duDebugDrawHeightfieldLayer(duDebugDraw* dd, const struct rcHeightfieldLaye void duDebugDrawHeightfieldLayers(duDebugDraw* dd, const struct rcHeightfieldLayerSet& lset); void duDebugDrawHeightfieldLayersRegions(duDebugDraw* dd, const struct rcHeightfieldLayerSet& lset); -void duDebugDrawLayerContours(duDebugDraw* dd, const struct rcLayerContourSet& lcset); -void duDebugDrawLayerPolyMesh(duDebugDraw* dd, const struct rcLayerPolyMesh& lmesh); - - void duDebugDrawRegionConnections(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f); void duDebugDrawRawContours(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f); void duDebugDrawContours(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f); diff --git a/Detour/Include/DetourNavMeshQuery.h b/Detour/Include/DetourNavMeshQuery.h index 427e4a9..848ea27 100644 --- a/Detour/Include/DetourNavMeshQuery.h +++ b/Detour/Include/DetourNavMeshQuery.h @@ -41,6 +41,10 @@ class dtQueryFilter public: dtQueryFilter(); +#ifdef DT_VIRTUAL_QUERYFILTER + virtual ~dtQueryFilter() { } +#endif + /// Returns true if the polygon can be visited. (I.e. Is traversable.) /// @param[in] ref The reference id of the polygon test. /// @param[in] tile The tile containing the polygon. diff --git a/Recast/Include/Recast.h b/Recast/Include/Recast.h index 336837e..83ca606 100644 --- a/Recast/Include/Recast.h +++ b/Recast/Include/Recast.h @@ -338,7 +338,7 @@ struct rcHeightfieldLayer int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.) int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.) int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.) - unsigned char* heights; ///< The heightfield. [Size: (width - borderSize*2) * (h - borderSize*2)] + unsigned char* heights; ///< The heightfield. [Size: width * height] unsigned char* areas; ///< Area ids. [Size: Same as #heights] unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights] }; @@ -969,7 +969,7 @@ void rcMarkCylinderArea(rcContext* ctx, const float* pos, /// @returns True if the operation completed successfully. bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); -/// Builds region data for the heightfield using watershed partitioning. +/// Builds region data for the heightfield using watershed partitioning. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. /// @param[in,out] chf A populated compact heightfield. @@ -983,6 +983,18 @@ bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int minRegionArea, const int mergeRegionArea); +/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers. +/// @ingroup recast +/// @param[in,out] ctx The build context to use during the operation. +/// @param[in,out] chf A populated compact heightfield. +/// @param[in] borderSize The size of the non-navigable border around the heightfield. +/// [Limit: >=0] [Units: vx] +/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. +/// [Limit: >=0] [Units: vx]. +/// @returns True if the operation completed successfully. +bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, + const int borderSize, const int minRegionArea); + /// Builds region data for the heightfield using simple monotone partitioning. /// @ingroup recast /// @param[in,out] ctx The build context to use during the operation. @@ -997,7 +1009,6 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int minRegionArea, const int mergeRegionArea); - /// Sets the neighbor connection data for the specified direction. /// @param[in] s The span to update. /// @param[in] dir The direction to set. [Limits: 0 <= value < 4] diff --git a/Recast/Source/RecastContour.cpp b/Recast/Source/RecastContour.cpp index 5c324bc..bdf7931 100644 --- a/Recast/Source/RecastContour.cpp +++ b/Recast/Source/RecastContour.cpp @@ -20,6 +20,7 @@ #include #include #include +#include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" @@ -311,13 +312,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified, { int ii = (i+1) % (simplified.size()/4); - const int ax = simplified[i*4+0]; - const int az = simplified[i*4+2]; - const int ai = simplified[i*4+3]; + int ax = simplified[i*4+0]; + int az = simplified[i*4+2]; + int ai = simplified[i*4+3]; - const int bx = simplified[ii*4+0]; - const int bz = simplified[ii*4+2]; - const int bi = simplified[ii*4+3]; + int bx = simplified[ii*4+0]; + int bz = simplified[ii*4+2]; + int bi = simplified[ii*4+3]; // Find maximum deviation from the segment. float maxd = 0; @@ -338,6 +339,8 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified, cinc = pn-1; ci = (bi+cinc) % pn; endi = ai; + rcSwap(ax, bx); + rcSwap(az, bz); } // Tessellate only outer edges or edges between areas. @@ -469,32 +472,6 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified, } -static void removeDegenerateSegments(rcIntArray& simplified) -{ - // Remove adjacent vertices which are equal on xz-plane, - // or else the triangulator will get confused. - for (int i = 0; i < simplified.size()/4; ++i) - { - int ni = i+1; - if (ni >= (simplified.size()/4)) - ni = 0; - - if (simplified[i*4+0] == simplified[ni*4+0] && - simplified[i*4+2] == simplified[ni*4+2]) - { - // Degenerate segment, remove. - for (int j = i; j < simplified.size()/4-1; ++j) - { - simplified[j*4+0] = simplified[(j+1)*4+0]; - simplified[j*4+1] = simplified[(j+1)*4+1]; - simplified[j*4+2] = simplified[(j+1)*4+2]; - simplified[j*4+3] = simplified[(j+1)*4+3]; - } - simplified.resize(simplified.size()-4); - } - } -} - static int calcAreaOfPolygon2D(const int* verts, const int nverts) { int area = 0; @@ -507,45 +484,146 @@ static int calcAreaOfPolygon2D(const int* verts, const int nverts) return (area+1) / 2; } -inline bool ileft(const int* a, const int* b, const int* c) +// TODO: these are the same as in RecastMesh.cpp, consider using the same. + +inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } +inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } + +inline int area2(const int* a, const int* b, const int* c) { - return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0; + return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); } -static void getClosestIndices(const int* vertsa, const int nvertsa, - const int* vertsb, const int nvertsb, - int& ia, int& ib) +// Exclusive or: true iff exactly one argument is true. +// The arguments are negated to ensure that they are 0/1 +// values. Then the bitwise Xor operator may apply. +// (This idea is due to Michael Baldwin.) +inline bool xorb(bool x, bool y) { - int closestDist = 0xfffffff; - ia = -1, ib = -1; - for (int i = 0; i < nvertsa; ++i) + return !x ^ !y; +} + +// Returns true iff c is strictly to the left of the directed +// line through a to b. +inline bool left(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) < 0; +} + +inline bool leftOn(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) <= 0; +} + +inline bool collinear(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) == 0; +} + +// Returns true iff ab properly intersects cd: they share +// a point interior to both segments. The properness of the +// intersection is ensured by using strict leftness. +static bool intersectProp(const int* a, const int* b, const int* c, const int* d) +{ + // Eliminate improper cases. + if (collinear(a,b,c) || collinear(a,b,d) || + collinear(c,d,a) || collinear(c,d,b)) + return false; + + return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); +} + +// Returns T iff (a,b,c) are collinear and point c lies +// on the closed segement ab. +static bool between(const int* a, const int* b, const int* c) +{ + if (!collinear(a, b, c)) + return false; + // If ab not vertical, check betweenness on x; else on y. + if (a[0] != b[0]) + return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); + else + return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); +} + +// Returns true iff segments ab and cd intersect, properly or improperly. +static bool intersect(const int* a, const int* b, const int* c, const int* d) +{ + if (intersectProp(a, b, c, d)) + return true; + else if (between(a, b, c) || between(a, b, d) || + between(c, d, a) || between(c, d, b)) + return true; + else + return false; +} + +static bool vequal(const int* a, const int* b) +{ + return a[0] == b[0] && a[2] == b[2]; +} + +static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts) +{ + // For each edge (k,k+1) of P + for (int k = 0; k < n; k++) { - const int in = (i+1) % nvertsa; - const int ip = (i+nvertsa-1) % nvertsa; - const int* va = &vertsa[i*4]; - const int* van = &vertsa[in*4]; - const int* vap = &vertsa[ip*4]; + int k1 = next(k, n); + // Skip edges incident to i. + if (i == k || i == k1) + continue; + const int* p0 = &verts[k * 4]; + const int* p1 = &verts[k1 * 4]; + if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) + continue; + + if (intersect(d0, d1, p0, p1)) + return true; + } + return false; +} + +static bool inCone(int i, int n, const int* verts, const int* pj) +{ + const int* pi = &verts[i * 4]; + const int* pi1 = &verts[next(i, n) * 4]; + const int* pin1 = &verts[prev(i, n) * 4]; + + // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. + if (leftOn(pin1, pi, pi1)) + return left(pi, pj, pin1) && left(pj, pi, pi1); + // Assume (i-1,i,i+1) not collinear. + // else P[i] is reflex. + return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); +} + + +static void removeDegenerateSegments(rcIntArray& simplified) +{ + // Remove adjacent vertices which are equal on xz-plane, + // or else the triangulator will get confused. + int npts = simplified.size()/4; + for (int i = 0; i < npts; ++i) + { + int ni = next(i, npts); - for (int j = 0; j < nvertsb; ++j) + if (vequal(&simplified[i*4], &simplified[ni*4])) { - const int* vb = &vertsb[j*4]; - // vb must be "infront" of va. - if (ileft(vap,va,vb) && ileft(va,van,vb)) + // Degenerate segment, remove. + for (int j = i; j < simplified.size()/4-1; ++j) { - const int dx = vb[0] - va[0]; - const int dz = vb[2] - va[2]; - const int d = dx*dx + dz*dz; - if (d < closestDist) - { - ia = i; - ib = j; - closestDist = d; - } + simplified[j*4+0] = simplified[(j+1)*4+0]; + simplified[j*4+1] = simplified[(j+1)*4+1]; + simplified[j*4+2] = simplified[(j+1)*4+2]; + simplified[j*4+3] = simplified[(j+1)*4+3]; } + simplified.resize(simplified.size()-4); + npts--; } } } + static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) { const int maxVerts = ca.nverts + cb.nverts + 2; @@ -590,6 +668,167 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) return true; } +struct rcContourHole +{ + rcContour* contour; + int minx, minz, leftmost; +}; + +struct rcContourRegion +{ + rcContour* outline; + rcContourHole* holes; + int nholes; +}; + +struct rcPotentialDiagonal +{ + int vert; + int dist; +}; + +// Finds the lowest leftmost vertex of a contour. +static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) +{ + *minx = contour->verts[0]; + *minz = contour->verts[2]; + *leftmost = 0; + for (int i = 1; i < contour->nverts; i++) + { + const int x = contour->verts[i*4+0]; + const int z = contour->verts[i*4+2]; + if (x < *minx || (x == *minx && z < *minz)) + { + *minx = x; + *minz = z; + *leftmost = i; + } + } +} + +static int compareHoles(const void* va, const void* vb) +{ + const rcContourHole* a = (const rcContourHole*)va; + const rcContourHole* b = (const rcContourHole*)vb; + if (a->minx == b->minx) + { + if (a->minz < b->minz) + return -1; + if (a->minz > b->minz) + return 1; + } + else + { + if (a->minx < b->minx) + return -1; + if (a->minx > b->minx) + return 1; + } + return 0; +} + + +static int compareDiagDist(const void* va, const void* vb) +{ + const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; + const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; + if (a->dist < b->dist) + return -1; + if (a->dist > b->dist) + return 1; + return 0; +} + + +static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) +{ + // Sort holes from left to right. + for (int i = 0; i < region.nholes; i++) + findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); + + qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); + + int maxVerts = region.outline->nverts; + for (int i = 0; i < region.nholes; i++) + maxVerts += region.holes[i].contour->nverts; + + rcScopedDelete diags = (rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP); + if (!diags) + { + ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts); + return; + } + + rcContour* outline = region.outline; + + // Merge holes into the outline one by one. + for (int i = 0; i < region.nholes; i++) + { + rcContour* hole = region.holes[i].contour; + + int index = -1; + int bestVertex = region.holes[i].leftmost; + for (int iter = 0; iter < hole->nverts; iter++) + { + // Find potential diagonals. + // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline. + // ..o j-1 + // | + // | * best + // | + // j o-----o j+1 + // : + int ndiags = 0; + const int* corner = &hole->verts[bestVertex*4]; + for (int j = 0; j < outline->nverts; j++) + { + if (inCone(j, outline->nverts, outline->verts, corner)) + { + int dx = outline->verts[j*4+0] - corner[0]; + int dz = outline->verts[j*4+2] - corner[2]; + diags[ndiags].vert = j; + diags[ndiags].dist = dx*dx + dz*dz; + ndiags++; + } + } + // Sort potential diagonals by distance, we want to make the connection as short as possible. + qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); + + // Find a diagonal that is not intersecting the outline not the remaining holes. + index = -1; + for (int j = 0; j < ndiags; j++) + { + const int* pt = &outline->verts[diags[j].vert*4]; + bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts); + for (int k = i; k < region.nholes && !intersect; k++) + intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); + if (!intersect) + { + index = diags[j].vert; + break; + } + } + // If found non-intersecting diagonal, stop looking. + if (index != -1) + break; + // All the potential diagonals for the current vertex were intersecting, try next vertex. + bestVertex = (bestVertex + 1) % hole->nverts; + } + + if (index == -1) + { + ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole); + continue; + } + if (!mergeContours(*region.outline, *hole, index, bestVertex)) + { + ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole); + continue; + } + } +} + + /// @par /// /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen @@ -722,7 +961,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, if (cset.nconts >= maxContours) { // Allocate more contours. - // This can happen when there are tiny holes in the heightfield. + // This happens when a region has holes. const int oldMax = maxContours; maxContours *= 2; rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); @@ -738,7 +977,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); } - + rcContour* cont = &cset.conts[cset.nconts++]; cont->nverts = simplified.size()/4; @@ -779,70 +1018,95 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, } } -/* cont->cx = cont->cy = cont->cz = 0; - for (int i = 0; i < cont->nverts; ++i) - { - cont->cx += cont->verts[i*4+0]; - cont->cy += cont->verts[i*4+1]; - cont->cz += cont->verts[i*4+2]; - } - cont->cx /= cont->nverts; - cont->cy /= cont->nverts; - cont->cz /= cont->nverts;*/ - cont->reg = reg; cont->area = area; } } } } - - // Check and merge droppings. - // Sometimes the previous algorithms can fail and create several contours - // per area. This pass will try to merge the holes into the main region. - for (int i = 0; i < cset.nconts; ++i) + + // Merge holes if needed. + if (cset.nconts > 0) { - rcContour& cont = cset.conts[i]; - // Check if the contour is would backwards. - if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0) + // Calculate winding of all polygons. + rcScopedDelete winding = (char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP); + if (!winding) { - // Find another contour which has the same region ID. - int mergeIdx = -1; - for (int j = 0; j < cset.nconts; ++j) + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); + return false; + } + int nholes = 0; + for (int i = 0; i < cset.nconts; ++i) + { + rcContour& cont = cset.conts[i]; + // If the contour is wound backwards, it is a hole. + winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; + if (winding[i] < 0) + nholes++; + } + + if (nholes > 0) + { + // Collect outline contour and holes contours per region. + // We assume that there is one outline and multiple holes. + const int nregions = chf.maxRegions+1; + rcScopedDelete regions = (rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP); + if (!regions) { - if (i == j) continue; - if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg) + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); + return false; + } + memset(regions, 0, sizeof(rcContourRegion)*nregions); + + rcScopedDelete holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP); + if (!holes) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); + return false; + } + memset(holes, 0, sizeof(rcContourHole)*cset.nconts); + + for (int i = 0; i < cset.nconts; ++i) + { + rcContour& cont = cset.conts[i]; + // Positively would contours are outlines, negative holes. + if (winding[i] > 0) { - // Make sure the polygon is correctly oriented. - if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts)) - { - mergeIdx = j; - break; - } + if (regions[cont.reg].outline) + ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); + regions[cont.reg].outline = &cont; + } + else + { + regions[cont.reg].nholes++; } } - if (mergeIdx == -1) + int index = 0; + for (int i = 0; i < nregions; i++) { - ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i); + if (regions[i].nholes > 0) + { + regions[i].holes = &holes[index]; + index += regions[i].nholes; + regions[i].nholes = 0; + } } - else + for (int i = 0; i < cset.nconts; ++i) { - rcContour& mcont = cset.conts[mergeIdx]; - // Merge by closest points. - int ia = 0, ib = 0; - getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib); - if (ia == -1 || ib == -1) - { - ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx); - continue; - } - if (!mergeContours(mcont, cont, ia, ib)) - { - ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx); - continue; - } + rcContour& cont = cset.conts[i]; + rcContourRegion& reg = regions[cont.reg]; + if (winding[i] < 0) + reg.holes[reg.nholes++].contour = &cont; + } + + // Finally merge each regions holes into the outline. + for (int i = 0; i < nregions; i++) + { + if (regions[i].nholes > 0) + mergeRegionHoles(ctx, regions[i]); } } + } ctx->stopTimer(RC_TIMER_BUILD_CONTOURS); diff --git a/Recast/Source/RecastLayers.cpp b/Recast/Source/RecastLayers.cpp index 204f72e..cb1a39f 100644 --- a/Recast/Source/RecastLayers.cpp +++ b/Recast/Source/RecastLayers.cpp @@ -38,7 +38,7 @@ struct rcLayerRegion unsigned char layerId; // Layer ID unsigned char nlayers; // Layer count unsigned char nneis; // Neighbour count - unsigned char base; // Flag indicating if the region is hte base of merged regions. + unsigned char base; // Flag indicating if the region is the base of merged regions. }; diff --git a/Recast/Source/RecastMesh.cpp b/Recast/Source/RecastMesh.cpp index 8af609b..dffd450 100644 --- a/Recast/Source/RecastMesh.cpp +++ b/Recast/Source/RecastMesh.cpp @@ -288,6 +288,53 @@ static bool diagonal(int i, int j, int n, const int* verts, int* indices) return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices); } + +static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices) +{ + const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; + const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; + + // For each edge (k,k+1) of P + for (int k = 0; k < n; k++) + { + int k1 = next(k, n); + // Skip edges incident to i or j + if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) + { + const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; + const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; + + if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) + continue; + + if (intersectProp(d0, d1, p0, p1)) + return false; + } + } + return true; +} + +static bool inConeLoose(int i, int j, int n, const int* verts, int* indices) +{ + const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; + const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; + const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; + const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; + + // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. + if (leftOn(pin1, pi, pi1)) + return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1); + // Assume (i-1,i,i+1) not collinear. + // else P[i] is reflex. + return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); +} + +static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices) +{ + return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices); +} + + static int triangulate(int n, const int* verts, int* indices, int* tris) { int ntris = 0; @@ -328,14 +375,41 @@ static int triangulate(int n, const int* verts, int* indices, int* tris) if (mini == -1) { - // Should not happen. -/* printf("mini == -1 ntris=%d n=%d\n", ntris, n); + // We might get here because the contour has overlapping segments, like this: + // + // A o-o=====o---o B + // / |C D| \ + // o o o o + // : : : : + // We'll try to recover by loosing up the inCone test a bit so that a diagonal + // like A-B or C-D can be found and we can continue. + minLen = -1; + mini = -1; for (int i = 0; i < n; i++) { - printf("%d ", indices[i] & 0x0fffffff); + int i1 = next(i, n); + int i2 = next(i1, n); + if (diagonalLoose(i, i2, n, verts, indices)) + { + const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; + const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4]; + int dx = p2[0] - p0[0]; + int dy = p2[2] - p0[2]; + int len = dx*dx + dy*dy; + + if (minLen < 0 || len < minLen) + { + minLen = len; + mini = i; + } + } + } + if (mini == -1) + { + // The contour is messed up. This sometimes happens + // if the contour simplification is too aggressive. + return -ntris; } - printf("\n");*/ - return -ntris; } int i = mini; diff --git a/Recast/Source/RecastMeshDetail.cpp b/Recast/Source/RecastMeshDetail.cpp index 8325b88..431952f 100644 --- a/Recast/Source/RecastMeshDetail.cpp +++ b/Recast/Source/RecastMeshDetail.cpp @@ -489,6 +489,99 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts, } } +// Calculate minimum extend of the polygon. +static float polyMinExtent(const float* verts, const int nverts) +{ + float minDist = FLT_MAX; + for (int i = 0; i < nverts; i++) + { + const int ni = (i+1) % nverts; + const float* p1 = &verts[i*3]; + const float* p2 = &verts[ni*3]; + float maxEdgeDist = 0; + for (int j = 0; j < nverts; j++) + { + if (j == i || j == ni) continue; + float d = distancePtSeg2d(&verts[j*3], p1,p2); + maxEdgeDist = rcMax(maxEdgeDist, d); + } + minDist = rcMin(minDist, maxEdgeDist); + } + return rcSqrt(minDist); +} + +inline int next(int i, int n) +{ + return (i+1) % n; +} + +inline int prev(int i, int n) +{ + return (i + n-1) % n; +} + +static void triangulateHull(const int nverts, const float* verts, const int nhull, const int* hull, rcIntArray& tris) +{ + int start = 0, left = 1, right = nhull-1; + + // Start from shortest ear. + float dmin = FLT_MAX; + for (int i = 0; i < nhull; i++) + { + int pi = prev(i, nhull); + int ni = next(i, nhull); + const float* pv = &verts[hull[pi]*3]; + const float* nv = &verts[hull[ni]*3]; + const float d = vdistSq2(pv, nv); + if (d < dmin) + { + start = i; + left = ni; + right = pi; + dmin = d; + } + } + + // Add first triangle + tris.push(hull[start]); + tris.push(hull[left]); + tris.push(hull[right]); + tris.push(0); + + // Triangulate the polygon by adding the shortest diagonal + // by moving left or right. + while (next(left, nhull) != right) + { + // Check to see if se should advance left or right. + int nleft = next(left, nhull); + int nright = prev(right, nhull); + + const float* cvleft = &verts[hull[left]*3]; + const float* nvleft = &verts[hull[nleft]*3]; + const float* cvright = &verts[hull[right]*3]; + const float* nvright = &verts[hull[nright]*3]; + + const float dleft = vdistSq2(nvleft, cvright); + const float dright = vdistSq2(cvleft, nvright); + if (dleft < dright) + { + tris.push(hull[left]); + tris.push(hull[nleft]); + tris.push(hull[right]); + tris.push(0); + left = nleft; + } + else + { + tris.push(hull[left]); + tris.push(hull[nright]); + tris.push(hull[right]); + tris.push(0); + right = nright; + } + } +} + inline float getJitterX(const int i) { @@ -518,9 +611,15 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, for (int i = 0; i < nin; ++i) rcVcopy(&verts[i*3], &in[i*3]); nverts = nin; - + + edges.resize(0); + tris.resize(0); + const float cs = chf.cs; const float ics = 1.0f/cs; + + // Calculate minimum extents of the polygon based on input data. + float minExtent = polyMinExtent(verts, nverts); // Tessellate outlines. // This is done in separate pass in order to ensure @@ -627,25 +726,24 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, } } } - + + // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points. + if (minExtent < sampleDist*2) + { + triangulateHull(nverts, verts, nhull, hull, tris); + return true; + } // Tessellate the base mesh. - edges.resize(0); - tris.resize(0); - - delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); - + // We're using the triangulateHull instead of delaunayHull as it tends to + // create a bit better triangulation for long thing triangles when there + // are no internal points. + triangulateHull(nverts, verts, nhull, hull, tris); + if (tris.size() == 0) { // Could not triangulate the poly, make sure there is some valid data there. - ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon, adding default data."); - for (int i = 2; i < nverts; ++i) - { - tris.push(0); - tris.push(i-1); - tris.push(i); - tris.push(0); - } + ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts); return true; } diff --git a/Recast/Source/RecastRegion.cpp b/Recast/Source/RecastRegion.cpp index 589fac2..38bc4ff 100644 --- a/Recast/Source/RecastRegion.cpp +++ b/Recast/Source/RecastRegion.cpp @@ -315,6 +315,7 @@ static bool floodRegion(int x, int y, int i, srcReg[ci] = 0; continue; } + count++; // Expand neighbours. @@ -516,7 +517,11 @@ struct rcRegion id(i), areaType(0), remap(false), - visited(false) + visited(false), + overlap(false), + connectsToBorder(false), + ymin(0xffff), + ymax(0) {} int spanCount; // Number of spans belonging to this region @@ -524,6 +529,9 @@ struct rcRegion unsigned char areaType; // Are type. bool remap; bool visited; + bool overlap; + bool connectsToBorder; + unsigned short ymin, ymax; rcIntArray connections; rcIntArray floors; }; @@ -768,10 +776,11 @@ static void walkContour(int x, int y, int i, int dir, } } -static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, - unsigned short& maxRegionId, - rcCompactHeightfield& chf, - unsigned short* srcReg) + +static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, + unsigned short& maxRegionId, + rcCompactHeightfield& chf, + unsigned short* srcReg, rcIntArray& overlaps) { const int w = chf.width; const int h = chf.height; @@ -780,7 +789,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP); if (!regions) { - ctx->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg); + ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg); return false; } @@ -803,7 +812,6 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio rcRegion& reg = regions[r]; reg.spanCount++; - // Update floors. for (int j = (int)c.index; j < ni; ++j) { @@ -811,6 +819,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio unsigned short floorId = srcReg[j]; if (floorId == 0 || floorId >= nreg) continue; + if (floorId == r) + reg.overlap = true; addUniqueFloorRegion(reg, floorId); } @@ -906,7 +916,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio } } } - + // Merge too small regions to neighbour regions. int mergeCount = 0 ; do @@ -916,7 +926,9 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) - continue; + continue; + if (reg.overlap) + continue; if (reg.spanCount == 0) continue; @@ -933,7 +945,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio { if (reg.connections[j] & RC_BORDER_REG) continue; rcRegion& mreg = regions[reg.connections[j]]; - if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue; + if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue; if (mreg.spanCount < smallest && canMergeWithRegion(reg, mreg) && canMergeWithRegion(mreg, reg)) @@ -997,6 +1009,224 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio } maxRegionId = regIdGen; + // Remap regions. + for (int i = 0; i < chf.spanCount; ++i) + { + if ((srcReg[i] & RC_BORDER_REG) == 0) + srcReg[i] = regions[srcReg[i]].id; + } + + // Return regions that we found to be overlapping. + for (int i = 0; i < nreg; ++i) + if (regions[i].overlap) + overlaps.push(regions[i].id); + + for (int i = 0; i < nreg; ++i) + regions[i].~rcRegion(); + rcFree(regions); + + + return true; +} + + +static void addUniqueConnection(rcRegion& reg, int n) +{ + for (int i = 0; i < reg.connections.size(); ++i) + if (reg.connections[i] == n) + return; + reg.connections.push(n); +} + +static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea, + unsigned short& maxRegionId, + rcCompactHeightfield& chf, + unsigned short* srcReg, rcIntArray& overlaps) +{ + const int w = chf.width; + const int h = chf.height; + + const int nreg = maxRegionId+1; + rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP); + if (!regions) + { + ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg); + return false; + } + + // Construct regions + for (int i = 0; i < nreg; ++i) + new(®ions[i]) rcRegion((unsigned short)i); + + // Find region neighbours and overlapping regions. + rcIntArray lregs(32); + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + lregs.resize(0); + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + const unsigned short ri = srcReg[i]; + if (ri == 0 || ri >= nreg) continue; + rcRegion& reg = regions[ri]; + + reg.spanCount++; + + reg.ymin = rcMin(reg.ymin, s.y); + reg.ymax = rcMax(reg.ymax, s.y); + + // Collect all region layers. + lregs.push(ri); + + // Update neighbours + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + const unsigned short rai = srcReg[ai]; + if (rai > 0 && rai < nreg && rai != ri) + addUniqueConnection(reg, rai); + if (rai & RC_BORDER_REG) + reg.connectsToBorder = true; + } + } + + } + + // Update overlapping regions. + for (int i = 0; i < lregs.size()-1; ++i) + { + for (int j = i+1; j < lregs.size(); ++j) + { + if (lregs[i] != lregs[j]) + { + rcRegion& ri = regions[lregs[i]]; + rcRegion& rj = regions[lregs[j]]; + addUniqueFloorRegion(ri, lregs[j]); + addUniqueFloorRegion(rj, lregs[i]); + } + } + } + + } + } + + // Create 2D layers from regions. + unsigned short layerId = 1; + + for (int i = 0; i < nreg; ++i) + regions[i].id = 0; + + // Merge montone regions to create non-overlapping areas. + rcIntArray stack(32); + for (int i = 1; i < nreg; ++i) + { + rcRegion& root = regions[i]; + // Skip already visited. + if (root.id != 0) + continue; + + // Start search. + root.id = layerId; + + stack.resize(0); + stack.push(i); + + while (stack.size() > 0) + { + // Pop front + rcRegion& reg = regions[stack[0]]; + for (int j = 0; j < stack.size()-1; ++j) + stack[j] = stack[j+1]; + stack.resize(stack.size()-1); + + const int ncons = (int)reg.connections.size(); + for (int j = 0; j < ncons; ++j) + { + const int nei = reg.connections[j]; + rcRegion& regn = regions[nei]; + // Skip already visited. + if (regn.id != 0) + continue; + // Skip if the neighbour is overlapping root region. + bool overlap = false; + for (int k = 0; k < root.floors.size(); k++) + { + if (root.floors[k] == nei) + { + overlap = true; + break; + } + } + if (overlap) + continue; + + // Deepen + stack.push(nei); + + // Mark layer id + regn.id = layerId; + // Merge current layers to root. + for (int k = 0; k < regn.floors.size(); ++k) + addUniqueFloorRegion(root, regn.floors[k]); + root.ymin = rcMin(root.ymin, regn.ymin); + root.ymax = rcMax(root.ymax, regn.ymax); + root.spanCount += regn.spanCount; + regn.spanCount = 0; + root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder; + } + } + + layerId++; + } + + // Remove small regions + for (int i = 0; i < nreg; ++i) + { + if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder) + { + unsigned short reg = regions[i].id; + for (int j = 0; j < nreg; ++j) + if (regions[j].id == reg) + regions[j].id = 0; + } + } + + // Compress region Ids. + for (int i = 0; i < nreg; ++i) + { + regions[i].remap = false; + if (regions[i].id == 0) continue; // Skip nil regions. + if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. + regions[i].remap = true; + } + + unsigned short regIdGen = 0; + for (int i = 0; i < nreg; ++i) + { + if (!regions[i].remap) + continue; + unsigned short oldId = regions[i].id; + unsigned short newId = ++regIdGen; + for (int j = i; j < nreg; ++j) + { + if (regions[j].id == oldId) + { + regions[j].id = newId; + regions[j].remap = false; + } + } + } + maxRegionId = regIdGen; + // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { @@ -1011,6 +1241,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio return true; } + + /// @par /// /// This is usually the second to the last step in creating a fully built @@ -1256,13 +1488,17 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, } } + ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER); - // Filter out small regions. + // Merge regions and filter out small regions. + rcIntArray overlaps; chf.maxRegions = id; - if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg)) + if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) return false; + // Monotone partitioning does not generate overlapping regions. + ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER); // Store the result out. @@ -1407,11 +1643,18 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER); - // Filter out small regions. + // Merge regions and filter out smalle regions. + rcIntArray overlaps; chf.maxRegions = regionId; - if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg)) + if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) return false; - + + // If overlapping regions were found during merging, split those regions. + if (overlaps.size() > 0) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size()); + } + ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER); // Write the result out. @@ -1424,3 +1667,157 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, } +bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, + const int borderSize, const int minRegionArea) +{ + rcAssert(ctx); + + ctx->startTimer(RC_TIMER_BUILD_REGIONS); + + const int w = chf.width; + const int h = chf.height; + unsigned short id = 1; + + rcScopedDelete srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); + if (!srcReg) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount); + return false; + } + memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); + + const int nsweeps = rcMax(chf.width,chf.height); + rcScopedDelete sweeps = (rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP); + if (!sweeps) + { + ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps); + return false; + } + + + // Mark border regions. + if (borderSize > 0) + { + // Make sure border will not overflow. + const int bw = rcMin(w, borderSize); + const int bh = rcMin(h, borderSize); + // Paint regions + paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; + paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; + + chf.borderSize = borderSize; + } + + rcIntArray prev(256); + + // Sweep one line at a time. + for (int y = borderSize; y < h-borderSize; ++y) + { + // Collect spans from this row. + prev.resize(id+1); + memset(&prev[0],0,sizeof(int)*id); + unsigned short rid = 1; + + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + if (chf.areas[i] == RC_NULL_AREA) continue; + + // -x + unsigned short previd = 0; + if (rcGetCon(s, 0) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(0); + const int ay = y + rcGetDirOffsetY(0); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); + if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + previd = srcReg[ai]; + } + + if (!previd) + { + previd = rid++; + sweeps[previd].rid = previd; + sweeps[previd].ns = 0; + sweeps[previd].nei = 0; + } + + // -y + if (rcGetCon(s,3) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(3); + const int ay = y + rcGetDirOffsetY(3); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); + if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) + { + unsigned short nr = srcReg[ai]; + if (!sweeps[previd].nei || sweeps[previd].nei == nr) + { + sweeps[previd].nei = nr; + sweeps[previd].ns++; + prev[nr]++; + } + else + { + sweeps[previd].nei = RC_NULL_NEI; + } + } + } + + srcReg[i] = previd; + } + } + + // Create unique ID. + for (int i = 1; i < rid; ++i) + { + if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && + prev[sweeps[i].nei] == (int)sweeps[i].ns) + { + sweeps[i].id = sweeps[i].nei; + } + else + { + sweeps[i].id = id++; + } + } + + // Remap IDs + for (int x = borderSize; x < w-borderSize; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (srcReg[i] > 0 && srcReg[i] < rid) + srcReg[i] = sweeps[srcReg[i]].id; + } + } + } + + + ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER); + + // Merge monotone regions to layers and remove small regions. + rcIntArray overlaps; + chf.maxRegions = id; + if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps)) + return false; + + ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER); + + + // Store the result out. + for (int i = 0; i < chf.spanCount; ++i) + chf.spans[i].reg = srcReg[i]; + + ctx->stopTimer(RC_TIMER_BUILD_REGIONS); + + return true; +} diff --git a/RecastDemo/Include/Sample.h b/RecastDemo/Include/Sample.h index 827ecbb..1f058fc 100644 --- a/RecastDemo/Include/Sample.h +++ b/RecastDemo/Include/Sample.h @@ -59,6 +59,13 @@ enum SamplePolyFlags SAMPLE_POLYFLAGS_ALL = 0xffff // All abilities. }; +enum SamplePartitionType +{ + SAMPLE_PARTITION_WATERSHED, + SAMPLE_PARTITION_MONOTONE, + SAMPLE_PARTITION_LAYERS, +}; + struct SampleTool { virtual ~SampleTool() {} @@ -101,12 +108,12 @@ protected: float m_agentMaxSlope; float m_regionMinSize; float m_regionMergeSize; - bool m_monotonePartitioning; float m_edgeMaxLen; float m_edgeMaxError; float m_vertsPerPoly; float m_detailSampleDist; float m_detailSampleMaxError; + int m_partitionType; SampleTool* m_tool; SampleToolState* m_toolStates[MAX_TOOLS]; diff --git a/RecastDemo/Source/Sample.cpp b/RecastDemo/Source/Sample.cpp index 6743e7d..4e01528 100644 --- a/RecastDemo/Source/Sample.cpp +++ b/RecastDemo/Source/Sample.cpp @@ -129,12 +129,12 @@ void Sample::resetCommonSettings() m_agentMaxSlope = 45.0f; m_regionMinSize = 8; m_regionMergeSize = 20; - m_monotonePartitioning = false; m_edgeMaxLen = 12.0f; m_edgeMaxError = 1.3f; m_vertsPerPoly = 6.0f; m_detailSampleDist = 6.0f; m_detailSampleMaxError = 1.0f; + m_partitionType = SAMPLE_PARTITION_WATERSHED; } void Sample::handleCommonSettings() @@ -165,8 +165,15 @@ void Sample::handleCommonSettings() imguiLabel("Region"); imguiSlider("Min Region Size", &m_regionMinSize, 0.0f, 150.0f, 1.0f); imguiSlider("Merged Region Size", &m_regionMergeSize, 0.0f, 150.0f, 1.0f); - if (imguiCheck("Monotore Partitioning", m_monotonePartitioning)) - m_monotonePartitioning = !m_monotonePartitioning; + + imguiSeparator(); + imguiLabel("Partitioning"); + if (imguiCheck("Watershed", m_partitionType == SAMPLE_PARTITION_WATERSHED)) + m_partitionType = SAMPLE_PARTITION_WATERSHED; + if (imguiCheck("Monotone", m_partitionType == SAMPLE_PARTITION_MONOTONE)) + m_partitionType = SAMPLE_PARTITION_MONOTONE; + if (imguiCheck("Layers", m_partitionType == SAMPLE_PARTITION_LAYERS)) + m_partitionType = SAMPLE_PARTITION_LAYERS; imguiSeparator(); imguiLabel("Polygonization"); diff --git a/RecastDemo/Source/Sample_SoloMesh.cpp b/RecastDemo/Source/Sample_SoloMesh.cpp index 73fb61d..7056857 100644 --- a/RecastDemo/Source/Sample_SoloMesh.cpp +++ b/RecastDemo/Source/Sample_SoloMesh.cpp @@ -494,18 +494,35 @@ bool Sample_SoloMesh::handleBuild() const ConvexVolume* vols = m_geom->getConvexVolumes(); for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); + - if (m_monotonePartitioning) - { - // Partition the walkable surface into simple regions without holes. - // Monotone partitioning does not need distancefield. - if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) - { - m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); - return false; - } - } - else + // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas. + // There are 3 martitioning methods, each with some pros and cons: + // 1) Watershed partitioning + // - the classic Recast partitioning + // - creates the nicest tessellation + // - usually slowest + // - partitions the heightfield into nice regions without holes or overlaps + // - the are some corner cases where this method creates produces holes and overlaps + // - holes may appear when a small obstacles is close to large open area (triangulation can handle this) + // - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail + // * generally the best choice if you precompute the nacmesh, use this if you have large open areas + // 2) Monotone partioning + // - fastest + // - partitions the heightfield into regions without holes and overlaps (guaranteed) + // - creates long thin polygons, which sometimes causes paths with detours + // * use this if you want fast navmesh generation + // 3) Layer partitoining + // - quite fast + // - partitions the heighfield into non-overlapping regions + // - relies on the triangulation code to cope with holes (thus slower than monotone partitioning) + // - produces better triangles than monotone partitioning + // - does not have the corner cases of watershed partitioning + // - can be slow and create a bit ugly tessellation (still better than monotone) + // if you have large open areas with small obstacles (not a problem if you use tiles) + // * good choice to use for tiled navmesh with medium and small sized tiles + + if (m_partitionType == SAMPLE_PARTITION_WATERSHED) { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) @@ -513,15 +530,34 @@ bool Sample_SoloMesh::handleBuild() m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); return false; } - + // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { - m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions."); return false; } } - + else if (m_partitionType == SAMPLE_PARTITION_MONOTONE) + { + // Partition the walkable surface into simple regions without holes. + // Monotone partitioning does not need distancefield. + if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) + { + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions."); + return false; + } + } + else // SAMPLE_PARTITION_LAYERS + { + // Partition the walkable surface into simple regions without holes. + if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea)) + { + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions."); + return false; + } + } + // // Step 5. Trace and simplify region contours. // diff --git a/RecastDemo/Source/Sample_TileMesh.cpp b/RecastDemo/Source/Sample_TileMesh.cpp index 3c75dba..0d4c935 100644 --- a/RecastDemo/Source/Sample_TileMesh.cpp +++ b/RecastDemo/Source/Sample_TileMesh.cpp @@ -72,14 +72,12 @@ class NavMeshTileTool : public SampleTool Sample_TileMesh* m_sample; float m_hitPos[3]; bool m_hitPosSet; - float m_agentRadius; public: NavMeshTileTool() : m_sample(0), - m_hitPosSet(false), - m_agentRadius(0) + m_hitPosSet(false) { m_hitPos[0] = m_hitPos[1] = m_hitPos[2] = 0; } @@ -1048,32 +1046,69 @@ unsigned char* Sample_TileMesh::buildTileMesh(const int tx, const int ty, const for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i) rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf); - if (m_monotonePartitioning) - { - // Partition the walkable surface into simple regions without holes. - if (!rcBuildRegionsMonotone(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) - { - m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); - return 0; - } - } - else + + // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas. + // There are 3 martitioning methods, each with some pros and cons: + // 1) Watershed partitioning + // - the classic Recast partitioning + // - creates the nicest tessellation + // - usually slowest + // - partitions the heightfield into nice regions without holes or overlaps + // - the are some corner cases where this method creates produces holes and overlaps + // - holes may appear when a small obstacles is close to large open area (triangulation can handle this) + // - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail + // * generally the best choice if you precompute the nacmesh, use this if you have large open areas + // 2) Monotone partioning + // - fastest + // - partitions the heightfield into regions without holes and overlaps (guaranteed) + // - creates long thin polygons, which sometimes causes paths with detours + // * use this if you want fast navmesh generation + // 3) Layer partitoining + // - quite fast + // - partitions the heighfield into non-overlapping regions + // - relies on the triangulation code to cope with holes (thus slower than monotone partitioning) + // - produces better triangles than monotone partitioning + // - does not have the corner cases of watershed partitioning + // - can be slow and create a bit ugly tessellation (still better than monotone) + // if you have large open areas with small obstacles (not a problem if you use tiles) + // * good choice to use for tiled navmesh with medium and small sized tiles + + if (m_partitionType == SAMPLE_PARTITION_WATERSHED) { // Prepare for region partitioning, by calculating distance field along the walkable surface. if (!rcBuildDistanceField(m_ctx, *m_chf)) { m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field."); - return 0; + return false; } // Partition the walkable surface into simple regions without holes. if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) { - m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions."); - return 0; + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions."); + return false; } } - + else if (m_partitionType == SAMPLE_PARTITION_MONOTONE) + { + // Partition the walkable surface into simple regions without holes. + // Monotone partitioning does not need distancefield. + if (!rcBuildRegionsMonotone(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) + { + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions."); + return false; + } + } + else // SAMPLE_PARTITION_LAYERS + { + // Partition the walkable surface into simple regions without holes. + if (!rcBuildLayerRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea)) + { + m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions."); + return false; + } + } + // Create contours. m_cset = rcAllocContourSet(); if (!m_cset)