Add homebrewed rcVector class and tests, and use it to implement rcIntArray. (#318)

This implements most of the std::vector interface, with some minor elisions of
infrequently used methods such as "insert", and some STL bookkeeping.
Performance is favorable compared to std::vector, and, in some cases, somewhat
better than naive code to manually manage a malloc'd dynamic array.

BM_FlatArray_Push:                     100 iterations in   72889721 nanos:  728897.21 nanos/it
BM_FlatArray_Fill:                     100 iterations in    2700746 nanos:   27007.46 nanos/it
BM_FlatArray_Memset:                   100 iterations in    2687810 nanos:   26878.10 nanos/it
BM_rcVector_Push:                      100 iterations in   51114316 nanos:  511143.16 nanos/it
BM_rcVector_PushPreallocated:          100 iterations in    9532106 nanos:   95321.06 nanos/it
BM_rcVector_Assign:                    100 iterations in    2371534 nanos:   23715.34 nanos/it
BM_rcVector_AssignIndices:             100 iterations in    2573052 nanos:   25730.52 nanos/it
BM_rcVector_Resize:                    100 iterations in    2455761 nanos:   24557.61 nanos/it
BM_stdvector_Push:                     100 iterations in   71739167 nanos:  717391.67 nanos/it
BM_stdvector_PushPreallocated:         100 iterations in   15723737 nanos:  157237.37 nanos/it
BM_stdvector_Assign:                   100 iterations in    2564985 nanos:   25649.85 nanos/it
BM_stdvector_AssignIndices:            100 iterations in    5174923 nanos:   51749.23 nanos/it
BM_stdvector_Resize:                   100 iterations in    2520054 nanos:   25200.54 nanos/it
This commit is contained in:
mbabinski-at-google 2018-05-13 09:22:56 -05:00 committed by Jakob Botsch Nielsen
parent 18562383f4
commit fa7debb0c3
3 changed files with 637 additions and 77 deletions

View File

@ -20,6 +20,9 @@
#define RECASTALLOC_H #define RECASTALLOC_H
#include <stddef.h> #include <stddef.h>
#include <stdint.h>
#include <RecastAssert.h>
/// Provides hint values to the memory allocator on how long the /// Provides hint values to the memory allocator on how long the
/// memory is expected to be used. /// memory is expected to be used.
@ -58,64 +61,247 @@ void* rcAlloc(size_t size, rcAllocHint hint);
/// @see rcAlloc /// @see rcAlloc
void rcFree(void* ptr); void rcFree(void* ptr);
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
/// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast
/// and STL.
struct rcNewTag {};
inline void* operator new(size_t, const rcNewTag&, void* p) { return p; }
/// A simple dynamic array of integers. /// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero.
/// MSVC2010 has a bug where ssize_t is unsigned (!!!).
typedef intptr_t rcSizeType;
#define RC_SIZE_MAX INTPTR_MAX
/// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance
/// improvement before intrudcing use cases.
#if defined(__GNUC__) || defined(__clang__)
#define rcLikely(x) __builtin_expect((x), true)
#define rcUnlikely(x) __builtin_expect((x), false)
#else
#define rcLikely(x) (x)
#define rcUnlikely(x) (x)
#endif
/// Variable-sized storage type. Mimics the interface of std::vector<T> with some notable differences:
/// * Uses rcAlloc()/rcFree() to handle storage.
/// * No support for a custom allocator.
/// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)"
/// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=.
/// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided.
/// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not.
/// * No specialization for bool.
template <typename T, rcAllocHint H>
class rcVectorBase {
rcSizeType m_size;
rcSizeType m_cap;
T* m_data;
// Constructs a T at the give address with either the copy constructor or the default.
static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); }
static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; }
static void construct_range(T* begin, T* end);
static void construct_range(T* begin, T* end, const T& value);
static void copy_range(T* dst, const T* begin, const T* end);
void destroy_range(rcSizeType begin, rcSizeType end);
// Creates an array of the given size, copies all of this vector's data into it, and returns it.
T* allocate_and_copy(rcSizeType size);
void resize_impl(rcSizeType size, const T* value);
public:
typedef rcSizeType size_type;
typedef T value_type;
rcVectorBase() : m_size(0), m_cap(0), m_data(0) {};
rcVectorBase(const rcVectorBase<T, H>& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); }
explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); }
rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); }
rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); }
~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); }
void reserve(rcSizeType size);
void assign(rcSizeType count, const T& value) { clear(); resize(count, value); }
void assign(const T* begin, const T* end);
void resize(rcSizeType size) { resize_impl(size, NULL); }
void resize(rcSizeType size, const T& value) { resize_impl(size, &value); }
void push_back(const T& value);
void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; }
void clear() { resize(0); }
rcSizeType size() const { return m_size; }
rcSizeType capacity() const { return m_cap; }
bool empty() const { return size() == 0; }
const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; }
const T& front() const { rcAssert(m_size); return m_data[0]; }
T& front() { rcAssert(m_size); return m_data[0]; }
const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; };
T& back() { rcAssert(m_size); return m_data[m_size - 1]; };
const T* data() const { return m_data; }
T* data() { return m_data; }
T* begin() { return m_data; }
T* end() { return m_data + m_size; }
const T* begin() const { return m_data; }
const T* end() const { return m_data + m_size; }
void swap(rcVectorBase<T, H>& other);
// Explicitly deleted.
rcVectorBase& operator=(const rcVectorBase<T, H>& other);
};
template<typename T, rcAllocHint H>
void rcVectorBase<T, H>::reserve(rcSizeType count) {
if (count <= m_cap) {
return;
}
T* new_data = allocate_and_copy(count);
destroy_range(0, m_size);
rcFree(m_data);
m_data = new_data;
m_cap = count;
}
template <typename T, rcAllocHint H>
T* rcVectorBase<T, H>::allocate_and_copy(rcSizeType size) {
rcAssert(RC_SIZE_MAX / sizeof(T) >= size);
T* new_data = static_cast<T*>(rcAlloc(sizeof(T) * size, H));
copy_range(new_data, m_data, m_data + m_size);
return new_data;
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::assign(const T* begin, const T* end) {
clear();
reserve(end - begin);
m_size = end - begin;
copy_range(m_data, begin, end);
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::push_back(const T& value) {
// rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated,
// and by ~2-5% on BM_rcVector_Push.
if (rcLikely(m_size < m_cap)) {
construct(m_data + m_size++, value);
return;
}
rcAssert(RC_SIZE_MAX / 2 >= m_size);
rcSizeType new_cap = m_size ? 2*m_size : 1;
T* data = allocate_and_copy(new_cap);
// construct between allocate and destroy+free in case value is
// in this vector.
construct(data + m_size, value);
destroy_range(0, m_size);
m_size++;
m_cap = new_cap;
rcFree(m_data);
m_data = data;
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::resize_impl(rcSizeType size, const T* value) {
if (size < m_size) {
destroy_range(size, m_size);
m_size = size;
} else if (size > m_size) {
T* new_data = allocate_and_copy(size);
// We defer deconstructing/freeing old data until after constructing
// new elements in case "value" is there.
if (value) {
construct_range(new_data + m_size, new_data + size, *value);
} else {
construct_range(new_data + m_size, new_data + size);
}
destroy_range(0, m_size);
rcFree(m_data);
m_data = new_data;
m_cap = size;
m_size = size;
}
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::swap(rcVectorBase<T, H>& other) {
// TODO: Reorganize headers so we can use rcSwap here.
rcSizeType tmp_cap = other.m_cap;
rcSizeType tmp_size = other.m_size;
T* tmp_data = other.m_data;
other.m_cap = m_cap;
other.m_size = m_size;
other.m_data = m_data;
m_cap = tmp_cap;
m_size = tmp_size;
m_data = tmp_data;
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::construct_range(T* begin, T* end) {
for (T* p = begin; p < end; p++) {
construct(p);
}
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::construct_range(T* begin, T* end, const T& value) {
for (T* p = begin; p < end; p++) {
construct(p, value);
}
}
// static
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::copy_range(T* dst, const T* begin, const T* end) {
for (rcSizeType i = 0 ; i < end - begin; i++) {
construct(dst + i, begin[i]);
}
}
template <typename T, rcAllocHint H>
void rcVectorBase<T, H>::destroy_range(rcSizeType begin, rcSizeType end) {
for (rcSizeType i = begin; i < end; i++) {
m_data[i].~T();
}
}
template <typename T>
class rcTempVector : public rcVectorBase<T, RC_ALLOC_TEMP> {
typedef rcVectorBase<T, RC_ALLOC_TEMP> Base;
public:
rcTempVector() : Base() {}
explicit rcTempVector(rcSizeType size) : Base(size) {}
rcTempVector(rcSizeType size, const T& value) : Base(size, value) {}
rcTempVector(const rcTempVector<T>& other) : Base(other) {}
rcTempVector(const T* begin, const T* end) : Base(begin, end) {}
};
template <typename T>
class rcPermVector : public rcVectorBase<T, RC_ALLOC_PERM> {
typedef rcVectorBase<T, RC_ALLOC_PERM> Base;
public:
rcPermVector() : Base() {}
explicit rcPermVector(rcSizeType size) : Base(size) {}
rcPermVector(rcSizeType size, const T& value) : Base(size, value) {}
rcPermVector(const rcPermVector<T>& other) : Base(other) {}
rcPermVector(const T* begin, const T* end) : Base(begin, end) {}
};
/// Legacy class. Prefer rcVector<int>.
class rcIntArray class rcIntArray
{ {
int* m_data; rcTempVector<int> m_impl;
int m_size, m_cap;
void doResize(int n);
// Explicitly disabled copy constructor and copy assignment operator.
rcIntArray(const rcIntArray&);
rcIntArray& operator=(const rcIntArray&);
public: public:
/// Constructs an instance with an initial array size of zero. rcIntArray() {}
rcIntArray() : m_data(0), m_size(0), m_cap(0) {} rcIntArray(int n) : m_impl(n, 0) {}
void push(int item) { m_impl.push_back(item); }
/// Constructs an instance initialized to the specified size. void resize(int size) { m_impl.resize(size); }
/// @param[in] n The initial size of the integer array.
rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
~rcIntArray() { rcFree(m_data); }
/// Specifies the new size of the integer array.
/// @param[in] n The new size of the integer array.
void resize(int n)
{
if (n > m_cap)
doResize(n);
m_size = n;
}
/// Push the specified integer onto the end of the array and increases the size by one.
/// @param[in] item The new value.
void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
/// Returns the value at the end of the array and reduces the size by one.
/// @return The value at the end of the array.
int pop() int pop()
{ {
if (m_size > 0) int v = m_impl.back();
m_size--; m_impl.pop_back();
return v;
return m_data[m_size];
} }
int size() const { return m_impl.size(); }
/// The value at the specified array index. int& operator[](int index) { return m_impl[index]; }
/// @warning Does not provide overflow protection. int operator[](int index) const { return m_impl[index]; }
/// @param[in] i The index of the value.
const int& operator[](int i) const { return m_data[i]; }
/// The value at the specified array index.
/// @warning Does not provide overflow protection.
/// @param[in] i The index of the value.
int& operator[](int i) { return m_data[i]; }
/// The current size of the integer array.
int size() const { return m_size; }
}; };
/// A simple helper class used to delete an array when it goes out of scope. /// A simple helper class used to delete an array when it goes out of scope.

View File

@ -58,29 +58,3 @@ void rcFree(void* ptr)
if (ptr) if (ptr)
sRecastFreeFunc(ptr); sRecastFreeFunc(ptr);
} }
/// @class rcIntArray
///
/// While it is possible to pre-allocate a specific array size during
/// construction or by using the #resize method, certain methods will
/// automatically resize the array as needed.
///
/// @warning The array memory is not initialized to zero when the size is
/// manually set during construction or when using #resize.
/// @par
///
/// Using this method ensures the array is at least large enough to hold
/// the specified number of elements. This can improve performance by
/// avoiding auto-resizing during use.
void rcIntArray::doResize(int n)
{
if (!m_cap) m_cap = n;
while (m_cap < n) m_cap *= 2;
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
rcAssert(newData);
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
rcFree(m_data);
m_data = newData;
}

View File

@ -1,6 +1,14 @@
#include <stdio.h>
#include <string.h>
#include "catch.hpp" #include "catch.hpp"
#include "Recast.h" #include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
// For comparing to rcVector in benchmarks.
#include <vector>
TEST_CASE("rcSwap") TEST_CASE("rcSwap")
{ {
@ -828,3 +836,395 @@ TEST_CASE("rcRasterizeTriangles")
REQUIRE(!solid.spans[1 + 2 * width]->next); REQUIRE(!solid.spans[1 + 2 * width]->next);
} }
} }
// Used to verify that rcVector constructs/destroys objects correctly.
struct Incrementor {
static int constructions;
static int destructions;
static int copies;
Incrementor() { constructions++; }
~Incrementor() { destructions++; }
Incrementor(const Incrementor&) { copies++; }
Incrementor& operator=(const Incrementor&); // Deleted assignment.
static void Reset() {
constructions = 0;
destructions = 0;
copies = 0;
}
};
int Incrementor::constructions = 0;
int Incrementor::destructions = 0;
int Incrementor::copies = 0;
const int kMaxAllocSize = 1024;
const unsigned char kClearValue = 0xff;
// Simple alloc/free that clears the memory on free..
void* AllocAndInit(size_t size, rcAllocHint) {
rcAssert(kMaxAllocSize >= size);
return memset(malloc(kMaxAllocSize), 0, kMaxAllocSize);
}
void FreeAndClear(void* mem) {
if (mem) {
memset(mem, kClearValue, kMaxAllocSize);
}
free(mem);
}
// Verifies that memory has been initialized by AllocAndInit, and not cleared by FreeAndClear.
struct Copier {
const static int kAlive;
const static int kDead;
Copier() : value(kAlive) {}
// checks that the source of the copy is valid.
Copier(const Copier& other) : value(kAlive) {
other.Verify();
}
Copier& operator=(const Copier&);
// Marks the value as dead.
~Copier() { value = kDead; }
void Verify() const {
REQUIRE(value == kAlive);
}
volatile int value;
};
const int Copier::kAlive = 0x1f;
const int Copier::kDead = 0xde;
TEST_CASE("rcVector")
{
SECTION("Vector basics.")
{
rcTempVector<int> vec;
REQUIRE(vec.size() == 0);
vec.push_back(10);
vec.push_back(12);
REQUIRE(vec.size() == 2);
REQUIRE(vec.capacity() >= 2);
REQUIRE(vec[0] == 10);
REQUIRE(vec[1] == 12);
vec.pop_back();
REQUIRE(vec.size() == 1);
REQUIRE(vec[0] == 10);
vec.pop_back();
REQUIRE(vec.size() == 0);
vec.resize(100, 5);
REQUIRE(vec.size() == 100);
for (int i = 0; i < 100; i++) {
REQUIRE(vec[i] == 5);
vec[i] = i;
}
for (int i = 0; i < 100; i++) {
REQUIRE(vec[i] == i);
}
}
SECTION("Constructors/Destructors")
{
Incrementor::Reset();
rcTempVector<Incrementor> vec;
REQUIRE(Incrementor::constructions == 0);
REQUIRE(Incrementor::destructions == 0);
REQUIRE(Incrementor::copies == 0);
vec.push_back(Incrementor());
// push_back() may create and copy objects internally.
REQUIRE(Incrementor::constructions == 1);
REQUIRE(Incrementor::destructions >= 1);
// REQUIRE(Incrementor::copies >= 2);
vec.clear();
Incrementor::Reset();
vec.resize(100);
// Initialized with default instance. Temporaries may be constructed, then destroyed.
REQUIRE(Incrementor::constructions == 100);
REQUIRE(Incrementor::destructions == 0);
REQUIRE(Incrementor::copies == 0);
Incrementor::Reset();
for (int i = 0; i < 100; i++) {
REQUIRE(Incrementor::destructions == i);
vec.pop_back();
}
REQUIRE(Incrementor::constructions == 0);
REQUIRE(Incrementor::destructions == 100);
REQUIRE(Incrementor::copies == 0);
vec.resize(100);
Incrementor::Reset();
vec.clear();
// One temp object is constructed for the default argumnet of resize().
REQUIRE(Incrementor::constructions == 0);
REQUIRE(Incrementor::destructions == 100);
REQUIRE(Incrementor::copies == 0);
Incrementor::Reset();
vec.resize(100, Incrementor());
REQUIRE(Incrementor::constructions == 1);
REQUIRE(Incrementor::destructions == 1);
REQUIRE(Incrementor::copies == 100);
}
SECTION("Copying Contents")
{
// veriyf event counts after doubling size -- should require a lot of copying and destorying.
rcTempVector<Incrementor> vec;
Incrementor::Reset();
vec.resize(100);
REQUIRE(Incrementor::constructions == 100);
REQUIRE(Incrementor::destructions == 0);
REQUIRE(Incrementor::copies == 0);
Incrementor::Reset();
vec.resize(200);
REQUIRE(vec.size() == vec.capacity());
REQUIRE(Incrementor::constructions == 100); // Construc new elements.
REQUIRE(Incrementor::destructions == 100); // Destroy old contents.
REQUIRE(Incrementor::copies == 100); // Copy old elements into new array.
}
SECTION("Swap")
{
rcTempVector<int> a(10, 0xa);
rcTempVector<int> b;
int* a_data = a.data();
int* b_data = b.data();
a.swap(b);
REQUIRE(a.size() == 0);
REQUIRE(b.size() == 10);
REQUIRE(b[0] == 0xa);
REQUIRE(b[9] == 0xa);
REQUIRE(a.data() == b_data);
REQUIRE(b.data() == a_data);
}
SECTION("Overlapping init")
{
rcAllocSetCustom(&AllocAndInit, &FreeAndClear);
rcTempVector<Copier> vec;
// Force a realloc during push_back().
vec.resize(64);
REQUIRE(vec.capacity() == vec.size());
REQUIRE(vec.capacity() > 0);
REQUIRE(vec.size() == vec.capacity());
// Don't crash.
vec.push_back(vec[0]);
rcAllocSetCustom(NULL, NULL);
}
SECTION("Vector Destructor")
{
{
rcTempVector<Incrementor> vec;
vec.resize(10);
Incrementor::Reset();
}
REQUIRE(Incrementor::destructions == 10);
}
SECTION("Assign")
{
rcTempVector<int> a(10, 0xa);
a.assign(5, 0xb);
REQUIRE(a.size() == 5);
REQUIRE(a[0] == 0xb);
REQUIRE(a[4] == 0xb);
a.assign(15, 0xc);
REQUIRE(a.size() == 15);
REQUIRE(a[0] == 0xc);
REQUIRE(a[14] == 0xc);
rcTempVector<int> b;
b.assign(a.data(), a.data() + a.size());
REQUIRE(b.size() == a.size());
REQUIRE(b[0] == a[0]);
}
SECTION("Copy")
{
rcTempVector<int> a(10, 0xa);
rcTempVector<int> b(a);
REQUIRE(a.size() == 10);
REQUIRE(a.size() == b.size());
REQUIRE(a[0] == b[0]);
REQUIRE(a.data() != b.data());
rcTempVector<int> c(a.data(), a.data() + a.size());
REQUIRE(c.size() == a.size());
REQUIRE(c[0] == a[0]);
rcTempVector<Incrementor> d(10);
Incrementor::Reset();
rcTempVector<Incrementor> e(d);
REQUIRE(Incrementor::constructions == 0);
REQUIRE(Incrementor::destructions == 0);
REQUIRE(Incrementor::copies == 10);
Incrementor::Reset();
rcTempVector<Incrementor> f(d.data(), d.data() + d.size());
REQUIRE(Incrementor::constructions == 0);
REQUIRE(Incrementor::destructions == 0);
REQUIRE(Incrementor::copies == 10);
}
}
// TODO: Implement benchmarking for platforms other than posix.
#ifdef __unix__
#include <unistd.h>
#ifdef _POSIX_TIMERS
#include <time.h>
#include <stdint.h>
int64_t NowNanos() {
struct timespec tp;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp);
return tp.tv_nsec + 1000000000LL * tp.tv_sec;
}
#define BM(name, iterations) \
struct BM_ ## name { \
static void Run() { \
int64_t begin_time = NowNanos(); \
for (int i = 0 ; i < iterations; i++) { \
Body(); \
} \
int64_t nanos = NowNanos() - begin_time; \
printf("BM_%-35s %ld iterations in %10ld nanos: %10.2f nanos/it\n", #name ":", (int64_t)iterations, nanos, double(nanos) / iterations); \
} \
static void Body(); \
}; \
TEST_CASE(#name) { \
BM_ ## name::Run(); \
} \
void BM_ ## name::Body()
const int64_t kNumLoops = 100;
const int64_t kNumInserts = 100000;
// Prevent compiler from eliding a calculation.
// TODO: Implement for MSVC.
template <typename T>
void DoNotOptimize(T* v) {
asm volatile ("" : "+r" (v));
}
BM(FlatArray_Push, kNumLoops)
{
int cap = 64;
int* v = (int*)rcAlloc(cap * sizeof(int), RC_ALLOC_TEMP);
for (int j = 0; j < kNumInserts; j++) {
if (j == cap) {
cap *= 2;
int* tmp = (int*)rcAlloc(sizeof(int) * cap, RC_ALLOC_TEMP);
memcpy(tmp, v, j * sizeof(int));
rcFree(v);
v = tmp;
}
v[j] = 2;
}
DoNotOptimize(v);
rcFree(v);
}
BM(FlatArray_Fill, kNumLoops)
{
int* v = (int*)rcAlloc(sizeof(int) * kNumInserts, RC_ALLOC_TEMP);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v);
rcFree(v);
}
BM(FlatArray_Memset, kNumLoops)
{
int* v = (int*)rcAlloc(sizeof(int) * kNumInserts, RC_ALLOC_TEMP);
memset(v, 0, kNumInserts * sizeof(int));
DoNotOptimize(v);
rcFree(v);
}
BM(rcVector_Push, kNumLoops)
{
rcTempVector<int> v;
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(rcVector_PushPreallocated, kNumLoops)
{
rcTempVector<int> v;
v.reserve(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(rcVector_Assign, kNumLoops)
{
rcTempVector<int> v;
v.assign(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(rcVector_AssignIndices, kNumLoops)
{
rcTempVector<int> v;
v.resize(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v.data());
}
BM(rcVector_Resize, kNumLoops)
{
rcTempVector<int> v;
v.resize(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(stdvector_Push, kNumLoops)
{
std::vector<int> v;
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(stdvector_PushPreallocated, kNumLoops)
{
std::vector<int> v;
v.reserve(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(stdvector_Assign, kNumLoops)
{
std::vector<int> v;
v.assign(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(stdvector_AssignIndices, kNumLoops)
{
std::vector<int> v;
v.resize(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v.data());
}
BM(stdvector_Resize, kNumLoops)
{
std::vector<int> v;
v.resize(kNumInserts, 2);
DoNotOptimize(v.data());
}
#undef BM
#endif // _POSIX_TIMERS
#endif // __unix__