// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include #include "SDL.h" #include "SDL_opengl.h" #include "imgui.h" #include "NavMeshTesterTool.h" #include "Sample.h" #include "Recast.h" #include "RecastDebugDraw.h" #include "DetourNavMesh.h" #include "DetourNavMeshBuilder.h" #include "DetourDebugDraw.h" #ifdef WIN32 # define snprintf _snprintf #endif // Uncomment this to dump all the requests in stdout. #define DUMP_REQS inline bool inRange(const float* v1, const float* v2, const float r, const float h) { const float dx = v2[0] - v1[0]; const float dy = v2[1] - v1[1]; const float dz = v2[2] - v1[2]; return (dx*dx + dz*dz) < r*r && fabsf(dy) < h; } static bool getSteerTarget(dtNavMesh* navMesh, const float* startPos, const float* endPos, const float minTargetDist, const dtPolyRef* path, const int pathSize, float* steerPos, unsigned char& steerPosFlag, dtPolyRef& steerPosRef, float* outPoints = 0, int* outPointCount = 0) { // Find steer target. static const int MAX_STEER_POINTS = 3; float steerPath[MAX_STEER_POINTS*3]; unsigned char steerPathFlags[MAX_STEER_POINTS]; dtPolyRef steerPathPolys[MAX_STEER_POINTS]; int nsteerPath = navMesh->findStraightPath(startPos, endPos, path, pathSize, steerPath, steerPathFlags, steerPathPolys, MAX_STEER_POINTS); if (!nsteerPath) return false; if (outPoints && outPointCount) { *outPointCount = nsteerPath; for (int i = 0; i < nsteerPath; ++i) vcopy(&outPoints[i*3], &steerPath[i*3]); } // Find vertex far enough to steer to. int ns = 0; while (ns < nsteerPath) { // Stop at Off-Mesh link or when point is further than slop away. if ((steerPathFlags[ns] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) || !inRange(&steerPath[ns*3], startPos, minTargetDist, 1000.0f)) break; ns++; } // Failed to find good point to steer to. if (ns >= nsteerPath) return false; vcopy(steerPos, &steerPath[ns*3]); steerPosFlag = steerPathFlags[ns]; steerPosRef = steerPathPolys[ns]; return true; } NavMeshTesterTool::NavMeshTesterTool() : m_sample(0), m_navMesh(0), m_toolMode(TOOLMODE_PATHFIND_ITER), m_startRef(0), m_endRef(0), m_npolys(0), m_nstraightPath(0), m_nsmoothPath(0), m_hitResult(false), m_distanceToWall(0), m_sposSet(false), m_eposSet(false), m_pathIterNum(0), m_steerPointCount(0) { m_filter.includeFlags = SAMPLE_POLYFLAGS_ALL; m_filter.excludeFlags = 0; m_polyPickExt[0] = 2; m_polyPickExt[1] = 4; m_polyPickExt[2] = 2; } NavMeshTesterTool::~NavMeshTesterTool() { if (m_sample) { unsigned char flags = DU_DRAWNAVMESH_CLOSEDLIST; if (m_navMesh) flags |= DU_DRAWNAVMESH_OFFMESHCONS; m_sample->setNavMeshDrawFlags(flags); } } void NavMeshTesterTool::init(Sample* sample) { m_sample = sample; m_navMesh = sample->getNavMesh(); recalc(); if (m_navMesh) { // Change costs. m_navMesh->setAreaCost(SAMPLE_POLYAREA_GROUND, 1.0f); m_navMesh->setAreaCost(SAMPLE_POLYAREA_WATER, 10.0f); m_navMesh->setAreaCost(SAMPLE_POLYAREA_ROAD, 1.0f); m_navMesh->setAreaCost(SAMPLE_POLYAREA_DOOR, 1.0f); m_navMesh->setAreaCost(SAMPLE_POLYAREA_GRASS, 2.0f); m_navMesh->setAreaCost(SAMPLE_POLYAREA_JUMP, 1.5f); } if (m_toolMode == TOOLMODE_PATHFIND_ITER || m_toolMode == TOOLMODE_PATHFIND_STRAIGHT) { unsigned char flags = DU_DRAWNAVMESH_CLOSEDLIST; if (m_navMesh) flags |= DU_DRAWNAVMESH_OFFMESHCONS; m_sample->setNavMeshDrawFlags(flags); } } void NavMeshTesterTool::handleMenu() { if (imguiCheck("Pathfind Iter", m_toolMode == TOOLMODE_PATHFIND_ITER)) { m_toolMode = TOOLMODE_PATHFIND_ITER; recalc(); } if (imguiCheck("Pathfind Straight", m_toolMode == TOOLMODE_PATHFIND_STRAIGHT)) { m_toolMode = TOOLMODE_PATHFIND_STRAIGHT; recalc(); } if (imguiCheck("Distance to Wall", m_toolMode == TOOLMODE_DISTANCE_TO_WALL)) { m_toolMode = TOOLMODE_DISTANCE_TO_WALL; recalc(); } if (imguiCheck("Raycast", m_toolMode == TOOLMODE_RAYCAST)) { m_toolMode = TOOLMODE_RAYCAST; recalc(); } if (imguiCheck("Find Polys Around", m_toolMode == TOOLMODE_FIND_POLYS_AROUND)) { m_toolMode = TOOLMODE_FIND_POLYS_AROUND; recalc(); } imguiSeparator(); imguiLabel("Include Flags"); imguiIndent(); if (imguiCheck("Walk", (m_filter.includeFlags & SAMPLE_POLYFLAGS_WALK) != 0)) { m_filter.includeFlags ^= SAMPLE_POLYFLAGS_WALK; recalc(); } if (imguiCheck("Swim", (m_filter.includeFlags & SAMPLE_POLYFLAGS_SWIM) != 0)) { m_filter.includeFlags ^= SAMPLE_POLYFLAGS_SWIM; recalc(); } if (imguiCheck("Door", (m_filter.includeFlags & SAMPLE_POLYFLAGS_DOOR) != 0)) { m_filter.includeFlags ^= SAMPLE_POLYFLAGS_DOOR; recalc(); } if (imguiCheck("Jump", (m_filter.includeFlags & SAMPLE_POLYFLAGS_JUMP) != 0)) { m_filter.includeFlags ^= SAMPLE_POLYFLAGS_JUMP; recalc(); } imguiUnindent(); imguiSeparator(); imguiLabel("Exclude Flags"); imguiIndent(); if (imguiCheck("Walk", (m_filter.excludeFlags & SAMPLE_POLYFLAGS_WALK) != 0)) { m_filter.excludeFlags ^= SAMPLE_POLYFLAGS_WALK; recalc(); } if (imguiCheck("Swim", (m_filter.excludeFlags & SAMPLE_POLYFLAGS_SWIM) != 0)) { m_filter.excludeFlags ^= SAMPLE_POLYFLAGS_SWIM; recalc(); } if (imguiCheck("Door", (m_filter.excludeFlags & SAMPLE_POLYFLAGS_DOOR) != 0)) { m_filter.excludeFlags ^= SAMPLE_POLYFLAGS_DOOR; recalc(); } if (imguiCheck("Jump", (m_filter.excludeFlags & SAMPLE_POLYFLAGS_JUMP) != 0)) { m_filter.excludeFlags ^= SAMPLE_POLYFLAGS_JUMP; recalc(); } imguiUnindent(); imguiSeparator(); if (m_toolMode == TOOLMODE_PATHFIND_ITER || m_toolMode == TOOLMODE_PATHFIND_STRAIGHT) { unsigned char flags = DU_DRAWNAVMESH_CLOSEDLIST; if (m_navMesh) flags |= DU_DRAWNAVMESH_OFFMESHCONS; m_sample->setNavMeshDrawFlags(flags); } else { unsigned char flags = 0; if (m_navMesh) flags |= DU_DRAWNAVMESH_OFFMESHCONS; m_sample->setNavMeshDrawFlags(flags); } } void NavMeshTesterTool::handleClick(const float* p, bool shift) { if (shift) { m_sposSet = true; vcopy(m_spos, p); } else { m_eposSet = true; vcopy(m_epos, p); } recalc(); } void NavMeshTesterTool::handleStep() { // TODO: merge separate to a path iterator. Use same code in recalc() too. if (m_toolMode != TOOLMODE_PATHFIND_ITER) return; if (!m_sposSet || !m_eposSet || !m_startRef || !m_endRef) return; static const float STEP_SIZE = 0.5f; static const float SLOP = 0.01f; if (m_pathIterNum == 0) { m_npolys = m_navMesh->findPath(m_startRef, m_endRef, m_spos, m_epos, &m_filter, m_polys, MAX_POLYS); m_nsmoothPath = 0; m_pathIterPolys = m_polys; m_pathIterPolyCount = m_npolys; if (m_pathIterPolyCount) { // Iterate over the path to find smooth path on the detail mesh surface. m_navMesh->closestPointOnPolyBoundary(m_startRef, m_spos, m_iterPos); m_navMesh->closestPointOnPolyBoundary(m_pathIterPolys[m_pathIterPolyCount-1], m_epos, m_targetPos); m_nsmoothPath = 0; vcopy(&m_smoothPath[m_nsmoothPath*3], m_iterPos); m_nsmoothPath++; } } vcopy(m_prevIterPos, m_iterPos); m_pathIterNum++; if (!m_pathIterPolyCount) return; if (m_nsmoothPath >= MAX_SMOOTH) return; // Move towards target a small advancement at a time until target reached or // when ran out of memory to store the path. // Find location to steer towards. float steerPos[3]; unsigned char steerPosFlag; dtPolyRef steerPosRef; if (!getSteerTarget(m_navMesh, m_iterPos, m_targetPos, SLOP, m_pathIterPolys, m_pathIterPolyCount, steerPos, steerPosFlag, steerPosRef, m_steerPoints, &m_steerPointCount)) return; vcopy(m_steerPos, steerPos); bool endOfPath = (steerPosFlag & DT_STRAIGHTPATH_END) ? true : false; bool offMeshConnection = (steerPosFlag & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false; // Find movement delta. float delta[3], len; vsub(delta, steerPos, m_iterPos); len = sqrtf(vdot(delta,delta)); // If the steer target is end of path or off-mesh link, do not move past the location. if ((endOfPath || offMeshConnection) && len < STEP_SIZE) len = 1; else len = STEP_SIZE / len; float moveTgt[3]; vmad(moveTgt, m_iterPos, delta, len); // Move float result[3]; int n = m_navMesh->moveAlongPathCorridor(m_iterPos, moveTgt, result, m_pathIterPolys, m_pathIterPolyCount); float h = 0; m_navMesh->getPolyHeight(m_pathIterPolys[n], result, &h); result[1] = h; // Shrink path corridor if advanced. if (n) { m_pathIterPolys += n; m_pathIterPolyCount -= n; } // Update position. vcopy(m_iterPos, result); // Handle end of path and off-mesh links when close enough. if (endOfPath && inRange(m_iterPos, steerPos, SLOP, 1.0f)) { // Reached end of path. vcopy(m_iterPos, m_targetPos); if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], m_iterPos); m_nsmoothPath++; } return; } else if (offMeshConnection && inRange(m_iterPos, steerPos, SLOP, 1.0f)) { // Reached off-mesh connection. float startPos[3], endPos[3]; // Advance the path up to and over the off-mesh connection. dtPolyRef prevRef = 0, polyRef = m_pathIterPolys[0]; while (m_pathIterPolyCount && polyRef != steerPosRef) { prevRef = polyRef; polyRef = m_pathIterPolys[0]; m_pathIterPolys++; m_pathIterPolyCount--; } // Handle the connection. if (m_navMesh->getOffMeshConnectionPolyEndPoints(prevRef, polyRef, startPos, endPos)) { if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], startPos); m_nsmoothPath++; // Hack to make the dotted path not visible during off-mesh connection. if (m_nsmoothPath & 1) { vcopy(&m_smoothPath[m_nsmoothPath*3], startPos); m_nsmoothPath++; } } // Move position at the other side of the off-mesh link. vcopy(m_iterPos, endPos); float h; m_navMesh->getPolyHeight(m_pathIterPolys[0], m_iterPos, &h); m_iterPos[1] = h; } } // Store results. if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], m_iterPos); m_nsmoothPath++; } } void NavMeshTesterTool::reset() { m_startRef = 0; m_endRef = 0; m_npolys = 0; m_nstraightPath = 0; m_nsmoothPath = 0; memset(m_hitPos, 0, sizeof(m_hitPos)); memset(m_hitNormal, 0, sizeof(m_hitNormal)); m_distanceToWall = 0; } void NavMeshTesterTool::recalc() { if (!m_navMesh) return; if (m_sposSet) m_startRef = m_navMesh->findNearestPoly(m_spos, m_polyPickExt, &m_filter, 0); else m_startRef = 0; if (m_eposSet) m_endRef = m_navMesh->findNearestPoly(m_epos, m_polyPickExt, &m_filter, 0); else m_endRef = 0; if (m_toolMode == TOOLMODE_PATHFIND_ITER) { m_pathIterNum = 0; if (m_sposSet && m_eposSet && m_startRef && m_endRef) { #ifdef DUMP_REQS printf("pi %f %f %f %f %f %f 0x%x 0x%x\n", m_spos[0],m_spos[1],m_spos[2], m_epos[0],m_epos[1],m_epos[2], m_filter.includeFlags, m_filter.excludeFlags); #endif m_npolys = m_navMesh->findPath(m_startRef, m_endRef, m_spos, m_epos, &m_filter, m_polys, MAX_POLYS); m_nsmoothPath = 0; if (m_npolys) { // Iterate over the path to find smooth path on the detail mesh surface. const dtPolyRef* polys = m_polys; int npolys = m_npolys; float iterPos[3], targetPos[3]; m_navMesh->closestPointOnPolyBoundary(m_startRef, m_spos, iterPos); m_navMesh->closestPointOnPolyBoundary(polys[npolys-1], m_epos, targetPos); static const float STEP_SIZE = 0.5f; static const float SLOP = 0.01f; m_nsmoothPath = 0; vcopy(&m_smoothPath[m_nsmoothPath*3], iterPos); m_nsmoothPath++; // Move towards target a small advancement at a time until target reached or // when ran out of memory to store the path. while (npolys && m_nsmoothPath < MAX_SMOOTH) { // Find location to steer towards. float steerPos[3]; unsigned char steerPosFlag; dtPolyRef steerPosRef; if (!getSteerTarget(m_navMesh, iterPos, targetPos, SLOP, polys, npolys, steerPos, steerPosFlag, steerPosRef)) break; bool endOfPath = (steerPosFlag & DT_STRAIGHTPATH_END) ? true : false; bool offMeshConnection = (steerPosFlag & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false; // Find movement delta. float delta[3], len; vsub(delta, steerPos, iterPos); len = sqrtf(vdot(delta,delta)); // If the steer target is end of path or off-mesh link, do not move past the location. if ((endOfPath || offMeshConnection) && len < STEP_SIZE) len = 1; else len = STEP_SIZE / len; float moveTgt[3]; vmad(moveTgt, iterPos, delta, len); // Move float result[3]; int n = m_navMesh->moveAlongPathCorridor(iterPos, moveTgt, result, polys, npolys); float h = 0; m_navMesh->getPolyHeight(polys[n], result, &h); result[1] = h; // Shrink path corridor if advanced. if (n) { polys += n; npolys -= n; } // Update position. vcopy(iterPos, result); // Handle end of path and off-mesh links when close enough. if (endOfPath && inRange(iterPos, steerPos, SLOP, 1.0f)) { // Reached end of path. vcopy(iterPos, targetPos); if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], iterPos); m_nsmoothPath++; } break; } else if (offMeshConnection && inRange(iterPos, steerPos, SLOP, 1.0f)) { // Reached off-mesh connection. float startPos[3], endPos[3]; // Advance the path up to and over the off-mesh connection. dtPolyRef prevRef = 0, polyRef = polys[0]; while (npolys && polyRef != steerPosRef) { prevRef = polyRef; polyRef = polys[0]; polys++; npolys--; } // Handle the connection. if (m_navMesh->getOffMeshConnectionPolyEndPoints(prevRef, polyRef, startPos, endPos)) { if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], startPos); m_nsmoothPath++; // Hack to make the dotted path not visible during off-mesh connection. if (m_nsmoothPath & 1) { vcopy(&m_smoothPath[m_nsmoothPath*3], startPos); m_nsmoothPath++; } } // Move position at the other side of the off-mesh link. vcopy(iterPos, endPos); float h; m_navMesh->getPolyHeight(polys[0], iterPos, &h); iterPos[1] = h; } } // Store results. if (m_nsmoothPath < MAX_SMOOTH) { vcopy(&m_smoothPath[m_nsmoothPath*3], iterPos); m_nsmoothPath++; } } } } else { m_npolys = 0; m_nsmoothPath = 0; } } else if (m_toolMode == TOOLMODE_PATHFIND_STRAIGHT) { if (m_sposSet && m_eposSet && m_startRef && m_endRef) { #ifdef DUMP_REQS printf("ps %f %f %f %f %f %f 0x%x 0x%x\n", m_spos[0],m_spos[1],m_spos[2], m_epos[0],m_epos[1],m_epos[2], m_filter.includeFlags, m_filter.excludeFlags); #endif m_npolys = m_navMesh->findPath(m_startRef, m_endRef, m_spos, m_epos, &m_filter, m_polys, MAX_POLYS); m_nstraightPath = 0; if (m_npolys) { m_nstraightPath = m_navMesh->findStraightPath(m_spos, m_epos, m_polys, m_npolys, m_straightPath, m_straightPathFlags, m_straightPathPolys, MAX_POLYS); } } else { m_npolys = 0; m_nstraightPath = 0; } } else if (m_toolMode == TOOLMODE_RAYCAST) { m_nstraightPath = 0; if (m_sposSet && m_eposSet && m_startRef) { #ifdef DUMP_REQS printf("rc %f %f %f %f %f %f 0x%x 0x%x\n", m_spos[0],m_spos[1],m_spos[2], m_epos[0],m_epos[1],m_epos[2], m_filter.includeFlags, m_filter.excludeFlags); #endif float t = 0; m_npolys = 0; m_nstraightPath = 2; m_straightPath[0] = m_spos[0]; m_straightPath[1] = m_spos[1]; m_straightPath[2] = m_spos[2]; m_npolys = m_navMesh->raycast(m_startRef, m_spos, m_epos, &m_filter, t, m_hitNormal, m_polys, MAX_POLYS); if (t > 1) { // No hit vcopy(m_hitPos, m_epos); m_hitResult = false; } else { // Hit m_hitPos[0] = m_spos[0] + (m_epos[0] - m_spos[0]) * t; m_hitPos[1] = m_spos[1] + (m_epos[1] - m_spos[1]) * t; m_hitPos[2] = m_spos[2] + (m_epos[2] - m_spos[2]) * t; if (m_npolys) { float h = 0; m_navMesh->getPolyHeight(m_polys[m_npolys-1], m_hitPos, &h); m_hitPos[1] = h; } m_hitResult = true; } vcopy(&m_straightPath[3], m_hitPos); } } else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL) { m_distanceToWall = 0; if (m_sposSet && m_startRef) { #ifdef DUMP_REQS printf("dw %f %f %f %f 0x%x 0x%x\n", m_spos[0],m_spos[1],m_spos[2], 100.0f, m_filter.includeFlags, m_filter.excludeFlags); #endif m_distanceToWall = m_navMesh->findDistanceToWall(m_startRef, m_spos, 100.0f, &m_filter, m_hitPos, m_hitNormal); } } else if (m_toolMode == TOOLMODE_FIND_POLYS_AROUND) { if (m_sposSet && m_startRef && m_eposSet) { const float dx = m_epos[0] - m_spos[0]; const float dz = m_epos[2] - m_spos[2]; float dist = sqrtf(dx*dx + dz*dz); #ifdef DUMP_REQS printf("fp %f %f %f %f 0x%x 0x%x\n", m_spos[0],m_spos[1],m_spos[2], dist, m_filter.includeFlags, m_filter.excludeFlags); #endif m_npolys = m_navMesh->findPolysAround(m_startRef, m_spos, dist, &m_filter, m_polys, m_parent, 0, MAX_POLYS); } } } static void getPolyCenter(dtNavMesh* navMesh, dtPolyRef ref, float* center) { const dtPoly* p = navMesh->getPolyByRef(ref); if (!p) return; const float* verts = navMesh->getPolyVertsByRef(ref); center[0] = 0; center[1] = 0; center[2] = 0; for (int i = 0; i < (int)p->vertCount; ++i) { const float* v = &verts[p->verts[i]*3]; center[0] += v[0]; center[1] += v[1]; center[2] += v[2]; } const float s = 1.0f / p->vertCount; center[0] *= s; center[1] *= s; center[2] *= s; } void NavMeshTesterTool::handleRender() { DebugDrawGL dd; static const unsigned int startCol = duRGBA(128,25,0,192); static const unsigned int endCol = duRGBA(51,102,0,129); static const unsigned int pathCol = duRGBA(0,0,0,64); glDepthMask(GL_FALSE); const float agentRadius = m_sample->getAgentRadius(); const float agentHeight = m_sample->getAgentHeight(); const float agentClimb = m_sample->getAgentClimb(); if (m_sposSet) drawAgent(m_spos, agentRadius, agentHeight, agentClimb, startCol); if (m_eposSet) drawAgent(m_epos, agentRadius, agentHeight, agentClimb, endCol); if (!m_navMesh) return; if (m_toolMode == TOOLMODE_PATHFIND_ITER) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_startRef, startCol); duDebugDrawNavMeshPoly(&dd, m_navMesh, m_endRef, endCol); if (m_npolys) { for (int i = 1; i < m_npolys-1; ++i) duDebugDrawNavMeshPoly(&dd, m_navMesh, m_polys[i], pathCol); } if (m_nsmoothPath) { const unsigned int pathCol = duRGBA(0,0,0,220); dd.begin(DU_DRAW_LINES, 3.0f); for (int i = 0; i < m_nsmoothPath; ++i) dd.vertex(m_smoothPath[i*3], m_smoothPath[i*3+1]+0.1f, m_smoothPath[i*3+2], pathCol); dd.end(); } if (m_pathIterNum) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_pathIterPolys[0], duRGBA(255,255,255,128)); dd.begin(DU_DRAW_LINES, 1.0f); const unsigned int prevCol = duRGBA(255,192,0,220); const unsigned int curCol = duRGBA(255,255,255,220); const unsigned int steerCol = duRGBA(0,192,255,220); dd.vertex(m_prevIterPos[0],m_prevIterPos[1]-0.3f,m_prevIterPos[2], prevCol); dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], prevCol); dd.vertex(m_iterPos[0],m_iterPos[1]-0.3f,m_iterPos[2], curCol); dd.vertex(m_iterPos[0],m_iterPos[1]+0.3f,m_iterPos[2], curCol); dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], prevCol); dd.vertex(m_iterPos[0],m_iterPos[1]+0.3f,m_iterPos[2], prevCol); dd.vertex(m_prevIterPos[0],m_prevIterPos[1]+0.3f,m_prevIterPos[2], steerCol); dd.vertex(m_steerPos[0],m_steerPos[1]+0.3f,m_steerPos[2], steerCol); for (int i = 0; i < m_steerPointCount-1; ++i) { dd.vertex(m_steerPoints[i*3+0],m_steerPoints[i*3+1]+0.2f,m_steerPoints[i*3+2], duDarkenColor(steerCol)); dd.vertex(m_steerPoints[(i+1)*3+0],m_steerPoints[(i+1)*3+1]+0.2f,m_steerPoints[(i+1)*3+2], duDarkenColor(steerCol)); } dd.end(); } } else if (m_toolMode == TOOLMODE_PATHFIND_STRAIGHT) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_startRef, startCol); duDebugDrawNavMeshPoly(&dd, m_navMesh, m_endRef, endCol); if (m_npolys) { for (int i = 1; i < m_npolys-1; ++i) duDebugDrawNavMeshPoly(&dd, m_navMesh, m_polys[i], pathCol); } if (m_nstraightPath) { const unsigned int pathCol = duRGBA(64,16,0,220); const unsigned int offMeshCol = duRGBA(128,96,0,220); dd.begin(DU_DRAW_LINES, 2.0f); for (int i = 0; i < m_nstraightPath-1; ++i) { unsigned int col = 0; if (m_straightPathFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) col = offMeshCol; else col = pathCol; dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], col); dd.vertex(m_straightPath[(i+1)*3], m_straightPath[(i+1)*3+1]+0.4f, m_straightPath[(i+1)*3+2], col); } dd.end(); dd.begin(DU_DRAW_POINTS, 6.0f); for (int i = 0; i < m_nstraightPath; ++i) { unsigned int col = 0; if (m_straightPathFlags[i] & DT_STRAIGHTPATH_START) col = startCol; else if (m_straightPathFlags[i] & DT_STRAIGHTPATH_START) col = endCol; else if (m_straightPathFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) col = offMeshCol; else col = pathCol; dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol); } dd.end(); } } else if (m_toolMode == TOOLMODE_RAYCAST) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_startRef, startCol); if (m_nstraightPath) { for (int i = 1; i < m_npolys; ++i) duDebugDrawNavMeshPoly(&dd, m_navMesh, m_polys[i], pathCol); const unsigned int pathCol = m_hitResult ? duRGBA(64,16,0,220) : duRGBA(240,240,240,220); dd.begin(DU_DRAW_LINES, 2.0f); for (int i = 0; i < m_nstraightPath-1; ++i) { dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol); dd.vertex(m_straightPath[(i+1)*3], m_straightPath[(i+1)*3+1]+0.4f, m_straightPath[(i+1)*3+2], pathCol); } dd.end(); dd.begin(DU_DRAW_POINTS, 4.0f); for (int i = 0; i < m_nstraightPath; ++i) dd.vertex(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2], pathCol); dd.end(); if (m_hitResult) { const unsigned int hitCol = duRGBA(0,0,0,128); dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(m_hitPos[0], m_hitPos[1] + 0.4f, m_hitPos[2], hitCol); dd.vertex(m_hitPos[0] + m_hitNormal[0]*agentRadius, m_hitPos[1] + 0.4f + m_hitNormal[1]*agentRadius, m_hitPos[2] + m_hitNormal[2]*agentRadius, hitCol); dd.end(); } } } else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_startRef, startCol); duDebugDrawCircle(&dd, m_spos[0], m_spos[1]+agentHeight/2, m_spos[2], m_distanceToWall, duRGBA(64,16,0,220), 2.0f); dd.begin(DU_DRAW_LINES, 3.0f); dd.vertex(m_hitPos[0], m_hitPos[1] + 0.02f, m_hitPos[2], duRGBA(0,0,0,192)); dd.vertex(m_hitPos[0], m_hitPos[1] + agentHeight, m_hitPos[2], duRGBA(0,0,0,192)); dd.end(); } else if (m_toolMode == TOOLMODE_FIND_POLYS_AROUND) { for (int i = 0; i < m_npolys; ++i) { duDebugDrawNavMeshPoly(&dd, m_navMesh, m_polys[i], pathCol); if (m_parent[i]) { float p0[3], p1[3]; dd.depthMask(false); getPolyCenter(m_navMesh, m_parent[i], p0); getPolyCenter(m_navMesh, m_polys[i], p1); duDebugDrawArc(&dd, p0[0],p0[1],p0[2], p1[0],p1[1],p1[2], 0.25f, 0.0f, 0.4f, duRGBA(0,0,0,128), 2.0f); dd.depthMask(true); } } if (m_sposSet && m_eposSet) { dd.depthMask(false); const float dx = m_epos[0] - m_spos[0]; const float dz = m_epos[2] - m_spos[2]; const float dist = sqrtf(dx*dx + dz*dz); duDebugDrawCircle(&dd, m_spos[0], m_spos[1]+agentHeight/2, m_spos[2], dist, duRGBA(64,16,0,220), 2.0f); dd.depthMask(true); } } glDepthMask(GL_TRUE); } void NavMeshTesterTool::handleRenderOverlay(double* proj, double* model, int* view) { GLdouble x, y, z; // Draw start and end point labels if (m_sposSet && gluProject((GLdouble)m_spos[0], (GLdouble)m_spos[1], (GLdouble)m_spos[2], model, proj, view, &x, &y, &z)) { imguiDrawText((int)x, (int)(y-25), IMGUI_ALIGN_CENTER, "Start", imguiRGBA(0,0,0,220)); } if (m_eposSet && gluProject((GLdouble)m_epos[0], (GLdouble)m_epos[1], (GLdouble)m_epos[2], model, proj, view, &x, &y, &z)) { imguiDrawText((int)x, (int)(y-25), IMGUI_ALIGN_CENTER, "End", imguiRGBA(0,0,0,220)); } } void NavMeshTesterTool::drawAgent(const float* pos, float r, float h, float c, const unsigned int col) { DebugDrawGL dd; glDepthMask(GL_FALSE); // Agent dimensions. duDebugDrawCylinderWire(&dd, pos[0]-r, pos[1]+0.02f, pos[2]-r, pos[0]+r, pos[1]+h, pos[2]+r, col, 2.0f); duDebugDrawCircle(&dd, pos[0],pos[1]+c,pos[2],r,duRGBA(0,0,0,64),1.0f); unsigned int colb = duRGBA(0,0,0,196); dd.begin(DU_DRAW_LINES); dd.vertex(pos[0], pos[1]-c, pos[2], colb); dd.vertex(pos[0], pos[1]+c, pos[2], colb); dd.vertex(pos[0]-r/2, pos[1]+0.02f, pos[2], colb); dd.vertex(pos[0]+r/2, pos[1]+0.02f, pos[2], colb); dd.vertex(pos[0], pos[1]+0.02f, pos[2]-r/2, colb); dd.vertex(pos[0], pos[1]+0.02f, pos[2]+r/2, colb); dd.end(); glDepthMask(GL_TRUE); }