// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #include #include #include #include "DetourNavMesh.h" #include "DetourNode.h" #include "DetourCommon.h" #include "DetourAlloc.h" #include "DetourAssert.h" #include inline bool overlapSlabs(const float* amin, const float* amax, const float* bmin, const float* bmax, const float px, const float py) { // Check for horizontal overlap. // The segment is shrunken a little so that slabs which touch // at end points are not connected. const float minx = dtMax(amin[0]+px,bmin[0]+px); const float maxx = dtMin(amax[0]-px,bmax[0]-px); if (minx > maxx) return false; // Check vertical overlap. const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); const float ak = amin[1] - ad*amin[0]; const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); const float bk = bmin[1] - bd*bmin[0]; const float aminy = ad*minx + ak; const float amaxy = ad*maxx + ak; const float bminy = bd*minx + bk; const float bmaxy = bd*maxx + bk; const float dmin = bminy - aminy; const float dmax = bmaxy - amaxy; // Crossing segments always overlap. if (dmin*dmax < 0) return true; // Check for overlap at endpoints. const float thr = dtSqr(py*2); if (dmin*dmin <= thr || dmax*dmax <= thr) return true; return false; } static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) { if (side == 0 || side == 4) { if (va[2] < vb[2]) { bmin[0] = va[2]; bmin[1] = va[1]; bmax[0] = vb[2]; bmax[1] = vb[1]; } else { bmin[0] = vb[2]; bmin[1] = vb[1]; bmax[0] = va[2]; bmax[1] = va[1]; } } else if (side == 2 || side == 6) { if (va[0] < vb[0]) { bmin[0] = va[0]; bmin[1] = va[1]; bmax[0] = vb[0]; bmax[1] = vb[1]; } else { bmin[0] = vb[0]; bmin[1] = vb[1]; bmax[0] = va[0]; bmax[1] = va[1]; } } } inline int computeTileHash(int x, int y, const int mask) { const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes unsigned int n = h1 * x + h2 * y; return (int)(n & mask); } inline unsigned int allocLink(dtMeshTile* tile) { if (tile->linksFreeList == DT_NULL_LINK) return DT_NULL_LINK; unsigned int link = tile->linksFreeList; tile->linksFreeList = tile->links[link].next; return link; } inline void freeLink(dtMeshTile* tile, unsigned int link) { tile->links[link].next = tile->linksFreeList; tile->linksFreeList = link; } dtNavMesh* dtAllocNavMesh() { return new(dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM)) dtNavMesh; } void dtFreeNavMesh(dtNavMesh* navmesh) { if (!navmesh) return; navmesh->~dtNavMesh(); dtFree(navmesh); } ////////////////////////////////////////////////////////////////////////////////////////// dtNavMesh::dtNavMesh() : m_tileWidth(0), m_tileHeight(0), m_maxTiles(0), m_tileLutSize(0), m_tileLutMask(0), m_posLookup(0), m_nextFree(0), m_tiles(0), m_saltBits(0), m_tileBits(0), m_polyBits(0) { m_orig[0] = 0; m_orig[1] = 0; m_orig[2] = 0; } dtNavMesh::~dtNavMesh() { for (int i = 0; i < m_maxTiles; ++i) { if (m_tiles[i].flags & DT_TILE_FREE_DATA) { dtFree(m_tiles[i].data); m_tiles[i].data = 0; m_tiles[i].dataSize = 0; } } dtFree(m_posLookup); dtFree(m_tiles); } bool dtNavMesh::init(const dtNavMeshParams* params) { memcpy(&m_params, params, sizeof(dtNavMeshParams)); dtVcopy(m_orig, params->orig); m_tileWidth = params->tileWidth; m_tileHeight = params->tileHeight; // Init tiles m_maxTiles = params->maxTiles; m_tileLutSize = dtNextPow2(params->maxTiles/4); if (!m_tileLutSize) m_tileLutSize = 1; m_tileLutMask = m_tileLutSize-1; m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); if (!m_tiles) return false; m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); if (!m_posLookup) return false; memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); m_nextFree = 0; for (int i = m_maxTiles-1; i >= 0; --i) { m_tiles[i].salt = 1; m_tiles[i].next = m_nextFree; m_nextFree = &m_tiles[i]; } // Init ID generator values. m_tileBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxTiles))); m_polyBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxPolys))); m_saltBits = 32 - m_tileBits - m_polyBits; if (m_saltBits < 10) return false; return true; } bool dtNavMesh::init(unsigned char* data, const int dataSize, const int flags) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return false; if (header->version != DT_NAVMESH_VERSION) return false; dtNavMeshParams params; dtVcopy(params.orig, header->bmin); params.tileWidth = header->bmax[0] - header->bmin[0]; params.tileHeight = header->bmax[2] - header->bmin[2]; params.maxTiles = 1; params.maxPolys = header->polyCount; if (!init(¶ms)) return false; return addTile(data, dataSize, flags) != 0; } const dtNavMeshParams* dtNavMesh::getParams() const { return &m_params; } ////////////////////////////////////////////////////////////////////////////////////////// int dtNavMesh::findConnectingPolys(const float* va, const float* vb, const dtMeshTile* tile, int side, dtPolyRef* con, float* conarea, int maxcon) const { if (!tile) return 0; float amin[2], amax[2]; calcSlabEndPoints(va,vb, amin,amax, side); // Remove links pointing to 'side' and compact the links array. float bmin[2], bmax[2]; unsigned short m = DT_EXT_LINK | (unsigned short)side; int n = 0; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; // Check if the segments touch. const float* vc = &tile->verts[poly->verts[j]*3]; const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; calcSlabEndPoints(vc,vd, bmin,bmax, side); if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; // Add return value. if (n < maxcon) { conarea[n*2+0] = dtMax(amin[0], bmin[0]); conarea[n*2+1] = dtMin(amax[0], bmax[0]); con[n] = base | (unsigned int)i; n++; } break; } } return n; } void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, int side) { if (!tile) return; for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; unsigned int j = poly->firstLink; unsigned int pj = DT_NULL_LINK; while (j != DT_NULL_LINK) { if (tile->links[j].side == side) { // Revove link. unsigned int nj = tile->links[j].next; if (pj == DT_NULL_LINK) poly->firstLink = nj; else tile->links[pj].next = nj; freeLink(tile, j); j = nj; } else { // Advance pj = j; j = tile->links[j].next; } } } } void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect border links. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; // Create new links. unsigned short m = DT_EXT_LINK | (unsigned short)side; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; // Create new links const float* va = &tile->verts[poly->verts[j]*3]; const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; dtPolyRef nei[4]; float neia[4*2]; int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(side), nei,neia,4); for (int k = 0; k < nnei; ++k) { unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = nei[k]; link->edge = (unsigned char)j; link->side = (unsigned char)side; link->next = poly->firstLink; poly->firstLink = idx; // Compress portal limits to a byte value. if (side == 0 || side == 4) { float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]); float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]); if (tmin > tmax) dtSwap(tmin,tmax); link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); } else if (side == 2 || side == 6) { float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]); float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]); if (tmin > tmax) dtSwap(tmin,tmax); link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); } } } } } } void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect off-mesh links. // We are interested on links which land from target tile to this tile. const unsigned char oppositeSide = (unsigned char)dtOppositeTile(side); for (int i = 0; i < target->header->offMeshConCount; ++i) { dtOffMeshConnection* targetCon = &target->offMeshCons[i]; if (targetCon->side != oppositeSide) continue; dtPoly* targetPoly = &target->polys[targetCon->poly]; const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; // Find polygon to connect to. const float* p = &targetCon->pos[3]; float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) continue; // Make sure the location is on current mesh. float* v = &target->verts[targetPoly->verts[1]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(target); if (idx != DT_NULL_LINK) { dtLink* link = &target->links[idx]; link->ref = ref; link->edge = (unsigned char)1; link->side = oppositeSide; link->bmin = link->bmax = 0; // Add to linked list. link->next = targetPoly->firstLink; targetPoly->firstLink = idx; } // Link target poly to off-mesh connection. if (targetCon->flags & DT_OFFMESH_CON_BIDIR) { unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[idx]; link->ref = getPolyRefBase(target) | (unsigned int)(targetCon->poly); link->edge = 0xff; link->side = (unsigned char)side; link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = idx; } } } } void dtNavMesh::connectIntLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; poly->firstLink = DT_NULL_LINK; if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Build edge links backwards so that the links will be // in the linked list from lowest index to highest. for (int j = poly->vertCount-1; j >= 0; --j) { // Skip hard and non-internal edges. if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = base | (unsigned int)(poly->neis[j]-1); link->edge = (unsigned char)j; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } } } } void dtNavMesh::connectIntOffMeshLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getPolyRefBase(tile); // Find Off-mesh connection end points. for (int i = 0; i < tile->header->offMeshConCount; ++i) { dtOffMeshConnection* con = &tile->offMeshCons[i]; dtPoly* poly = &tile->polys[con->poly]; const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad }; for (int j = 0; j < 2; ++j) { unsigned char side = j == 0 ? 0xff : con->side; if (side == 0xff) { // Find polygon to connect to. const float* p = &con->pos[j*3]; float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) continue; // Make sure the location is on current mesh. float* v = &tile->verts[poly->verts[j]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = ref; link->edge = (unsigned char)j; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } // Start end-point is always connect back to off-mesh connection, // Destination end-point only if it is bidirectional link. if (j == 0 || (j == 1 && (con->flags & DT_OFFMESH_CON_BIDIR))) { // Link target poly to off-mesh connection. unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[idx]; link->ref = base | (unsigned int)(con->poly); link->edge = 0xff; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = idx; } } } } } } bool dtNavMesh::closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip, const float* pos, float* closest) const { const dtPoly* poly = &tile->polys[ip]; float closestDistSqr = FLT_MAX; const dtPolyDetail* pd = &tile->detailMeshes[ip]; for (int j = 0; j < pd->triCount; ++j) { const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; const float* v[3]; for (int k = 0; k < 3; ++k) { if (t[k] < poly->vertCount) v[k] = &tile->verts[poly->verts[t[k]]*3]; else v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; } float pt[3]; dtClosestPtPointTriangle(pt, pos, v[0], v[1], v[2]); float d = dtVdistSqr(pos, pt); if (d < closestDistSqr) { dtVcopy(closest, pt); closestDistSqr = d; } } return true; } dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, const float* center, const float* extents, float* nearestPt) const { float bmin[3], bmax[3]; dtVsub(bmin, center, extents); dtVadd(bmax, center, extents); // Get nearby polygons from proximity grid. dtPolyRef polys[128]; int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128); // Find nearest polygon amongst the nearby polygons. dtPolyRef nearest = 0; float nearestDistanceSqr = FLT_MAX; for (int i = 0; i < polyCount; ++i) { dtPolyRef ref = polys[i]; float closestPtPoly[3]; if (!closestPointOnPolyInTile(tile, decodePolyIdPoly(ref), center, closestPtPoly)) continue; float d = dtVdistSqr(center, closestPtPoly); if (d < nearestDistanceSqr) { if (nearestPt) dtVcopy(nearestPt, closestPtPoly); nearestDistanceSqr = d; nearest = ref; } } return nearest; } int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, dtPolyRef* polys, const int maxPolys) const { if (tile->bvTree) { const dtBVNode* node = &tile->bvTree[0]; const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; const float* tbmin = tile->header->bmin; const float* tbmax = tile->header->bmax; const float qfac = tile->header->bvQuantFactor; // Calculate quantized box unsigned short bmin[3], bmax[3]; // dtClamp query box to world box. float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; // Quantize bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; // Traverse tree dtPolyRef base = getPolyRefBase(tile); int n = 0; while (node < end) { const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); const bool isLeafNode = node->i >= 0; if (isLeafNode && overlap) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)node->i; } if (overlap || isLeafNode) node++; else { const int escapeIndex = -node->i; node += escapeIndex; } } return n; } else { float bmin[3], bmax[3]; int n = 0; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { // Calc polygon bounds. dtPoly* p = &tile->polys[i]; const float* v = &tile->verts[p->verts[0]*3]; dtVcopy(bmin, v); dtVcopy(bmax, v); for (int j = 1; j < p->vertCount; ++j) { v = &tile->verts[p->verts[j]*3]; dtVmin(bmin, v); dtVmax(bmax, v); } if (dtOverlapBounds(qmin,qmax, bmin,bmax)) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)i; } } return n; } } dtTileRef dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return 0; if (header->version != DT_NAVMESH_VERSION) return 0; // Make sure the location is free. if (getTileAt(header->x, header->y)) return 0; // Allocate a tile. dtMeshTile* tile = 0; if (!lastRef) { if (m_nextFree) { tile = m_nextFree; m_nextFree = tile->next; tile->next = 0; } } else { // TODO: Better error reporting! // Try to relocate the tile to specific index with same salt. int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); if (tileIndex >= m_maxTiles) return 0; // Try to find the specific tile id from the free list. dtMeshTile* target = &m_tiles[tileIndex]; dtMeshTile* prev = 0; tile = m_nextFree; while (tile && tile != target) { prev = tile; tile = tile->next; } // Could not find the correct location. if (tile != target) return 0; // Remove from freelist if (!prev) m_nextFree = tile->next; else prev->next = tile->next; // Restore salt. tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); } // Make sure we could allocate a tile. if (!tile) return 0; // Insert tile into the position lut. int h = computeTileHash(header->x, header->y, m_tileLutMask); tile->next = m_posLookup[h]; m_posLookup[h] = tile; // Patch header pointers. const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); unsigned char* d = data + headerSize; tile->verts = (float*)d; d += vertsSize; tile->polys = (dtPoly*)d; d += polysSize; tile->links = (dtLink*)d; d += linksSize; tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize; tile->detailVerts = (float*)d; d += detailVertsSize; tile->detailTris = (unsigned char*)d; d += detailTrisSize; tile->bvTree = (dtBVNode*)d; d += bvtreeSize; tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize; // Build links freelist tile->linksFreeList = 0; tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; for (int i = 0; i < header->maxLinkCount-1; ++i) tile->links[i].next = i+1; // Init tile. tile->header = header; tile->data = data; tile->dataSize = dataSize; tile->flags = flags; connectIntLinks(tile); connectIntOffMeshLinks(tile); // Create connections connections. for (int i = 0; i < 8; ++i) { dtMeshTile* nei = getNeighbourTileAt(header->x, header->y, i); if (nei) { connectExtLinks(tile, nei, i); connectExtLinks(nei, tile, dtOppositeTile(i)); connectExtOffMeshLinks(tile, nei, i); connectExtOffMeshLinks(nei, tile, dtOppositeTile(i)); } } return getTileRef(tile); } const dtMeshTile* dtNavMesh::getTileAt(int x, int y) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) return tile; tile = tile->next; } return 0; } dtMeshTile* dtNavMesh::getNeighbourTileAt(int x, int y, int side) const { switch (side) { case 0: x++; break; case 1: x++; y++; break; case 2: y++; break; case 3: x--; y++; break; case 4: x--; break; case 5: x--; y--; break; case 6: y--; break; case 7: x++; y--; break; }; // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) return tile; tile = tile->next; } return 0; } dtTileRef dtNavMesh::getTileRefAt(int x, int y) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) return getTileRef(tile); tile = tile->next; } return 0; } int dtNavMesh::getMaxTiles() const { return m_maxTiles; } dtMeshTile* dtNavMesh::getTile(int i) { return &m_tiles[i]; } const dtMeshTile* dtNavMesh::getTile(int i) const { return &m_tiles[i]; } void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const { *tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth); *ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight); } /*const dtPoly* dtNavMesh::getPolyByRef(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0; return &m_tiles[it].polys[ip]; }*/ bool dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; *tile = &m_tiles[it]; *poly = &m_tiles[it].polys[ip]; return true; } void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); *tile = &m_tiles[it]; *poly = &m_tiles[it].polys[ip]; } bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; return true; } bool dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) { if (!ref) return false; unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); if ((int)tileIndex >= m_maxTiles) return false; dtMeshTile* tile = &m_tiles[tileIndex]; if (tile->salt != tileSalt) return false; // Remove tile from hash lookup. int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); dtMeshTile* prev = 0; dtMeshTile* cur = m_posLookup[h]; while (cur) { if (cur == tile) { if (prev) prev->next = cur->next; else m_posLookup[h] = cur->next; break; } prev = cur; cur = cur->next; } // Remove connections to neighbour tiles. for (int i = 0; i < 8; ++i) { dtMeshTile* nei = getNeighbourTileAt(tile->header->x,tile->header->y,i); if (!nei) continue; unconnectExtLinks(nei, dtOppositeTile(i)); } // Reset tile. if (tile->flags & DT_TILE_FREE_DATA) { // Owns data dtFree(tile->data); tile->data = 0; tile->dataSize = 0; if (data) *data = 0; if (dataSize) *dataSize = 0; } else { if (data) *data = tile->data; if (dataSize) *dataSize = tile->dataSize; } tile->header = 0; tile->flags = 0; tile->linksFreeList = 0; tile->polys = 0; tile->verts = 0; tile->links = 0; tile->detailMeshes = 0; tile->detailVerts = 0; tile->detailTris = 0; tile->bvTree = 0; tile->offMeshCons = 0; // Update salt, salt should never be zero. tile->salt = (tile->salt+1) & ((1<salt == 0) tile->salt++; // Add to free list. tile->next = m_nextFree; m_nextFree = tile; return true; } dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = tile - m_tiles; return (dtTileRef)encodePolyId(tile->salt, it, 0); } dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = tile - m_tiles; return encodePolyId(tile->salt, it, 0); } struct dtTileState { int magic; // Magic number, used to identify the data. int version; // Data version number. dtTileRef ref; // Tile ref at the time of storing the data. }; struct dtPolyState { unsigned short flags; // Flags (see dtPolyFlags). unsigned char area; // Area ID of the polygon. }; int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const { if (!tile) return 0; const int headerSize = dtAlign4(sizeof(dtTileState)); const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); return headerSize + polyStateSize; } bool dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return false; dtTileState* tileState = (dtTileState*)data; data += dtAlign4(sizeof(dtTileState)); dtPolyState* polyStates = (dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); // Store tile state. tileState->magic = DT_NAVMESH_STATE_MAGIC; tileState->version = DT_NAVMESH_STATE_VERSION; tileState->ref = getTileRef(tile); // Store per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { const dtPoly* p = &tile->polys[i]; dtPolyState* s = &polyStates[i]; s->flags = p->flags; s->area = p->area; } return true; } bool dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return false; const dtTileState* tileState = (const dtTileState*)data; data += dtAlign4(sizeof(dtTileState)); const dtPolyState* polyStates = (const dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); // Check that the restore is possible. if (tileState->magic != DT_NAVMESH_STATE_MAGIC) return false; if (tileState->version != DT_NAVMESH_STATE_VERSION) return false; if (tileState->ref != getTileRef(tile)) return false; // Restore per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* p = &tile->polys[i]; const dtPolyState* s = &polyStates[i]; p->flags = s->flags; p->area = s->area; } return true; } // Returns start and end location of an off-mesh link polygon. bool dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const { unsigned int salt, it, ip; // Get current polygon decodePolyId(polyRef, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return false; const dtPoly* poly = &tile->polys[ip]; // Make sure that the current poly is indeed off-mesh link. if (poly->type != DT_POLYTYPE_OFFMESH_CONNECTION) return false; // Figure out which way to hand out the vertices. int idx0 = 0, idx1 = 1; // Find link that points to first vertex. for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) { if (tile->links[i].edge == 0) { if (tile->links[i].ref != prevRef) { idx0 = 1; idx1 = 0; } break; } } dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); return true; } void dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return; dtPoly* poly = &tile->polys[ip]; // Change flags. poly->flags = flags; } unsigned short dtNavMesh::getPolyFlags(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; return poly->flags; } void dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return; dtPoly* poly = &tile->polys[ip]; poly->area = area; } unsigned char dtNavMesh::getPolyArea(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; return poly->area; }