// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #include #include #include #include "DetourNavMesh.h" #include "DetourNode.h" #include "DetourCommon.h" #include "DetourAlloc.h" #include inline int opposite(int side) { return (side+4) & 0x7; } inline bool overlapBoxes(const float* amin, const float* amax, const float* bmin, const float* bmax) { bool overlap = true; overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; return overlap; } inline bool overlapRects(const float* amin, const float* amax, const float* bmin, const float* bmax) { bool overlap = true; overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; return overlap; } inline bool overlapSlabs(const float* amin, const float* amax, const float* bmin, const float* bmax, const float px, const float py) { // Check for horizontal overlap. // The segment is shrunken a little so that slabs which touch // at end points are not connected. const float minx = dtMax(amin[0]+px,bmin[0]+px); const float maxx = dtMin(amax[0]-px,bmax[0]-px); if (minx > maxx) return false; // Check vertical overlap. const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); const float ak = amin[1] - ad*amin[0]; const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); const float bk = bmin[1] - bd*bmin[0]; const float aminy = ad*minx + ak; const float amaxy = ad*maxx + ak; const float bminy = bd*minx + bk; const float bmaxy = bd*maxx + bk; const float dmin = bminy - aminy; const float dmax = bmaxy - amaxy; // Crossing segments always overlap. if (dmin*dmax < 0) return true; // Check for overlap at endpoints. const float thr = dtSqr(py*2); if (dmin*dmin <= thr || dmax*dmax <= thr) return true; return false; } static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) { if (side == 0 || side == 4) { if (va[2] < vb[2]) { bmin[0] = va[2]; bmin[1] = va[1]; bmax[0] = vb[2]; bmax[1] = vb[1]; } else { bmin[0] = vb[2]; bmin[1] = vb[1]; bmax[0] = va[2]; bmax[1] = va[1]; } } else if (side == 2 || side == 6) { if (va[0] < vb[0]) { bmin[0] = va[0]; bmin[1] = va[1]; bmax[0] = vb[0]; bmax[1] = vb[1]; } else { bmin[0] = vb[0]; bmin[1] = vb[1]; bmax[0] = va[0]; bmax[1] = va[1]; } } } inline int computeTileHash(int x, int y, const int mask) { const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes unsigned int n = h1 * x + h2 * y; return (int)(n & mask); } inline unsigned int allocLink(dtMeshTile* tile) { if (tile->linksFreeList == DT_NULL_LINK) return DT_NULL_LINK; unsigned int link = tile->linksFreeList; tile->linksFreeList = tile->links[link].next; return link; } inline void freeLink(dtMeshTile* tile, unsigned int link) { tile->links[link].next = tile->linksFreeList; tile->linksFreeList = link; } inline bool passFilter(const dtQueryFilter* filter, unsigned short flags) { return (flags & filter->includeFlags) != 0 && (flags & filter->excludeFlags) == 0; } dtNavMesh* dtAllocNavMesh() { return new(dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM)) dtNavMesh; } void dtFreeNavMesh(dtNavMesh* navmesh) { if (!navmesh) return; navmesh->~dtNavMesh(); dtFree(navmesh); } ////////////////////////////////////////////////////////////////////////////////////////// dtNavMesh::dtNavMesh() : m_tileWidth(0), m_tileHeight(0), m_maxTiles(0), m_tileLutSize(0), m_tileLutMask(0), m_posLookup(0), m_nextFree(0), m_tiles(0), m_saltBits(0), m_tileBits(0), m_polyBits(0), m_tinyNodePool(0), m_nodePool(0), m_openList(0) { m_orig[0] = 0; m_orig[1] = 0; m_orig[2] = 0; for (int i = 0; i < DT_MAX_AREAS; ++i) m_areaCost[i] = 1.0f; } dtNavMesh::~dtNavMesh() { for (int i = 0; i < m_maxTiles; ++i) { if (m_tiles[i].flags & DT_TILE_FREE_DATA) { dtFree(m_tiles[i].data); m_tiles[i].data = 0; m_tiles[i].dataSize = 0; } } m_tinyNodePool->~dtNodePool(); m_nodePool->~dtNodePool(); m_openList->~dtNodeQueue(); dtFree(m_tinyNodePool); dtFree(m_nodePool); dtFree(m_openList); dtFree(m_posLookup); dtFree(m_tiles); } bool dtNavMesh::init(const dtNavMeshParams* params) { memcpy(&m_params, params, sizeof(dtNavMeshParams)); dtVcopy(m_orig, params->orig); m_tileWidth = params->tileWidth; m_tileHeight = params->tileHeight; // Init tiles m_maxTiles = params->maxTiles; m_tileLutSize = dtNextPow2(params->maxTiles/4); if (!m_tileLutSize) m_tileLutSize = 1; m_tileLutMask = m_tileLutSize-1; m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); if (!m_tiles) return false; m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); if (!m_posLookup) return false; memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); m_nextFree = 0; for (int i = m_maxTiles-1; i >= 0; --i) { m_tiles[i].salt = 1; m_tiles[i].next = m_nextFree; m_nextFree = &m_tiles[i]; } // TODO: check the node pool size too. if (!m_nodePool) { m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(params->maxNodes, dtNextPow2(params->maxNodes/4)); if (!m_nodePool) return false; } if (!m_tinyNodePool) { m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32); if (!m_tinyNodePool) return false; } // TODO: check the open list size too. if (!m_openList) { m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(params->maxNodes); if (!m_openList) return false; } // Init ID generator values. m_tileBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxTiles))); m_polyBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxPolys))); m_saltBits = 32 - m_tileBits - m_polyBits; if (m_saltBits < 10) return false; return true; } bool dtNavMesh::init(unsigned char* data, int dataSize, int flags, int maxNodes) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return false; if (header->version != DT_NAVMESH_VERSION) return false; dtNavMeshParams params; dtVcopy(params.orig, header->bmin); params.tileWidth = header->bmax[0] - header->bmin[0]; params.tileHeight = header->bmax[2] - header->bmin[2]; params.maxTiles = 1; params.maxPolys = header->polyCount; params.maxNodes = maxNodes; if (!init(¶ms)) return false; return addTile(data, dataSize, flags) != 0; } const dtNavMeshParams* dtNavMesh::getParams() const { return &m_params; } ////////////////////////////////////////////////////////////////////////////////////////// int dtNavMesh::findConnectingPolys(const float* va, const float* vb, const dtMeshTile* tile, int side, dtPolyRef* con, float* conarea, int maxcon) const { if (!tile) return 0; float amin[2], amax[2]; calcSlabEndPoints(va,vb, amin,amax, side); // Remove links pointing to 'side' and compact the links array. float bmin[2], bmax[2]; unsigned short m = DT_EXT_LINK | (unsigned short)side; int n = 0; dtPolyRef base = getTilePolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; // Check if the segments touch. const float* vc = &tile->verts[poly->verts[j]*3]; const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; calcSlabEndPoints(vc,vd, bmin,bmax, side); if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; // Add return value. if (n < maxcon) { conarea[n*2+0] = dtMax(amin[0], bmin[0]); conarea[n*2+1] = dtMin(amax[0], bmax[0]); con[n] = base | (unsigned int)i; n++; } break; } } return n; } void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, int side) { if (!tile) return; for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; unsigned int j = poly->firstLink; unsigned int pj = DT_NULL_LINK; while (j != DT_NULL_LINK) { if (tile->links[j].side == side) { // Revove link. unsigned int nj = tile->links[j].next; if (pj == DT_NULL_LINK) poly->firstLink = nj; else tile->links[pj].next = nj; freeLink(tile, j); j = nj; } else { // Advance pj = j; j = tile->links[j].next; } } } } void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect border links. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; // Create new links. unsigned short m = DT_EXT_LINK | (unsigned short)side; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; // Create new links const float* va = &tile->verts[poly->verts[j]*3]; const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; dtPolyRef nei[4]; float neia[4*2]; int nnei = findConnectingPolys(va,vb, target, opposite(side), nei,neia,4); for (int k = 0; k < nnei; ++k) { unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = nei[k]; link->edge = (unsigned char)j; link->side = (unsigned char)side; link->next = poly->firstLink; poly->firstLink = idx; // Compress portal limits to a byte value. if (side == 0 || side == 4) { const float lmin = dtMin(va[2], vb[2]); const float lmax = dtMax(va[2], vb[2]); link->bmin = (unsigned char)(dtClamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f); } else if (side == 2 || side == 6) { const float lmin = dtMin(va[0], vb[0]); const float lmax = dtMax(va[0], vb[0]); link->bmin = (unsigned char)(dtClamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f); link->bmax = (unsigned char)(dtClamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f); } } } } } } void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) { if (!tile) return; // Connect off-mesh links. // We are interested on links which land from target tile to this tile. const unsigned char oppositeSide = (unsigned char)opposite(side); dtQueryFilter defaultFilter; for (int i = 0; i < target->header->offMeshConCount; ++i) { dtOffMeshConnection* targetCon = &target->offMeshCons[i]; if (targetCon->side != oppositeSide) continue; dtPoly* targetPoly = &target->polys[targetCon->poly]; const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; // Find polygon to connect to. const float* p = &targetCon->pos[3]; float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, ext, &defaultFilter, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) continue; // Make sure the location is on current mesh. float* v = &target->verts[targetPoly->verts[1]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(target); if (idx != DT_NULL_LINK) { dtLink* link = &target->links[idx]; link->ref = ref; link->edge = (unsigned char)1; link->side = oppositeSide; link->bmin = link->bmax = 0; // Add to linked list. link->next = targetPoly->firstLink; targetPoly->firstLink = idx; } // Link target poly to off-mesh connection. if (targetCon->flags & DT_OFFMESH_CON_BIDIR) { unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[idx]; link->ref = getTilePolyRefBase(target) | (unsigned int)(targetCon->poly); link->edge = 0xff; link->side = (unsigned char)side; link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = idx; } } } } void dtNavMesh::connectIntLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getTilePolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; poly->firstLink = DT_NULL_LINK; if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Build edge links backwards so that the links will be // in the linked list from lowest index to highest. for (int j = poly->vertCount-1; j >= 0; --j) { // Skip hard and non-internal edges. if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = base | (unsigned int)(poly->neis[j]-1); link->edge = (unsigned char)j; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } } } } void dtNavMesh::connectIntOffMeshLinks(dtMeshTile* tile) { if (!tile) return; dtPolyRef base = getTilePolyRefBase(tile); // Find Off-mesh connection end points. for (int i = 0; i < tile->header->offMeshConCount; ++i) { dtOffMeshConnection* con = &tile->offMeshCons[i]; dtPoly* poly = &tile->polys[con->poly]; dtQueryFilter defaultFilter; const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad }; for (int j = 0; j < 2; ++j) { unsigned char side = j == 0 ? 0xff : con->side; if (side == 0xff) { // Find polygon to connect to. const float* p = &con->pos[j*3]; float nearestPt[3]; dtPolyRef ref = findNearestPolyInTile(tile, p, ext, &defaultFilter, nearestPt); if (!ref) continue; // findNearestPoly may return too optimistic results, further check to make sure. if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) continue; // Make sure the location is on current mesh. float* v = &tile->verts[poly->verts[j]*3]; dtVcopy(v, nearestPt); // Link off-mesh connection to target poly. unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { dtLink* link = &tile->links[idx]; link->ref = ref; link->edge = (unsigned char)j; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = poly->firstLink; poly->firstLink = idx; } // Start end-point is always connect back to off-mesh connection, // Destination end-point only if it is bidirectional link. if (j == 0 || (j == 1 && (con->flags & DT_OFFMESH_CON_BIDIR))) { // Link target poly to off-mesh connection. unsigned int idx = allocLink(tile); if (idx != DT_NULL_LINK) { const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); dtPoly* landPoly = &tile->polys[landPolyIdx]; dtLink* link = &tile->links[idx]; link->ref = base | (unsigned int)(con->poly); link->edge = 0xff; link->side = 0xff; link->bmin = link->bmax = 0; // Add to linked list. link->next = landPoly->firstLink; landPoly->firstLink = idx; } } } } } } dtTileRef dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return 0; if (header->version != DT_NAVMESH_VERSION) return 0; // Make sure the location is free. if (getTileAt(header->x, header->y)) return 0; // Allocate a tile. dtMeshTile* tile = 0; if (!lastRef) { if (m_nextFree) { tile = m_nextFree; m_nextFree = tile->next; tile->next = 0; } } else { // TODO: Better error reporting! // Try to relocate the tile to specific index with same salt. int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); if (tileIndex >= m_maxTiles) return 0; // Try to find the specific tile id from the free list. dtMeshTile* target = &m_tiles[tileIndex]; dtMeshTile* prev = 0; tile = m_nextFree; while (tile && tile != target) { prev = tile; tile = tile->next; } // Could not find the correct location. if (tile != target) return 0; // Remove from freelist if (!prev) m_nextFree = tile->next; else prev->next = tile->next; // Restore salt. tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); } // Make sure we could allocate a tile. if (!tile) return 0; // Insert tile into the position lut. int h = computeTileHash(header->x, header->y, m_tileLutMask); tile->next = m_posLookup[h]; m_posLookup[h] = tile; // Patch header pointers. const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); unsigned char* d = data + headerSize; tile->verts = (float*)d; d += vertsSize; tile->polys = (dtPoly*)d; d += polysSize; tile->links = (dtLink*)d; d += linksSize; tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize; tile->detailVerts = (float*)d; d += detailVertsSize; tile->detailTris = (unsigned char*)d; d += detailTrisSize; tile->bvTree = (dtBVNode*)d; d += bvtreeSize; tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize; // Build links freelist tile->linksFreeList = 0; tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; for (int i = 0; i < header->maxLinkCount-1; ++i) tile->links[i].next = i+1; // Init tile. tile->header = header; tile->data = data; tile->dataSize = dataSize; tile->flags = flags; connectIntLinks(tile); connectIntOffMeshLinks(tile); // Create connections connections. for (int i = 0; i < 8; ++i) { dtMeshTile* nei = getNeighbourTileAt(header->x, header->y, i); if (nei) { connectExtLinks(tile, nei, i); connectExtLinks(nei, tile, opposite(i)); connectExtOffMeshLinks(tile, nei, i); connectExtOffMeshLinks(nei, tile, opposite(i)); } } return getTileRef(tile); } dtMeshTile* dtNavMesh::getTileAt(int x, int y) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) return tile; tile = tile->next; } return 0; } dtTileRef dtNavMesh::getTileRefAt(int x, int y) const { // Find tile based on hash. int h = computeTileHash(x,y,m_tileLutMask); dtMeshTile* tile = m_posLookup[h]; while (tile) { if (tile->header && tile->header->x == x && tile->header->y == y) return getTileRef(tile); tile = tile->next; } return 0; } int dtNavMesh::getMaxTiles() const { return m_maxTiles; } dtMeshTile* dtNavMesh::getTile(int i) { return &m_tiles[i]; } const dtMeshTile* dtNavMesh::getTile(int i) const { return &m_tiles[i]; } const dtMeshTile* dtNavMesh::getTileByPolyRef(dtPolyRef ref, int* polyIndex) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0; if (polyIndex) *polyIndex = (int)ip; return &m_tiles[it]; } dtMeshTile* dtNavMesh::getNeighbourTileAt(int x, int y, int side) const { switch (side) { case 0: x++; break; case 1: x++; y++; break; case 2: y++; break; case 3: x--; y++; break; case 4: x--; break; case 5: x--; y--; break; case 6: y--; break; case 7: x++; y--; break; }; return getTileAt(x,y); } bool dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) { if (!ref) return false; unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); if ((int)tileIndex >= m_maxTiles) return false; dtMeshTile* tile = &m_tiles[tileIndex]; if (tile->salt != tileSalt) return false; // Remove tile from hash lookup. int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); dtMeshTile* prev = 0; dtMeshTile* cur = m_posLookup[h]; while (cur) { if (cur == tile) { if (prev) prev->next = cur->next; else m_posLookup[h] = cur->next; break; } prev = cur; cur = cur->next; } // Remove connections to neighbour tiles. for (int i = 0; i < 8; ++i) { dtMeshTile* nei = getNeighbourTileAt(tile->header->x,tile->header->y,i); if (!nei) continue; unconnectExtLinks(nei, opposite(i)); } // Reset tile. if (tile->flags & DT_TILE_FREE_DATA) { // Owns data dtFree(tile->data); tile->data = 0; tile->dataSize = 0; if (data) *data = 0; if (dataSize) *dataSize = 0; } else { if (data) *data = tile->data; if (dataSize) *dataSize = tile->dataSize; } tile->header = 0; tile->flags = 0; tile->linksFreeList = 0; tile->polys = 0; tile->verts = 0; tile->links = 0; tile->detailMeshes = 0; tile->detailVerts = 0; tile->detailTris = 0; tile->bvTree = 0; tile->offMeshCons = 0; // Update salt, salt should never be zero. tile->salt = (tile->salt+1) & ((1<salt == 0) tile->salt++; // Add to free list. tile->next = m_nextFree; m_nextFree = tile; return true; } dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = tile - m_tiles; return (dtTileRef)encodePolyId(tile->salt, it, 0); } const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const { if (!ref) return 0; unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); if ((int)tileIndex > m_maxTiles) return 0; const dtMeshTile* tile = &m_tiles[m_maxTiles]; if (tile->salt != tileSalt) return 0; return tile; } dtPolyRef dtNavMesh::getTilePolyRefBase(const dtMeshTile* tile) const { if (!tile) return 0; const unsigned int it = tile - m_tiles; return encodePolyId(tile->salt, it, 0); } struct dtTileState { int magic; // Magic number, used to identify the data. int version; // Data version number. dtTileRef ref; // Tile ref at the time of storing the data. }; struct dtPolyState { unsigned short flags; // Flags (see dtPolyFlags). unsigned char area; // Area ID of the polygon. }; int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const { if (!tile) return 0; const int headerSize = dtAlign4(sizeof(dtTileState)); const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); return headerSize + polyStateSize; } bool dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return false; dtTileState* tileState = (dtTileState*)data; data += dtAlign4(sizeof(dtTileState)); dtPolyState* polyStates = (dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); // Store tile state. tileState->magic = DT_NAVMESH_STATE_MAGIC; tileState->version = DT_NAVMESH_STATE_VERSION; tileState->ref = getTileRef(tile); // Store per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { const dtPoly* p = &tile->polys[i]; dtPolyState* s = &polyStates[i]; s->flags = p->flags; s->area = p->area; } return true; } bool dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) { // Make sure there is enough space to store the state. const int sizeReq = getTileStateSize(tile); if (maxDataSize < sizeReq) return false; const dtTileState* tileState = (const dtTileState*)data; data += dtAlign4(sizeof(dtTileState)); const dtPolyState* polyStates = (const dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); // Check that the restore is possible. if (tileState->magic != DT_NAVMESH_STATE_MAGIC) return false; if (tileState->version != DT_NAVMESH_STATE_VERSION) return false; if (tileState->ref != getTileRef(tile)) return false; // Restore per poly state. for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* p = &tile->polys[i]; const dtPolyState* s = &polyStates[i]; p->flags = s->flags; p->area = s->area; } return true; } ////////////////////////////////////////////////////////////////////////////////////////// bool dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshHeader* header = m_tiles[it].header; if (ip >= (unsigned int)header->polyCount) return false; return closestPointOnPolyInTile(&m_tiles[it], ip, pos, closest); } bool dtNavMesh::closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip, const float* pos, float* closest) const { const dtPoly* poly = &tile->polys[ip]; float closestDistSqr = FLT_MAX; const dtPolyDetail* pd = &tile->detailMeshes[ip]; for (int j = 0; j < pd->triCount; ++j) { const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; const float* v[3]; for (int k = 0; k < 3; ++k) { if (t[k] < poly->vertCount) v[k] = &tile->verts[poly->verts[t[k]]*3]; else v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; } float pt[3]; dtClosestPtPointTriangle(pt, pos, v[0], v[1], v[2]); float d = dtVdistSqr(pos, pt); if (d < closestDistSqr) { dtVcopy(closest, pt); closestDistSqr = d; } } return true; } bool dtNavMesh::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return false; const dtPoly* poly = &tile->polys[ip]; // Collect vertices. float verts[DT_VERTS_PER_POLYGON*3]; float edged[DT_VERTS_PER_POLYGON]; float edget[DT_VERTS_PER_POLYGON]; int nv = 0; for (int i = 0; i < (int)poly->vertCount; ++i) { dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); nv++; } bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget); if (inside) { // Point is inside the polygon, return the point. dtVcopy(closest, pos); } else { // Point is outside the polygon, dtClamp to nearest edge. float dmin = FLT_MAX; int imin = -1; for (int i = 0; i < nv; ++i) { if (edged[i] < dmin) { dmin = edged[i]; imin = i; } } const float* va = &verts[imin*3]; const float* vb = &verts[((imin+1)%nv)*3]; dtVlerp(closest, va, vb, edget[imin]); } return true; } // Returns start and end location of an off-mesh link polygon. bool dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const { unsigned int salt, it, ip; // Get current polygon decodePolyId(polyRef, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return false; const dtPoly* poly = &tile->polys[ip]; // Make sure that the current poly is indeed off-mesh link. if (poly->type != DT_POLYTYPE_OFFMESH_CONNECTION) return false; // Figure out which way to hand out the vertices. int idx0 = 0, idx1 = 1; // Find link that points to first vertex. for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) { if (tile->links[i].edge == 0) { if (tile->links[i].ref != prevRef) { idx0 = 1; idx1 = 0; } break; } } dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); return true; } bool dtNavMesh::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return false; const dtPoly* poly = &tile->polys[ip]; if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION) { const float* v0 = &tile->verts[poly->verts[0]*3]; const float* v1 = &tile->verts[poly->verts[1]*3]; const float d0 = dtVdist(pos, v0); const float d1 = dtVdist(pos, v1); const float u = d0 / (d0+d1); if (height) *height = v0[1] + (v1[1] - v0[1]) * u; return true; } else { const dtPolyDetail* pd = &tile->detailMeshes[ip]; for (int j = 0; j < pd->triCount; ++j) { const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; const float* v[3]; for (int k = 0; k < 3; ++k) { if (t[k] < poly->vertCount) v[k] = &tile->verts[poly->verts[t[k]]*3]; else v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; } float h; if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) { if (height) *height = h; return true; } } } return false; } void dtNavMesh::setAreaCost(const int area, float cost) { if (area >= 0 && area < DT_MAX_AREAS) m_areaCost[area] = cost; } float dtNavMesh::getAreaCost(const int area) const { if (area >= 0 && area < DT_MAX_AREAS) return m_areaCost[area]; return -1; } dtPolyRef dtNavMesh::findNearestPoly(const float* center, const float* extents, const dtQueryFilter* filter, float* nearestPt) const { // Get nearby polygons from proximity grid. dtPolyRef polys[128]; int polyCount = queryPolygons(center, extents, filter, polys, 128); // Find nearest polygon amongst the nearby polygons. dtPolyRef nearest = 0; float nearestDistanceSqr = FLT_MAX; for (int i = 0; i < polyCount; ++i) { dtPolyRef ref = polys[i]; float closestPtPoly[3]; if (!closestPointOnPoly(ref, center, closestPtPoly)) continue; float d = dtVdistSqr(center, closestPtPoly); if (d < nearestDistanceSqr) { if (nearestPt) dtVcopy(nearestPt, closestPtPoly); nearestDistanceSqr = d; nearest = ref; } } return nearest; } dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, const float* center, const float* extents, const dtQueryFilter* filter, float* nearestPt) const { float bmin[3], bmax[3]; dtVsub(bmin, center, extents); dtVadd(bmax, center, extents); // Get nearby polygons from proximity grid. dtPolyRef polys[128]; int polyCount = queryPolygonsInTile(tile, bmin, bmax, filter, polys, 128); // Find nearest polygon amongst the nearby polygons. dtPolyRef nearest = 0; float nearestDistanceSqr = FLT_MAX; for (int i = 0; i < polyCount; ++i) { dtPolyRef ref = polys[i]; float closestPtPoly[3]; if (!closestPointOnPolyInTile(tile, decodePolyIdPoly(ref), center, closestPtPoly)) continue; float d = dtVdistSqr(center, closestPtPoly); if (d < nearestDistanceSqr) { if (nearestPt) dtVcopy(nearestPt, closestPtPoly); nearestDistanceSqr = d; nearest = ref; } } return nearest; } int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, const dtQueryFilter* filter, dtPolyRef* polys, const int maxPolys) const { if (tile->bvTree) { const dtBVNode* node = &tile->bvTree[0]; const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; const float* tbmin = tile->header->bmin; const float* tbmax = tile->header->bmax; const float qfac = tile->header->bvQuantFactor; // Calculate quantized box unsigned short bmin[3], bmax[3]; // dtClamp query box to world box. float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; // Quantize bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; // Traverse tree dtPolyRef base = getTilePolyRefBase(tile); int n = 0; while (node < end) { const bool overlap = dtCheckOverlapBox(bmin, bmax, node->bmin, node->bmax); const bool isLeafNode = node->i >= 0; if (isLeafNode && overlap) { if (passFilter(filter, tile->polys[node->i].flags)) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)node->i; } } if (overlap || isLeafNode) node++; else { const int escapeIndex = -node->i; node += escapeIndex; } } return n; } else { float bmin[3], bmax[3]; int n = 0; dtPolyRef base = getTilePolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { // Calc polygon bounds. dtPoly* p = &tile->polys[i]; const float* v = &tile->verts[p->verts[0]*3]; dtVcopy(bmin, v); dtVcopy(bmax, v); for (int j = 1; j < p->vertCount; ++j) { v = &tile->verts[p->verts[j]*3]; dtVmin(bmin, v); dtVmax(bmax, v); } if (overlapBoxes(qmin,qmax, bmin,bmax)) { if (passFilter(filter, p->flags)) { if (n < maxPolys) polys[n++] = base | (dtPolyRef)i; } } } return n; } } int dtNavMesh::queryPolygons(const float* center, const float* extents, const dtQueryFilter* filter, dtPolyRef* polys, const int maxPolys) const { float bmin[3], bmax[3]; dtVsub(bmin, center, extents); dtVadd(bmax, center, extents); // Find tiles the query touches. const int minx = (int)floorf((bmin[0]-m_orig[0]) / m_tileWidth); const int maxx = (int)floorf((bmax[0]-m_orig[0]) / m_tileWidth); const int miny = (int)floorf((bmin[2]-m_orig[2]) / m_tileHeight); const int maxy = (int)floorf((bmax[2]-m_orig[2]) / m_tileHeight); int n = 0; for (int y = miny; y <= maxy; ++y) { for (int x = minx; x <= maxx; ++x) { const dtMeshTile* tile = getTileAt(x,y); if (!tile) continue; n += queryPolygonsInTile(tile, bmin, bmax, filter, polys+n, maxPolys-n); if (n >= maxPolys) return n; } } return n; } int dtNavMesh::findPath(dtPolyRef startRef, dtPolyRef endRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, dtPolyRef* path, const int maxPathSize) const { if (!startRef || !endRef) return 0; if (!maxPathSize) return 0; if (!getPolyByRef(startRef) || !getPolyByRef(endRef)) return 0; if (startRef == endRef) { path[0] = startRef; return 1; } if (!m_nodePool || !m_openList) return 0; m_nodePool->clear(); m_openList->clear(); static const float H_SCALE = 0.999f; // Heuristic scale. dtNode* startNode = m_nodePool->getNode(startRef); startNode->pidx = 0; startNode->cost = 0; startNode->total = dtVdist(startPos, endPos) * H_SCALE; startNode->id = startRef; startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); dtNode* lastBestNode = startNode; float lastBestNodeCost = startNode->total; unsigned int it, ip; while (!m_openList->empty()) { dtNode* bestNode = m_openList->pop(); // Remove node from open list and put it in closed list. bestNode->flags &= ~DT_NODE_OPEN; bestNode->flags |= DT_NODE_CLOSED; // Reached the goal, stop searching. if (bestNode->id == endRef) { lastBestNode = bestNode; break; } float previousEdgeMidPoint[3]; // Get current poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef bestRef = bestNode->id; it = decodePolyIdTile(bestRef); ip = decodePolyIdPoly(bestRef); const dtMeshTile* bestTile = &m_tiles[it]; const dtPoly* bestPoly = &bestTile->polys[ip]; // Get parent poly and tile. dtPolyRef parentRef = 0; const dtMeshTile* parentTile = 0; const dtPoly* parentPoly = 0; if (bestNode->pidx) parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; if (parentRef) { it = decodePolyIdTile(parentRef); ip = decodePolyIdPoly(parentRef); parentTile = &m_tiles[it]; parentPoly = &parentTile->polys[ip]; getEdgeMidPoint(parentRef, parentPoly, parentTile, bestRef, bestPoly, bestTile, previousEdgeMidPoint); } else { dtVcopy(previousEdgeMidPoint, startPos); } for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) { dtPolyRef neighbourRef = bestTile->links[i].ref; // Skip invalid ids and do not expand back to where we came from. if (!neighbourRef || neighbourRef == parentRef) continue; // Get neighbour poly and tile. // The API input has been cheked already, skip checking internal data. it = decodePolyIdTile(neighbourRef); ip = decodePolyIdPoly(neighbourRef); const dtMeshTile* neighbourTile = &m_tiles[it]; const dtPoly* neighbourPoly = &neighbourTile->polys[ip]; if (!passFilter(filter, neighbourPoly->flags)) continue; dtNode newNode; newNode.pidx = m_nodePool->getNodeIdx(bestNode); newNode.id = neighbourRef; // Calculate cost. float edgeMidPoint[3]; getEdgeMidPoint(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, edgeMidPoint); // Special case for last node. float h = 0; if (neighbourRef == endRef) { // Cost newNode.cost = bestNode->cost + dtVdist(previousEdgeMidPoint,edgeMidPoint) * m_areaCost[bestPoly->area] + dtVdist(edgeMidPoint, endPos) * m_areaCost[neighbourPoly->area]; // Heuristic h = 0; } else { // Cost newNode.cost = bestNode->cost + dtVdist(previousEdgeMidPoint,edgeMidPoint) * m_areaCost[bestPoly->area]; // Heuristic h = dtVdist(edgeMidPoint,endPos)*H_SCALE; } newNode.total = newNode.cost + h; dtNode* actualNode = m_nodePool->getNode(newNode.id); if (!actualNode) continue; // The node is already in open list and the new result is worse, skip. if ((actualNode->flags & DT_NODE_OPEN) && newNode.total >= actualNode->total) continue; // The node is already visited and process, and the new result is worse, skip. if ((actualNode->flags & DT_NODE_CLOSED) && newNode.total >= actualNode->total) continue; // Add or update the node. actualNode->flags &= ~DT_NODE_CLOSED; actualNode->pidx = newNode.pidx; actualNode->cost = newNode.cost; actualNode->total = newNode.total; // Update nearest node to target so far. if (h < lastBestNodeCost) { lastBestNodeCost = h; lastBestNode = actualNode; } if (actualNode->flags & DT_NODE_OPEN) { // Already in open, update node location. m_openList->modify(actualNode); } else { // Put the node in open list. actualNode->flags |= DT_NODE_OPEN; m_openList->push(actualNode); } } } // Reverse the path. dtNode* prev = 0; dtNode* node = lastBestNode; do { dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); node->pidx = m_nodePool->getNodeIdx(prev); prev = node; node = next; } while (node); // Store path node = prev; int n = 0; do { path[n++] = node->id; node = m_nodePool->getNodeAtIdx(node->pidx); } while (node && n < maxPathSize); return n; } int dtNavMesh::findStraightPath(const float* startPos, const float* endPos, const dtPolyRef* path, const int pathSize, float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, const int maxStraightPathSize) const { if (!maxStraightPathSize) return 0; if (!path[0]) return 0; int straightPathSize = 0; // TODO: Should this be callers responsibility? float closestStartPos[3]; if (!closestPointOnPolyBoundary(path[0], startPos, closestStartPos)) return 0; // Add start point. dtVcopy(&straightPath[straightPathSize*3], closestStartPos); if (straightPathFlags) straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_START; if (straightPathRefs) straightPathRefs[straightPathSize] = path[0]; straightPathSize++; if (straightPathSize >= maxStraightPathSize) return straightPathSize; float closestEndPos[3]; if (!closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos)) return 0; if (pathSize > 1) { float portalApex[3], portalLeft[3], portalRight[3]; dtVcopy(portalApex, closestStartPos); dtVcopy(portalLeft, portalApex); dtVcopy(portalRight, portalApex); int apexIndex = 0; int leftIndex = 0; int rightIndex = 0; unsigned char leftPolyType = 0; unsigned char rightPolyType = 0; dtPolyRef leftPolyRef = path[0]; dtPolyRef rightPolyRef = path[0]; for (int i = 0; i < pathSize; ++i) { float left[3], right[3]; unsigned char fromType, toType; if (i+1 < pathSize) { // Next portal. if (!getPortalPoints(path[i], path[i+1], left, right, fromType, toType)) { if (!closestPointOnPolyBoundary(path[i], endPos, closestEndPos)) return 0; dtVcopy(&straightPath[straightPathSize*3], closestEndPos); if (straightPathFlags) straightPathFlags[straightPathSize] = 0; if (straightPathRefs) straightPathRefs[straightPathSize] = path[i]; straightPathSize++; return straightPathSize; } // If starting really close the portal, advance. if (i == 0) { float t; if (dtDistancePtSegSqr2D(portalApex, left, right, t) < (0.001*0.001f)) continue; } } else { // End of the path. dtVcopy(left, closestEndPos); dtVcopy(right, closestEndPos); fromType = toType = DT_POLYTYPE_GROUND; } // Right vertex. if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f) { if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f) { dtVcopy(portalRight, right); rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0; rightPolyType = toType; rightIndex = i; } else { dtVcopy(portalApex, portalLeft); apexIndex = leftIndex; unsigned char flags = 0; if (!leftPolyRef) flags = DT_STRAIGHTPATH_END; else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; dtPolyRef ref = leftPolyRef; if (!dtVequal(&straightPath[(straightPathSize-1)*3], portalApex)) { // Append new vertex. dtVcopy(&straightPath[straightPathSize*3], portalApex); if (straightPathFlags) straightPathFlags[straightPathSize] = flags; if (straightPathRefs) straightPathRefs[straightPathSize] = ref; straightPathSize++; // If reached end of path or there is no space to append more vertices, return. if (flags == DT_STRAIGHTPATH_END || straightPathSize >= maxStraightPathSize) return straightPathSize; } else { // The vertices are equal, update flags and poly. if (straightPathFlags) straightPathFlags[straightPathSize-1] = flags; if (straightPathRefs) straightPathRefs[straightPathSize-1] = ref; } dtVcopy(portalLeft, portalApex); dtVcopy(portalRight, portalApex); leftIndex = apexIndex; rightIndex = apexIndex; // Restart i = apexIndex; continue; } } // Left vertex. if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f) { if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f) { dtVcopy(portalLeft, left); leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0; leftPolyType = toType; leftIndex = i; } else { dtVcopy(portalApex, portalRight); apexIndex = rightIndex; unsigned char flags = 0; if (!rightPolyRef) flags = DT_STRAIGHTPATH_END; else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; dtPolyRef ref = rightPolyRef; if (!dtVequal(&straightPath[(straightPathSize-1)*3], portalApex)) { // Append new vertex. dtVcopy(&straightPath[straightPathSize*3], portalApex); if (straightPathFlags) straightPathFlags[straightPathSize] = flags; if (straightPathRefs) straightPathRefs[straightPathSize] = ref; straightPathSize++; // If reached end of path or there is no space to append more vertices, return. if (flags == DT_STRAIGHTPATH_END || straightPathSize >= maxStraightPathSize) return straightPathSize; } else { // The vertices are equal, update flags and poly. if (straightPathFlags) straightPathFlags[straightPathSize-1] = flags; if (straightPathRefs) straightPathRefs[straightPathSize-1] = ref; } dtVcopy(portalLeft, portalApex); dtVcopy(portalRight, portalApex); leftIndex = apexIndex; rightIndex = apexIndex; // Restart i = apexIndex; continue; } } } } // If the point already exists, remove it and add reappend the actual end location. if (straightPathSize && dtVequal(&straightPath[(straightPathSize-1)*3], closestEndPos)) straightPathSize--; // Add end point. if (straightPathSize < maxStraightPathSize) { dtVcopy(&straightPath[straightPathSize*3], closestEndPos); if (straightPathFlags) straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_END; if (straightPathRefs) straightPathRefs[straightPathSize] = 0; straightPathSize++; } return straightPathSize; } int dtNavMesh::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, float* resultPos, dtPolyRef* visited, const int maxVisitedSize) const { if (!startRef) return 0; if (!getPolyByRef(startRef)) return 0; if (!m_tinyNodePool) return 0; static const int MAX_STACK = 48; dtNode* stack[MAX_STACK]; int nstack = 0; m_tinyNodePool->clear(); dtNode* startNode = m_tinyNodePool->getNode(startRef); startNode->pidx = 0; startNode->cost = 0; startNode->total = 0; startNode->id = startRef; startNode->flags = DT_NODE_CLOSED; stack[nstack++] = startNode; float bestPos[3]; float bestDist = FLT_MAX; dtNode* bestNode = 0; dtVcopy(bestPos, startPos); // Search constraints float searchPos[3], searchRadSqr; dtVlerp(searchPos, startPos, endPos, 0.5f); searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f); unsigned int it, ip; float verts[DT_VERTS_PER_POLYGON*3]; while (nstack) { // Pop front. dtNode* curNode = stack[0]; for (int i = 0; i < nstack-1; ++i) stack[i] = stack[i+1]; nstack--; // Get poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef curRef = curNode->id; it = decodePolyIdTile(curRef); ip = decodePolyIdPoly(curRef); const dtMeshTile* curTile = &m_tiles[it]; const dtPoly* curPoly = &curTile->polys[ip]; // Collect vertices. const int nverts = curPoly->vertCount; for (int i = 0; i < nverts; ++i) dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]); // If target is inside the poly, stop search. if (dtPointInPolygon(endPos, verts, nverts)) { bestNode = curNode; dtVcopy(bestPos, endPos); break; } // Find wall edges and find nearest point inside the walls. for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++) { // Skip non-solid edges. dtPolyRef neighbourRef = 0; if (curPoly->neis[j] & DT_EXT_LINK) { // Tile border. for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) { const dtLink* link = &curTile->links[k]; if (link->edge == j) { if (link->ref != 0 && passFilter(filter, getPolyFlags(link->ref))) neighbourRef = link->ref; break; } } } else if (curPoly->neis[j] && passFilter(filter, curTile->polys[curPoly->neis[j]-1].flags)) { // Internal edge, encode id. neighbourRef = getTilePolyRefBase(curTile) | (unsigned int)(curPoly->neis[j]-1); } if (!neighbourRef) { // Wall edge, calc distance. const float* vj = &verts[j*3]; const float* vi = &verts[i*3]; float tseg; const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg); if (distSqr < bestDist) { // Update nearest distance. dtVlerp(bestPos, vj,vi, tseg); bestDist = distSqr; bestNode = curNode; } } else { // Skip if no node can be allocated. dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef); if (!neighbourNode) continue; // Skip if already visited. if (neighbourNode->flags & DT_NODE_CLOSED) continue; // Skip the link if it is too far from search constraint. const float* vj = &verts[j*3]; const float* vi = &verts[i*3]; float tseg; float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg); if (distSqr > searchRadSqr) continue; // Mark as the node as visited and push to queue. if (nstack < MAX_STACK) { neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); neighbourNode->flags |= DT_NODE_CLOSED; stack[nstack++] = neighbourNode; } } } } int n = 0; if (bestNode) { // Reverse the path. dtNode* prev = 0; dtNode* node = bestNode; do { dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx); node->pidx = m_tinyNodePool->getNodeIdx(prev); prev = node; node = next; } while (node); // Store result node = prev; do { visited[n++] = node->id; node = m_tinyNodePool->getNodeAtIdx(node->pidx); } while (node && n < maxVisitedSize); } dtVcopy(resultPos, bestPos); return n; } bool dtNavMesh::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right, unsigned char& fromType, unsigned char& toType) const { unsigned int salt, it, ip; decodePolyId(from, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* fromTile = &m_tiles[it]; if (ip >= (unsigned int)fromTile->header->polyCount) return false; const dtPoly* fromPoly = &fromTile->polys[ip]; fromType = fromPoly->type; decodePolyId(to, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return false; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; const dtMeshTile* toTile = &m_tiles[it]; if (ip >= (unsigned int)toTile->header->polyCount) return false; const dtPoly* toPoly = &toTile->polys[ip]; toType = toPoly->type; return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right); } // Returns portal points between two polygons. bool dtNavMesh::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, float* left, float* right) const { // Find the link that points to the 'to' polygon. const dtLink* link = 0; for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) { if (fromTile->links[i].ref == to) { link = &fromTile->links[i]; break; } } if (!link) return false; // Handle off-mesh connections. if (fromPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION) { // Find link that points to first vertex. for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) { if (fromTile->links[i].ref == to) { const int v = fromTile->links[i].edge; dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]); dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]); return true; } } return false; } if (toPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION) { for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next) { if (toTile->links[i].ref == from) { const int v = toTile->links[i].edge; dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]); dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]); return true; } } return false; } // Find portal vertices. const int v0 = fromPoly->verts[link->edge]; const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount]; dtVcopy(left, &fromTile->verts[v0*3]); dtVcopy(right, &fromTile->verts[v1*3]); // If the link is at tile boundary, dtClamp the vertices to // the link width. if (link->side == 0 || link->side == 4) { // Unpack portal limits. const float smin = dtMin(left[2],right[2]); const float smax = dtMax(left[2],right[2]); const float s = (smax-smin) / 255.0f; const float lmin = smin + link->bmin*s; const float lmax = smin + link->bmax*s; left[2] = dtMax(left[2],lmin); left[2] = dtMin(left[2],lmax); right[2] = dtMax(right[2],lmin); right[2] = dtMin(right[2],lmax); } else if (link->side == 2 || link->side == 6) { // Unpack portal limits. const float smin = dtMin(left[0],right[0]); const float smax = dtMax(left[0],right[0]); const float s = (smax-smin) / 255.0f; const float lmin = smin + link->bmin*s; const float lmax = smin + link->bmax*s; left[0] = dtMax(left[0],lmin); left[0] = dtMin(left[0],lmax); right[0] = dtMax(right[0],lmin); right[0] = dtMin(right[0],lmax); } return true; } // Returns edge mid point between two polygons. bool dtNavMesh::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const { float left[3], right[3]; unsigned char fromType, toType; if (!getPortalPoints(from, to, left,right, fromType, toType)) return false; mid[0] = (left[0]+right[0])*0.5f; mid[1] = (left[1]+right[1])*0.5f; mid[2] = (left[2]+right[2])*0.5f; return true; } bool dtNavMesh::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, float* mid) const { float left[3], right[3]; if (!getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)) return false; mid[0] = (left[0]+right[0])*0.5f; mid[1] = (left[1]+right[1])*0.5f; mid[2] = (left[2]+right[2])*0.5f; return true; } void dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return; dtPoly* poly = &tile->polys[ip]; // Change flags. poly->flags = flags; } unsigned short dtNavMesh::getPolyFlags(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; return poly->flags; } void dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return; dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return; dtPoly* poly = &tile->polys[ip]; poly->area = area; } unsigned char dtNavMesh::getPolyArea(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; const dtMeshTile* tile = &m_tiles[it]; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; return poly->area; } int dtNavMesh::raycast(dtPolyRef centerRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, float& t, float* hitNormal, dtPolyRef* path, const int pathSize) const { t = 0; if (!centerRef || !getPolyByRef(centerRef)) return 0; dtPolyRef curRef = centerRef; float verts[DT_VERTS_PER_POLYGON*3]; int n = 0; hitNormal[0] = 0; hitNormal[1] = 0; hitNormal[2] = 0; while (curRef) { // Cast ray against current polygon. // The API input has been cheked already, skip checking internal data. unsigned int it = decodePolyIdTile(curRef); unsigned int ip = decodePolyIdPoly(curRef); const dtMeshTile* tile = &m_tiles[it]; const dtPoly* poly = &tile->polys[ip]; // Collect vertices. int nv = 0; for (int i = 0; i < (int)poly->vertCount; ++i) { dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); nv++; } float tmin, tmax; int segMin, segMax; if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax)) { // Could not hit the polygon, keep the old t and report hit. return n; } // Keep track of furthest t so far. if (tmax > t) t = tmax; // Store visited polygons. if (n < pathSize) path[n++] = curRef; // Ray end is completely inside the polygon. if (segMax == -1) { t = FLT_MAX; return n; } // Follow neighbours. dtPolyRef nextRef = 0; for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) { const dtLink* link = &tile->links[i]; // Find link which contains this edge. if ((int)link->edge != segMax) continue; // Get pointer to the next polygon. it = decodePolyIdTile(link->ref); ip = decodePolyIdPoly(link->ref); const dtMeshTile* nextTile = &m_tiles[it]; const dtPoly* nextPoly = &nextTile->polys[ip]; // Skip off-mesh connections. if (nextPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Skip links based on filter. if (!passFilter(filter, nextPoly->flags)) continue; // If the link is internal, just return the ref. if (link->side == 0xff) { nextRef = link->ref; break; } // If the link is at tile boundary, const int v0 = poly->verts[link->edge]; const int v1 = poly->verts[(link->edge+1) % poly->vertCount]; const float* left = &tile->verts[v0*3]; const float* right = &tile->verts[v1*3]; // Check that the intersection lies inside the link portal. if (link->side == 0 || link->side == 4) { // Calculate link size. const float smin = dtMin(left[2],right[2]); const float smax = dtMax(left[2],right[2]); const float s = (smax-smin) / 255.0f; const float lmin = smin + link->bmin*s; const float lmax = smin + link->bmax*s; // Find Z intersection. float z = startPos[2] + (endPos[2]-startPos[2])*tmax; if (z >= lmin && z <= lmax) { nextRef = link->ref; break; } } else if (link->side == 2 || link->side == 6) { // Calculate link size. const float smin = dtMin(left[0],right[0]); const float smax = dtMax(left[0],right[0]); const float s = (smax-smin) / 255.0f; const float lmin = smin + link->bmin*s; const float lmax = smin + link->bmax*s; // Find X intersection. float x = startPos[0] + (endPos[0]-startPos[0])*tmax; if (x >= lmin && x <= lmax) { nextRef = link->ref; break; } } } if (!nextRef) { // No neighbour, we hit a wall. // Calculate hit normal. const int a = segMax; const int b = segMax+1 < nv ? segMax+1 : 0; const float* va = &verts[a*3]; const float* vb = &verts[b*3]; const float dx = vb[0] - va[0]; const float dz = vb[2] - va[2]; hitNormal[0] = dz; hitNormal[1] = 0; hitNormal[2] = -dx; dtVnormalize(hitNormal); return n; } // No hit, advance to neighbour polygon. curRef = nextRef; } return n; } int dtNavMesh::findPolysAroundCircle(dtPolyRef centerRef, const float* centerPos, const float radius, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, const int maxResult) const { if (!centerRef) return 0; if (!getPolyByRef(centerRef)) return 0; if (!m_nodePool || !m_openList) return 0; m_nodePool->clear(); m_openList->clear(); dtNode* startNode = m_nodePool->getNode(centerRef); startNode->pidx = 0; startNode->cost = 0; startNode->total = 0; startNode->id = centerRef; startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); int n = 0; if (n < maxResult) { if (resultRef) resultRef[n] = startNode->id; if (resultParent) resultParent[n] = 0; if (resultCost) resultCost[n] = 0; ++n; } const float radiusSqr = dtSqr(radius); unsigned int it, ip; while (!m_openList->empty()) { dtNode* bestNode = m_openList->pop(); float previousEdgeMidPoint[3]; // Get poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef bestRef = bestNode->id; it = decodePolyIdTile(bestRef); ip = decodePolyIdPoly(bestRef); const dtMeshTile* bestTile = &m_tiles[it]; const dtPoly* bestPoly = &bestTile->polys[ip]; // Get parent poly and tile. dtPolyRef parentRef = 0; const dtMeshTile* parentTile = 0; const dtPoly* parentPoly = 0; if (bestNode->pidx) parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; if (parentRef) { it = decodePolyIdTile(parentRef); ip = decodePolyIdPoly(parentRef); parentTile = &m_tiles[it]; parentPoly = &parentTile->polys[ip]; getEdgeMidPoint(parentRef, parentPoly, parentTile, bestRef, bestPoly, bestTile, previousEdgeMidPoint); } else { dtVcopy(previousEdgeMidPoint, centerPos); } for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) { const dtLink* link = &bestTile->links[i]; dtPolyRef neighbourRef = link->ref; // Skip invalid neighbours and do not follow back to parent. if (!neighbourRef || neighbourRef == parentRef) continue; // Expand to neighbour it = decodePolyIdTile(neighbourRef); ip = decodePolyIdPoly(neighbourRef); const dtMeshTile* neighbourTile = &m_tiles[it]; const dtPoly* neighbourPoly = &neighbourTile->polys[ip]; // Do not advance if the polygon is excluded by the filter. if (!passFilter(filter, neighbourPoly->flags)) continue; // Find edge and calc distance to the edge. float va[3], vb[3]; if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) continue; // If the circle is not touching the next polygon, skip it. float tseg; float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); if (distSqr > radiusSqr) continue; dtNode newNode; newNode.pidx = m_nodePool->getNodeIdx(bestNode); newNode.id = neighbourRef; // Cost float edgeMidPoint[3]; dtVlerp(edgeMidPoint, va, vb, 0.5f); newNode.total = bestNode->total + dtVdist(previousEdgeMidPoint, edgeMidPoint); dtNode* actualNode = m_nodePool->getNode(newNode.id); if (!actualNode) continue; if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) && !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total)) { actualNode->flags &= ~DT_NODE_CLOSED; actualNode->pidx = newNode.pidx; actualNode->total = newNode.total; if (actualNode->flags & DT_NODE_OPEN) { m_openList->modify(actualNode); } else { if (n < maxResult) { if (resultRef) resultRef[n] = actualNode->id; if (resultParent) resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id; if (resultCost) resultCost[n] = actualNode->total; ++n; } actualNode->flags = DT_NODE_OPEN; m_openList->push(actualNode); } } } } return n; } int dtNavMesh::findPolysAroundShape(dtPolyRef centerRef, const float* verts, const int nverts, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, const int maxResult) const { if (!centerRef) return 0; if (!getPolyByRef(centerRef)) return 0; if (!m_nodePool || !m_openList) return 0; m_nodePool->clear(); m_openList->clear(); dtNode* startNode = m_nodePool->getNode(centerRef); startNode->pidx = 0; startNode->cost = 0; startNode->total = 0; startNode->id = centerRef; startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); int n = 0; if (n < maxResult) { if (resultRef) resultRef[n] = startNode->id; if (resultParent) resultParent[n] = 0; if (resultCost) resultCost[n] = 0; ++n; } float centerPos[3] = {0,0,0}; for (int i = 0; i < nverts; ++i) dtVadd(centerPos,centerPos,&verts[i*3]); dtVscale(centerPos,centerPos,1.0f/nverts); unsigned int it, ip; while (!m_openList->empty()) { dtNode* bestNode = m_openList->pop(); float previousEdgeMidPoint[3]; // Get poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef bestRef = bestNode->id; it = decodePolyIdTile(bestRef); ip = decodePolyIdPoly(bestRef); const dtMeshTile* bestTile = &m_tiles[it]; const dtPoly* bestPoly = &bestTile->polys[ip]; // Get parent poly and tile. dtPolyRef parentRef = 0; const dtMeshTile* parentTile = 0; const dtPoly* parentPoly = 0; if (bestNode->pidx) parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; if (parentRef) { it = decodePolyIdTile(parentRef); ip = decodePolyIdPoly(parentRef); parentTile = &m_tiles[it]; parentPoly = &parentTile->polys[ip]; getEdgeMidPoint(parentRef, parentPoly, parentTile, bestRef, bestPoly, bestTile, previousEdgeMidPoint); } else { dtVcopy(previousEdgeMidPoint, centerPos); } for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) { const dtLink* link = &bestTile->links[i]; dtPolyRef neighbourRef = link->ref; // Skip invalid neighbours and do not follow back to parent. if (!neighbourRef || neighbourRef == parentRef) continue; // Expand to neighbour it = decodePolyIdTile(neighbourRef); ip = decodePolyIdPoly(neighbourRef); const dtMeshTile* neighbourTile = &m_tiles[it]; const dtPoly* neighbourPoly = &neighbourTile->polys[ip]; // Do not advance if the polygon is excluded by the filter. if (!passFilter(filter, neighbourPoly->flags)) continue; // Find edge and calc distance to the edge. float va[3], vb[3]; if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) continue; // If the poly is not touching the edge to the next polygon, skip the connection it. float tmin, tmax; int segMin, segMax; if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax)) continue; if (tmin > 1.0f || tmax < 0.0f) continue; dtNode newNode; newNode.pidx = m_nodePool->getNodeIdx(bestNode); newNode.id = neighbourRef; // Cost float edgeMidPoint[3]; dtVlerp(edgeMidPoint, va, vb, 0.5f); newNode.total = bestNode->total + dtVdist(previousEdgeMidPoint, edgeMidPoint); dtNode* actualNode = m_nodePool->getNode(newNode.id); if (!actualNode) continue; if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) && !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total)) { actualNode->flags &= ~DT_NODE_CLOSED; actualNode->pidx = newNode.pidx; actualNode->total = newNode.total; if (actualNode->flags & DT_NODE_OPEN) { m_openList->modify(actualNode); } else { if (n < maxResult) { if (resultRef) resultRef[n] = actualNode->id; if (resultParent) resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id; if (resultCost) resultCost[n] = actualNode->total; ++n; } actualNode->flags = DT_NODE_OPEN; m_openList->push(actualNode); } } } } return n; } int dtNavMesh::findLocalNeighbourhood(dtPolyRef centerRef, const float* centerPos, const float radius, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, const int maxResult) const { if (!centerRef) return 0; if (!getPolyByRef(centerRef)) return 0; if (!m_tinyNodePool) return 0; static const int MAX_STACK = 48; dtNode* stack[MAX_STACK]; int nstack = 0; m_tinyNodePool->clear(); dtNode* startNode = m_tinyNodePool->getNode(centerRef); startNode->pidx = 0; startNode->id = centerRef; startNode->flags = DT_NODE_CLOSED; stack[nstack++] = startNode; const float radiusSqr = dtSqr(radius); float pa[DT_VERTS_PER_POLYGON*3]; float pb[DT_VERTS_PER_POLYGON*3]; unsigned int it, ip; int n = 0; if (n < maxResult) { resultRef[n] = startNode->id; if (resultParent) resultParent[n] = 0; ++n; } while (nstack) { // Pop front. dtNode* curNode = stack[0]; for (int i = 0; i < nstack-1; ++i) stack[i] = stack[i+1]; nstack--; // Get poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef curRef = curNode->id; it = decodePolyIdTile(curRef); ip = decodePolyIdPoly(curRef); const dtMeshTile* curTile = &m_tiles[it]; const dtPoly* curPoly = &curTile->polys[ip]; for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next) { const dtLink* link = &curTile->links[i]; dtPolyRef neighbourRef = link->ref; // Skip invalid neighbours. if (!neighbourRef) continue; // Skip if cannot alloca more nodes. dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef); if (!neighbourNode) continue; // Skip visited. if (neighbourNode->flags & DT_NODE_CLOSED) continue; // Expand to neighbour it = decodePolyIdTile(neighbourRef); ip = decodePolyIdPoly(neighbourRef); const dtMeshTile* neighbourTile = &m_tiles[it]; const dtPoly* neighbourPoly = &neighbourTile->polys[ip]; // Skip off-mesh connections. if (neighbourPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Do not advance if the polygon is excluded by the filter. if (!passFilter(filter, neighbourPoly->flags)) continue; // Find edge and calc distance to the edge. float va[3], vb[3]; if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) continue; // If the circle is not touching the next polygon, skip it. float tseg; float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); if (distSqr > radiusSqr) continue; // Mark node visited, this is done before the overlap test so that // we will not visit the poly again if the test fails. neighbourNode->flags |= DT_NODE_CLOSED; neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); // Check that the polygon does not collide with existing polygons. // Collect vertices of the neighbour poly. const int npa = neighbourPoly->vertCount; for (int k = 0; k < npa; ++k) dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]); bool overlap = false; for (int j = 0; j < n; ++j) { dtPolyRef pastRef = resultRef[j]; // Connected polys do not overlap. bool areConnected = false; for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) { if (curTile->links[k].ref == pastRef) { areConnected = true; break; } } if (areConnected) continue; // Potentially overlapping. it = decodePolyIdTile(pastRef); ip = decodePolyIdPoly(pastRef); const dtMeshTile* pastTile = &m_tiles[it]; const dtPoly* pastPoly = &pastTile->polys[ip]; // Get vertices and test overlap const int npb = pastPoly->vertCount; for (int k = 0; k < npb; ++k) dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]); if (dtOverlapPolyPoly2D(pa,npa, pb,npb)) { overlap = true; break; } } if (overlap) continue; // This poly is fine, store and advance to the poly. if (n < maxResult) { resultRef[n] = neighbourRef; if (resultParent) resultParent[n] = curRef; ++n; } if (nstack < MAX_STACK) { stack[nstack++] = neighbourNode; } } } return n; } int dtNavMesh::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter, float* segments) { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; const dtMeshTile* tile = &m_tiles[it]; if (tile->salt != salt || tile->header == 0) return 0; if (ip >= (unsigned int)tile->header->polyCount) return 0; const dtPoly* poly = &tile->polys[ip]; int n = 0; for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++) { // Skip non-solid edges. if (poly->neis[j] & DT_EXT_LINK) { // Tile border. bool solid = true; for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next) { const dtLink* link = &tile->links[k]; if (link->edge == j) { if (link->ref != 0 && passFilter(filter, getPolyFlags(link->ref))) solid = false; break; } } if (!solid) continue; } else if (poly->neis[j] && passFilter(filter, tile->polys[poly->neis[j]-1].flags)) { // Internal edge continue; } // Store segment. const float* vj = &tile->verts[poly->verts[j]*3]; const float* vi = &tile->verts[poly->verts[i]*3]; float* seg = &segments[n*6]; n++; dtVcopy(seg+0, vj); dtVcopy(seg+3, vi); } return n; } float dtNavMesh::findDistanceToWall(dtPolyRef centerRef, const float* centerPos, float maxRadius, const dtQueryFilter* filter, float* hitPos, float* hitNormal) const { if (!centerRef) return 0; if (!getPolyByRef(centerRef)) return 0; if (!m_nodePool || !m_openList) return 0; m_nodePool->clear(); m_openList->clear(); dtNode* startNode = m_nodePool->getNode(centerRef); startNode->pidx = 0; startNode->cost = 0; startNode->total = 0; startNode->id = centerRef; startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); float radiusSqr = dtSqr(maxRadius); unsigned int it, ip; while (!m_openList->empty()) { dtNode* bestNode = m_openList->pop(); float previousEdgeMidPoint[3]; // Get poly and tile. // The API input has been cheked already, skip checking internal data. const dtPolyRef bestRef = bestNode->id; it = decodePolyIdTile(bestRef); ip = decodePolyIdPoly(bestRef); const dtMeshTile* bestTile = &m_tiles[it]; const dtPoly* bestPoly = &bestTile->polys[ip]; // Get parent poly and tile. dtPolyRef parentRef = 0; const dtMeshTile* parentTile = 0; const dtPoly* parentPoly = 0; if (bestNode->pidx) parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; if (parentRef) { it = decodePolyIdTile(parentRef); ip = decodePolyIdPoly(parentRef); parentTile = &m_tiles[it]; parentPoly = &parentTile->polys[ip]; getEdgeMidPoint(parentRef, parentPoly, parentTile, bestRef, bestPoly, bestTile, previousEdgeMidPoint); } else { dtVcopy(previousEdgeMidPoint, centerPos); } // Hit test walls. for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++) { // Skip non-solid edges. if (bestPoly->neis[j] & DT_EXT_LINK) { // Tile border. bool solid = true; for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next) { const dtLink* link = &bestTile->links[k]; if (link->edge == j) { if (link->ref != 0 && passFilter(filter, getPolyFlags(link->ref))) solid = false; break; } } if (!solid) continue; } else if (bestPoly->neis[j] && passFilter(filter, bestTile->polys[bestPoly->neis[j]-1].flags)) { // Internal edge continue; } // Calc distance to the edge. const float* vj = &bestTile->verts[bestPoly->verts[j]*3]; const float* vi = &bestTile->verts[bestPoly->verts[i]*3]; float tseg; float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg); // Edge is too far, skip. if (distSqr > radiusSqr) continue; // Hit wall, update radius. radiusSqr = distSqr; // Calculate hit pos. hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg; hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg; hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg; } for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) { const dtLink* link = &bestTile->links[i]; dtPolyRef neighbourRef = link->ref; // Skip invalid neighbours and do not follow back to parent. if (!neighbourRef || neighbourRef == parentRef) continue; // Expand to neighbour. it = decodePolyIdTile(neighbourRef); ip = decodePolyIdPoly(neighbourRef); const dtMeshTile* neighbourTile = &m_tiles[it]; const dtPoly* neighbourPoly = &neighbourTile->polys[ip]; // Skip off-mesh connections. if (neighbourPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION) continue; // Calc distance to the edge. const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3]; const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3]; float tseg; float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); // If the circle is not touching the next polygon, skip it. if (distSqr > radiusSqr) continue; if (!passFilter(filter, neighbourPoly->flags)) continue; dtNode newNode; newNode.pidx = m_nodePool->getNodeIdx(bestNode); newNode.id = neighbourRef; // Cost float edgeMidPoint[3]; getEdgeMidPoint(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, edgeMidPoint); newNode.total = bestNode->total + dtVdist(previousEdgeMidPoint, edgeMidPoint); dtNode* actualNode = m_nodePool->getNode(newNode.id); if (!actualNode) continue; if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) && !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total)) { actualNode->flags &= ~DT_NODE_CLOSED; actualNode->pidx = newNode.pidx; actualNode->total = newNode.total; if (actualNode->flags & DT_NODE_OPEN) { m_openList->modify(actualNode); } else { actualNode->flags = DT_NODE_OPEN; m_openList->push(actualNode); } } } } // Calc hit normal. dtVsub(hitNormal, centerPos, hitPos); dtVnormalize(hitNormal); return sqrtf(radiusSqr); } const dtPoly* dtNavMesh::getPolyByRef(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0; return &m_tiles[it].polys[ip]; } const float* dtNavMesh::getPolyVertsByRef(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0; return m_tiles[it].verts; } const dtLink* dtNavMesh::getPolyLinksByRef(dtPolyRef ref) const { unsigned int salt, it, ip; decodePolyId(ref, salt, it, ip); if (it >= (unsigned int)m_maxTiles) return 0; if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0; return m_tiles[it].links; } bool dtNavMesh::isInClosedList(dtPolyRef ref) const { if (!m_nodePool) return false; const dtNode* node = m_nodePool->findNode(ref); return node && node->flags & DT_NODE_CLOSED; }