// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" static const int RC_MAX_LAYERS = RC_NOT_CONNECTED; static const int RC_MAX_NEIS = 16; struct rcLayerRegion { unsigned char layers[RC_MAX_LAYERS]; unsigned char neis[RC_MAX_NEIS]; unsigned short ymin, ymax; unsigned short count; unsigned char layerId; unsigned char nlayers; unsigned char nneis; unsigned char start; }; static void addUnique(unsigned char* a, unsigned char& an, unsigned char v) { const int n = (int)an; for (int i = 0; i < n; ++i) if (a[i] == v) return; a[an] = v; an++; } static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v) { const int n = (int)an; if (n > 0 && a[n-1] == v) return; a[an] = v; an++; } static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v) { const int n = (int)an; for (int i = 0; i < n; ++i) if (a[i] == v) return true; return false; } inline bool overlapRange(const unsigned short amin, const unsigned short amax, const unsigned short bmin, const unsigned short bmax) { return (amin > bmax || amax < bmin) ? false : true; } struct rcLayerSweepSpan { unsigned short ns; // number samples unsigned char id; // region id unsigned char nei; // neighbour id }; rcHeightfieldLayerPortal* allocPortal(rcHeightfieldLayerPortal** portals, int& nportals, int& cportals) { if (nportals+1 >= cportals) { cportals *= 2; rcHeightfieldLayerPortal* np = (rcHeightfieldLayerPortal*)rcAlloc(sizeof(rcHeightfieldLayerPortal)*cportals,RC_ALLOC_PERM); if (!np) return 0; if (nportals > 0) memcpy(np,*portals,sizeof(rcHeightfieldLayerPortal)*nportals); rcFree(*portals); *portals = np; } nportals++; return &(*portals)[nportals-1]; } bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize, const int walkableHeight, rcHeightfieldLayerSet& lset) { rcAssert(ctx); ctx->startTimer(RC_TIMER_BUILD_LAYERS); const int w = chf.width; const int h = chf.height; rcScopedDelete srcReg = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); if (!srcReg) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount); return false; } memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount); const int nsweeps = chf.width; rcScopedDelete sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP); if (!sweeps) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps); return false; } // Partition walkable area into monotone regions. int prevCount[256]; unsigned char regId = 0; // for (int y = 0; y < h; ++y) for (int y = borderSize; y < h-borderSize; ++y) { memset(prevCount,0,sizeof(int)*regId); unsigned char sweepId = 0; // for (int x = 0; x < w; ++x) for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (chf.areas[i] == RC_NULL_AREA) continue; unsigned char sid = 0xff; // -x if (rcGetCon(s, 0) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(0); const int ay = y + rcGetDirOffsetY(0); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff) sid = srcReg[ai]; } if (sid == 0xff) { sid = sweepId++; sweeps[sid].nei = 0xff; sweeps[sid].ns = 0; } // -y if (rcGetCon(s,3) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(3); const int ay = y + rcGetDirOffsetY(3); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); const unsigned char nr = srcReg[ai]; if (nr != 0xff) { // Set neighbour when first valid neighbour is encoutered. if (sweeps[sid].ns == 0) sweeps[sid].nei = nr; if (sweeps[sid].nei == nr) { // Update existing neighbour sweeps[sid].ns++; prevCount[nr]++; } else { // This is hit if there is nore than one neighbour. // Invalidate the neighbour. sweeps[sid].nei = 0xff; } } } srcReg[i] = sid; } } // Create unique ID. for (int i = 0; i < sweepId; ++i) { // If the neighbour is set and there is only one continuous connection to it, // the sweep will be merged with the previous one, else new region is created. if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns) { sweeps[i].id = sweeps[i].nei; } else { if (regId == 255) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow."); return false; } sweeps[i].id = regId++; } } // Remap local sweep ids to region ids. // for (int x = 0; x < w; ++x) for (int x = borderSize; x < w-borderSize; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (srcReg[i] != 0xff) srcReg[i] = sweeps[srcReg[i]].id; } } } // Allocate and init layer regions. const int nregs = (int)regId; rcScopedDelete regs = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP); if (!regs) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs); return false; } memset(regs, 0, sizeof(rcLayerRegion)*nregs); for (int i = 0; i < nregs; ++i) { regs[i].layerId = 0xff; regs[i].ymin = 0xffff; regs[i].ymax = 0; } // Find region neighbours and overlapping regions. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; unsigned char lregs[RC_MAX_LAYERS]; int nlregs = 0; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; const unsigned char ri = srcReg[i]; if (ri == 0xff) continue; regs[ri].ymin = rcMin(regs[ri].ymin, s.y); regs[ri].ymax = rcMax(regs[ri].ymax, s.y); // Collect all region layers. if (nlregs < RC_MAX_LAYERS) lregs[nlregs++] = ri; // Update neighbours for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); const unsigned char rai = srcReg[ai]; if (rai != 0xff && rai != ri) addUnique(regs[ri].neis, regs[ri].nneis, rai); } } } // Update overlapping regions. for (int i = 0; i < nlregs-1; ++i) { for (int j = i+1; j < nlregs; ++j) { if (lregs[i] != lregs[j]) { rcLayerRegion& ri = regs[lregs[i]]; rcLayerRegion& rj = regs[lregs[j]]; addUnique(ri.layers, ri.nlayers, lregs[j]); addUnique(rj.layers, rj.nlayers, lregs[i]); } } } } } // Create 2D layers from regions. unsigned char layerId = 0; static const int MAX_STACK = 64; unsigned char stack[MAX_STACK]; int nstack = 0; for (int i = 0; i < nregs; ++i) { rcLayerRegion& root = regs[i]; // Skip alreadu visited. if (root.layerId != 0xff) continue; // Start search. root.layerId = layerId; root.start = 1; nstack = 0; stack[nstack++] = (unsigned char)i; while (nstack) { // Pop front rcLayerRegion& reg = regs[stack[0]]; nstack--; for (int j = 0; j < nstack; ++j) stack[j] = stack[j+1]; const int nneis = (int)reg.nneis; for (int j = 0; j < nneis; ++j) { const unsigned char nei = reg.neis[j]; // Skip already visited. if (regs[nei].layerId != 0xff) continue; // Skip if the neighbour is overlapping root region. if (contains(root.layers, root.nlayers, nei)) continue; if (nstack < MAX_STACK) { // Deepen stack[nstack++] = (unsigned char)nei; rcLayerRegion& regn = regs[nei]; // Mark layer id regn.layerId = layerId; // Merge current layers to root. for (int k = 0; k < regn.nlayers; ++k) addUnique(root.layers, root.nlayers, regn.layers[k]); root.ymin = rcMin(root.ymin, regn.ymin); root.ymax = rcMax(root.ymax, regn.ymax); } } } layerId++; } // Merge non-overlapping regions that are close in height. const int mergeHeight = walkableHeight * 4; for (int i = 0; i < nregs; ++i) { rcLayerRegion& ri = regs[i]; if (!ri.start) continue; unsigned char newId = ri.layerId; for (;;) { unsigned char oldId = 0xff; for (int j = 0; j < nregs; ++j) { if (i == j) continue; rcLayerRegion& rj = regs[j]; if (!rj.start) continue; // Skip if teh regions are not close to each other. if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight)) continue; // Make sure that there is no overlap when mergin 'ri' and 'rj'. bool overlap = false; // Iterate over all regions which have the same layerId as 'rj' for (int k = 0; k < nregs; ++k) { if (regs[k].layerId != rj.layerId) continue; // Check if region 'k' is overlapping region 'ri' // Index to 'regs' is the same as region id. if (contains(ri.layers,ri.nlayers, (unsigned char)k)) { overlap = true; break; } } // Cannot merge of regions overlap. if (overlap) continue; // Can merge i and j. oldId = rj.layerId; break; } // Could not find anything to merge with, stop. if (oldId == 0xff) break; // Merge for (int j = 0; j < nregs; ++j) { rcLayerRegion& rj = regs[j]; if (rj.layerId == oldId) { rj.start = 0; // Remap layerIds. rj.layerId = newId; // Add overlaid layers from 'rj' to 'ri'. for (int k = 0; k < rj.nlayers; ++k) addUnique(ri.layers, ri.nlayers, rj.layers[k]); // Update heigh bounds. ri.ymin = rcMin(ri.ymin, rj.ymin); ri.ymax = rcMax(ri.ymax, rj.ymax); } } } } // Compact layerIds unsigned char remap[256]; memset(remap, 0, 256); // Find number of unique layers. layerId = 0; for (int i = 0; i < nregs; ++i) remap[regs[i].layerId] = 1; for (int i = 0; i < 256; ++i) { if (remap[i]) remap[i] = layerId++; else remap[i] = 0xff; } // Remap ids. for (int i = 0; i < nregs; ++i) regs[i].layerId = remap[regs[i].layerId]; // No layers, return empty. if (layerId == 0) { ctx->stopTimer(RC_TIMER_BUILD_REGIONS); return true; } // Create layers. rcAssert(lset.layers == 0); const int lw = w - borderSize*2; const int lh = h - borderSize*2; // Build contracted bbox for layers. float bmin[3], bmax[3]; rcVcopy(bmin, chf.bmin); rcVcopy(bmax, chf.bmax); bmin[0] += borderSize*chf.cs; bmin[2] += borderSize*chf.cs; bmax[0] -= borderSize*chf.cs; bmax[2] -= borderSize*chf.cs; lset.nlayers = (int)layerId; lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM); if (!lset.layers) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers); return false; } memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers); rcScopedDelete cons = (unsigned char*)rcAlloc(sizeof(unsigned char)*lw*lh, RC_ALLOC_TEMP); if (!cons) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'con' (%d).", lw*lh); return false; } // Store layers. for (int i = 0; i < lset.nlayers; ++i) { unsigned char curId = (unsigned char)i; // Allocate memory for the current layer. rcHeightfieldLayer* layer = &lset.layers[i]; layer->width = lw; layer->height = lh; layer->cs = chf.cs; layer->ch = chf.ch; // TODO: Should this be local bbox instead? rcVcopy(layer->bmin, bmin); rcVcopy(layer->bmax, bmax); layer->heights = (unsigned short*)rcAlloc(sizeof(unsigned short)*lw*lh, RC_ALLOC_PERM); if (!layer->heights) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", w*h); return false; } memset(layer->heights, 0xff, sizeof(unsigned short)*lw*lh); layer->areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*lw*lh, RC_ALLOC_PERM); if (!layer->areas) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", w*h); return false; } memset(layer->areas, RC_NULL_AREA, sizeof(unsigned char)*lw*lh); memset(cons, 0, sizeof(unsigned char)*lw*lh); // Find layer height bounds. for (int j = 0; j < nregs; ++j) { if (regs[j].start && regs[j].layerId == curId) { layer->ymin = regs[j].ymin; layer->ymax = regs[j].ymax; } } // Copy height and area from compact heighfield. for (int y = 0; y < lh; ++y) { for (int x = 0; x < lw; ++x) { const int cx = borderSize+x; const int cy = borderSize+y; const rcCompactCell& c = chf.cells[cx+cy*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; // Skip unassigned regions. if (srcReg[i] == 0xff) continue; // Skip of does nto belong to current layer. unsigned char lid = regs[srcReg[i]].layerId; if (lid != curId) continue; // Store height and area type. const int idx = x+y*lw; layer->heights[idx] = s.y; layer->areas[idx] = chf.areas[i]; // Check connection. unsigned char con = 0; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != RC_NOT_CONNECTED) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff; if (chf.areas[ai] != RC_NULL_AREA && lid != alid) con |= (unsigned char)(1<portals = (rcHeightfieldLayerPortal*)rcAlloc(sizeof(rcHeightfieldLayerPortal)*cportals,RC_ALLOC_PERM); if (!layer->portals) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals); return false; } layer->nportals = 0; // Directions same as rcGetCon() const unsigned char XM = 1<<0; // x- const unsigned char YP = 1<<1; // y+ const unsigned char XP = 1<<2; // x+ const unsigned char YM = 1<<3; // y- // Portals along x-axis for (int y = 0; y < lh; ++y) { const unsigned char dir[2] = {3,1}; const unsigned char mask[2] = {YM,YP}; int start[2] = { -1, -1}; for (int x = 0; x < lw+1; ++x) { const int idx = x+y*lw; for (int j = 0; j < 2; ++j) { unsigned char set = xportals, layer->nportals, cportals); if (!portal) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals); return false; } portal->pos = (unsigned char)y/*+off[j]*/; portal->smin = (unsigned char)start[j]; portal->smax = (unsigned char)x; portal->dir = dir[j]; start[j] = -1; } } } } } // Portals along y-axis for (int x = 0; x < lw; ++x) { const unsigned char dir[2] = {0,2}; const unsigned char mask[2] = {XM,XP}; int start[2] = { -1, -1}; for (int y = 0; y < lh+1; ++y) { const int idx = x+y*lw; for (int j = 0; j < 2; ++j) { unsigned char set = yportals,layer->nportals,cportals); if (!portal) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals); return false; } portal->pos = (unsigned char)x/*+off[j]*/; portal->smin = (unsigned char)start[j]; portal->smax = (unsigned char)y; portal->dir = dir[j]; start[j] = -1; } } } } } } ctx->stopTimer(RC_TIMER_BUILD_LAYERS); return true; } inline bool isConnected(rcHeightfieldLayer& layer, const int ia, const int ib, const int walkableClimb) { if (layer.areas[ia] != layer.areas[ib]) return false; if (rcAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false; return true; } struct rcMonotoneRegion { int area; unsigned char neis[RC_MAX_NEIS]; unsigned char nneis; unsigned char regId; }; static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const rcMonotoneRegion* regs, const int nregs) { int count = 0; for (int i = 0; i < nregs; ++i) { const rcMonotoneRegion& reg = regs[i]; if (reg.regId != oldRegId) continue; const int nnei = (int)reg.nneis; for (int j = 0; j < nnei; ++j) { if (regs[reg.neis[j]].regId == newRegId) count++; } } return count == 1; } // TODO: move this somewhere else, once the layer meshing is done. bool rcBuildLayerRegions(rcContext* ctx, rcHeightfieldLayer& layer, const int walkableClimb) { rcAssert(ctx); // ctx->startTimer(RC_TIMER_BUILD_LAYERS); const int w = layer.width; const int h = layer.height; rcAssert(layer.regs == 0); layer.regs = (unsigned char*)rcAlloc(sizeof(unsigned char)*w*h, RC_ALLOC_TEMP); if (!layer.regs) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", w*h); return false; } memset(layer.regs,0xff,sizeof(unsigned char)*w*h); const int nsweeps = w; rcScopedDelete sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP); if (!sweeps) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps); return false; } memset(sweeps,0,sizeof(rcLayerSweepSpan)*nsweeps); // Partition walkable area into monotone regions. int prevCount[256]; unsigned char regId = 0; for (int y = 0; y < h; ++y) { if (regId > 0) memset(prevCount,0,sizeof(int)*regId); unsigned char sweepId = 0; for (int x = 0; x < w; ++x) { const int idx = x + y*w; if (layer.areas[idx] == RC_NULL_AREA) continue; unsigned char sid = 0xff; // -x const int xidx = (x-1)+y*w; if (x > 0 && isConnected(layer, idx, xidx, walkableClimb)) { if (layer.regs[xidx] != 0xff) sid = layer.regs[xidx]; } if (sid == 0xff) { sid = sweepId++; sweeps[sid].nei = 0xff; sweeps[sid].ns = 0; } // -y const int yidx = x+(y-1)*w; if (y > 0 && isConnected(layer, idx, yidx, walkableClimb)) { const unsigned char nr = layer.regs[yidx]; if (nr != 0xff) { // Set neighbour when first valid neighbour is encoutered. if (sweeps[sid].ns == 0) sweeps[sid].nei = nr; if (sweeps[sid].nei == nr) { // Update existing neighbour sweeps[sid].ns++; prevCount[nr]++; } else { // This is hit if there is nore than one neighbour. // Invalidate the neighbour. sweeps[sid].nei = 0xff; } } } layer.regs[idx] = sid; } // Create unique ID. for (int i = 0; i < sweepId; ++i) { // If the neighbour is set and there is only one continuous connection to it, // the sweep will be merged with the previous one, else new region is created. if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns) { sweeps[i].id = sweeps[i].nei; } else { if (regId == 255) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow."); return false; } sweeps[i].id = regId++; } } // Remap local sweep ids to region ids. for (int x = 0; x < w; ++x) { const int idx = x+y*w; if (layer.regs[idx] != 0xff) layer.regs[idx] = sweeps[layer.regs[idx]].id; } } // Allocate and init layer regions. const int nregs = (int)regId; rcScopedDelete regs = (rcMonotoneRegion*)rcAlloc(sizeof(rcMonotoneRegion)*nregs, RC_ALLOC_TEMP); if (!regs) { ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs); return false; } memset(regs, 0, sizeof(rcMonotoneRegion)*nregs); for (int i = 0; i < nregs; ++i) regs[i].regId = 0xff; // Find region neighbours. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int idx = x+y*w; const unsigned char ri = layer.regs[idx]; if (ri == 0xff) continue; // Update area. regs[ri].area++; // Update neighbours const int ymi = x+(y-1)*w; if (y > 0 && isConnected(layer, idx, ymi, walkableClimb)) { const unsigned char rai = layer.regs[ymi]; if (rai != 0xff && rai != ri) { addUniqueLast(regs[ri].neis, regs[ri].nneis, rai); addUniqueLast(regs[rai].neis, regs[rai].nneis, ri); } } } } for (int i = 0; i < nregs; ++i) regs[i].regId = (unsigned char)i; for (int i = 0; i < nregs; ++i) { rcMonotoneRegion& reg = regs[i]; int merge = -1; int mergea = 0; for (int j = 0; j < (int)reg.nneis; ++j) { const unsigned char nei = reg.neis[j]; rcMonotoneRegion& regn = regs[nei]; if (reg.regId == regn.regId) continue; if (regn.area > mergea) { if (canMerge(reg.regId, regn.regId, regs, nregs)) { mergea = regn.area; merge = (int)nei; } } } if (merge != -1) { const unsigned char oldId = reg.regId; const unsigned char newId = regs[merge].regId; for (int j = 0; j < nregs; ++j) if (regs[j].regId == oldId) regs[j].regId = newId; } } // Compact ids. unsigned char remap[256]; memset(remap, 0, 256); // Find number of unique regions. regId = 0; for (int i = 0; i < nregs; ++i) remap[regs[i].regId] = 1; for (int i = 0; i < 256; ++i) if (remap[i]) remap[i] = regId++; // Remap ids. for (int i = 0; i < nregs; ++i) regs[i].regId = remap[regs[i].regId]; layer.regCount = regId; for (int i = 0; i < w*h; ++i) { if (layer.regs[i] != 0xff) layer.regs[i] = regs[layer.regs[i]].regId; } return true; } static bool allocVert(rcLayerContour& cont, int& cverts) { if (cont.nverts+1 > cverts) { cverts = !cverts ? 16 : cverts*2; unsigned char* nv = (unsigned char*)rcAlloc(cverts*4, RC_ALLOC_TEMP); if (!nv) return false; if (cont.nverts) memcpy(nv, cont.verts, cont.nverts*4); rcFree(cont.verts); cont.verts = nv; } return true; } static bool addVertex(rcLayerContour& cont, int x, int y, int z, int r, int& cverts) { // Try to merge with existing segments. if (cont.nverts > 1) { unsigned char* pa = &cont.verts[(cont.nverts-2)*4]; unsigned char* pb = &cont.verts[(cont.nverts-1)*4]; if ((int)pb[3] == r) { if (pa[0] == pb[0] && (int)pb[0] == x) { // The verts are aligned aling x-axis, update z. pb[1] = (unsigned char)y; pb[2] = (unsigned char)z; pb[3] = (unsigned char)r; return true; } else if (pa[2] == pb[2] && (int)pb[2] == z) { // The verts are aligned aling z-axis, update x. pb[0] = (unsigned char)x; pb[1] = (unsigned char)y; pb[3] = (unsigned char)r; return true; } } } // Add new point. if (!allocVert(cont, cverts)) return false; unsigned char* v = &cont.verts[cont.nverts*4]; v[0] = (unsigned char)x; v[1] = (unsigned char)y; v[2] = (unsigned char)z; v[3] = (unsigned char)r; cont.nverts++; return true; } static unsigned char getNeighbourReg(rcHeightfieldLayer& layer, const unsigned char* cons, const int ax, const int ay, const int dir, const int walkableClimb) { const int ia = ax+ay*layer.width; const int bx = ax + rcGetDirOffsetX(dir); const int by = ay + rcGetDirOffsetY(dir); if (bx < 0 || by < 0 || bx >= layer.width || by >= layer.height) { if (cons[ia] & (1< walkableClimb) { if (cons[ia] & (1< 0 && x == startX && y == startY && dir == startDir) break; x = nx; y = ny; dir = ndir; iter++; } // Remove last vertex if it is duplicate of the first one. unsigned char* pa = &cont.verts[(cont.nverts-1)*4]; unsigned char* pb = &cont.verts[0]; if (pa[0] == pb[0] && pa[2] == pb[2]) cont.nverts--; return true; } static float distancePtSeg(const int x, const int z, const int px, const int pz, const int qx, const int qz) { /* float pqx = (float)(qx - px); float pqy = (float)(qy - py); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dy = (float)(y - py); float dz = (float)(z - pz); float d = pqx*pqx + pqy*pqy + pqz*pqz; float t = pqx*dx + pqy*dy + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dy = py + t*pqy - y; dz = pz + t*pqz - z; return dx*dx + dy*dy + dz*dz;*/ float pqx = (float)(qx - px); float pqz = (float)(qz - pz); float dx = (float)(x - px); float dz = (float)(z - pz); float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = px + t*pqx - x; dz = pz + t*pqz - z; return dx*dx + dz*dz; } static bool simplifyContour(rcLayerContour& cont, const float maxError) { int* poly = (int*)rcAlloc(sizeof(int)*cont.nverts, RC_ALLOC_TEMP); if (!poly) return false; int npoly = 0; for (int i = 0; i < cont.nverts; ++i) { int j = (i+1) % cont.nverts; // Check for start of a wall segment. unsigned char ra = cont.verts[j*4+3]; unsigned char rb = cont.verts[i*4+3]; if (ra != rb) poly[npoly++] = i; } if (npoly < 2) { // If there is no transitions at all, // create some initial points for the simplification process. // Find lower-left and upper-right vertices of the contour. int llx = cont.verts[0]; int llz = cont.verts[2]; int lli = 0; int urx = cont.verts[0]; int urz = cont.verts[2]; int uri = 0; for (int i = 1; i < cont.nverts; ++i) { int x = cont.verts[i*4+0]; int z = cont.verts[i*4+2]; if (x < llx || (x == llx && z < llz)) { llx = x; llz = z; lli = i; } if (x > urx || (x == urx && z > urz)) { urx = x; urz = z; uri = i; } } npoly = 0; poly[npoly++] = lli; poly[npoly++] = uri; } // Add points until all raw points are within // error tolerance to the simplified shape. for (int i = 0; i < npoly; ) { int ii = (i+1) % npoly; const int ai = poly[i]; const int ax = cont.verts[ai*4+0]; const int az = cont.verts[ai*4+2]; const int bi = poly[ii]; const int bx = cont.verts[bi*4+0]; const int bz = cont.verts[bi*4+2]; // Find maximum deviation from the segment. float maxd = 0; int maxi = -1; int ci, cinc, endi; // Traverse the segment in lexilogical order so that the // max deviation is calculated similarly when traversing // opposite segments. if (bx > ax || (bx == ax && bz > az)) { cinc = 1; ci = (ai+cinc) % cont.nverts; endi = bi; } else { cinc = cont.nverts-1; ci = (bi+cinc) % cont.nverts; endi = ai; } // Tessellate only outer edges or edges between areas. while (ci != endi) { float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz); if (d > maxd) { maxd = d; maxi = ci; } ci = (ci+cinc) % cont.nverts; } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > (maxError*maxError)) { npoly++; for (int j = npoly-1; j > i; --j) poly[j] = poly[j-1]; poly[i+1] = maxi; } else { ++i; } } // Remap vertices int start = 0; for (int i = 1; i < npoly; ++i) if (poly[i] < poly[start]) start = i; cont.nverts = 0; for (int i = 0; i < npoly; ++i) { const int j = (start+i) % npoly; unsigned char* src = &cont.verts[poly[j]*4]; unsigned char* dst = &cont.verts[cont.nverts*4]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; cont.nverts++; } rcFree(poly); return true; } // TODO: move this somewhere else, once the layer meshing is done. bool rcBuildLayerContours(rcContext* ctx, rcHeightfieldLayer& layer, const int walkableClimb, const float maxError, rcLayerContourSet& lcset) { rcAssert(ctx); const int w = layer.width; const int h = layer.height; rcAssert(lcset.conts == 0); rcVcopy(lcset.bmin, layer.bmin); rcVcopy(lcset.bmax, layer.bmax); lcset.cs = layer.cs; lcset.ch = layer.ch; lcset.nconts = layer.regCount; lcset.conts = (rcLayerContour*)rcAlloc(sizeof(rcLayerContour)*lcset.nconts, RC_ALLOC_TEMP); if (!lcset.conts) { ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Out of memory 'conts' (%d).", lcset.nconts); return false; } memset(lcset.conts, 0, sizeof(rcLayerContour)*lcset.nconts); rcScopedDelete cons = (unsigned char*)rcAlloc(sizeof(unsigned char)*w*h, RC_ALLOC_TEMP); if (!cons) { ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Out of memory 'cons' (%d).", w*h); return false; } memset(cons,0,sizeof(unsigned char)*w*h); /* if (portal->dir == 0 || portal->dir == 2) { const int xx = portal->dir == 0 ? (int)portal->pos : (int)portal->pos+1; const float fx = layer->bmin[0] + xx*cs; const float fya = layer->bmin[1] + (layer->ymin)*ch; const float fyb = layer->bmin[1] + (layer->ymin)*ch; const float fza = layer->bmin[2] + portal->smin*cs; const float fzb = layer->bmin[2] + portal->smax*cs; dd->vertex(fx, fya+h, fza, pcol); dd->vertex(fx, fyb+h, fzb, pcol); } else if (portal->dir == 3 || portal->dir == 1) { const int yy = portal->dir == 3 ? (int)portal->pos : (int)portal->pos+1; const float fxa = layer->bmin[0] + portal->smin*cs; const float fxb = layer->bmin[0] + portal->smax*cs; const float fya = layer->bmin[1] + (layer->ymin)*ch; const float fyb = layer->bmin[1] + (layer->ymin)*ch; const float fz = layer->bmin[2] + yy*cs; dd->vertex(fxa, fya+h, fz, pcol); dd->vertex(fxb, fyb+h, fz, pcol); }*/ // Paint portals for (int i = 0; i < layer.nportals; ++i) { const rcHeightfieldLayerPortal* portal = &layer.portals[i]; if (portal->dir == 0 || portal->dir == 2) { const unsigned char mask = (const unsigned char)(1 << portal->dir); for (int j = (int)portal->smin; j < (int)portal->smax; ++j) cons[(int)portal->pos + j*w] |= mask; } else { const unsigned char mask = (const unsigned char)(1 << portal->dir); for (int j = (int)portal->smin; j < (int)portal->smax; ++j) cons[j + (int)portal->pos*w] |= mask; } } /* printf("cons:\n"); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { unsigned char c = cons[x+y*w]; if (c == 0) printf("."); else printf("%x",c); } printf("\n"); }*/ // Find contours. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int idx = x+y*w; const unsigned char ri = layer.regs[idx]; if (ri == 0xff) continue; rcLayerContour& cont = lcset.conts[ri]; if (cont.nverts > 0) continue; cont.reg = ri; cont.area = layer.areas[idx]; if (!walkContour(x, y, layer, cons, walkableClimb, cont)) { ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Failed to walk contour."); return false; } if (!simplifyContour(cont, maxError)) { ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Failed to simplify contour."); return false; } } } return true; }