// // Copyright (c) 2009 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #include #include #include #include "DetourNavMesh.h" #include "DetourCommon.h" #include "DetourNavMeshBuilder.h" static unsigned short MESH_NULL_IDX = 0xffff; struct BVItem { unsigned short bmin[3]; unsigned short bmax[3]; int i; }; static int compareItemX(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[0] < b->bmin[0]) return -1; if (a->bmin[0] > b->bmin[0]) return 1; return 0; } static int compareItemY(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[1] < b->bmin[1]) return -1; if (a->bmin[1] > b->bmin[1]) return 1; return 0; } static int compareItemZ(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[2] < b->bmin[2]) return -1; if (a->bmin[2] > b->bmin[2]) return 1; return 0; } static void calcExtends(BVItem* items, int nitems, int imin, int imax, unsigned short* bmin, unsigned short* bmax) { bmin[0] = items[imin].bmin[0]; bmin[1] = items[imin].bmin[1]; bmin[2] = items[imin].bmin[2]; bmax[0] = items[imin].bmax[0]; bmax[1] = items[imin].bmax[1]; bmax[2] = items[imin].bmax[2]; for (int i = imin+1; i < imax; ++i) { const BVItem& it = items[i]; if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0]; if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1]; if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2]; if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0]; if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1]; if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2]; } } inline int longestAxis(unsigned short x, unsigned short y, unsigned short z) { int axis = 0; unsigned short maxVal = x; if (y > maxVal) { axis = 1; maxVal = y; } if (z > maxVal) { axis = 2; maxVal = z; } return axis; } static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes) { int inum = imax - imin; int icur = curNode; dtBVNode& node = nodes[curNode++]; if (inum == 1) { // Leaf node.bmin[0] = items[imin].bmin[0]; node.bmin[1] = items[imin].bmin[1]; node.bmin[2] = items[imin].bmin[2]; node.bmax[0] = items[imin].bmax[0]; node.bmax[1] = items[imin].bmax[1]; node.bmax[2] = items[imin].bmax[2]; node.i = items[imin].i; } else { // Split calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); int axis = longestAxis(node.bmax[0] - node.bmin[0], node.bmax[1] - node.bmin[1], node.bmax[2] - node.bmin[2]); if (axis == 0) { // Sort along x-axis qsort(items+imin, inum, sizeof(BVItem), compareItemX); } else if (axis == 1) { // Sort along y-axis qsort(items+imin, inum, sizeof(BVItem), compareItemY); } else { // Sort along z-axis qsort(items+imin, inum, sizeof(BVItem), compareItemZ); } int isplit = imin+inum/2; // Left subdivide(items, nitems, imin, isplit, curNode, nodes); // Right subdivide(items, nitems, isplit, imax, curNode, nodes); int iescape = curNode - icur; // Negative index means escape. node.i = -iescape; } } static int createBVTree(const unsigned short* verts, const int nverts, const unsigned short* polys, const int npolys, const int nvp, float cs, float ch, int nnodes, dtBVNode* nodes) { // Build tree BVItem* items = new BVItem[npolys]; for (int i = 0; i < npolys; i++) { BVItem& it = items[i]; it.i = i; // Calc polygon bounds. const unsigned short* p = &polys[i*nvp*2]; it.bmin[0] = it.bmax[0] = verts[p[0]*3+0]; it.bmin[1] = it.bmax[1] = verts[p[0]*3+1]; it.bmin[2] = it.bmax[2] = verts[p[0]*3+2]; for (int j = 1; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; unsigned short x = verts[p[j]*3+0]; unsigned short y = verts[p[j]*3+1]; unsigned short z = verts[p[j]*3+2]; if (x < it.bmin[0]) it.bmin[0] = x; if (y < it.bmin[1]) it.bmin[1] = y; if (z < it.bmin[2]) it.bmin[2] = z; if (x > it.bmax[0]) it.bmax[0] = x; if (y > it.bmax[1]) it.bmax[1] = y; if (z > it.bmax[2]) it.bmax[2] = z; } // Remap y it.bmin[1] = (unsigned short)floorf((float)it.bmin[1]*ch/cs); it.bmax[1] = (unsigned short)ceilf((float)it.bmax[1]*ch/cs); } int curNode = 0; subdivide(items, npolys, 0, npolys, curNode, nodes); delete [] items; return curNode; } static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax) { static const unsigned char XP = 1<<0; static const unsigned char ZP = 1<<1; static const unsigned char XM = 1<<2; static const unsigned char ZM = 1<<3; unsigned char outcode = 0; outcode |= (pt[0] >= bmax[0]) ? XP : 0; outcode |= (pt[2] >= bmax[2]) ? ZP : 0; outcode |= (pt[0] < bmin[0]) ? XM : 0; outcode |= (pt[2] < bmin[2]) ? ZM : 0; switch (outcode) { case XP: return 0; case XP|ZP: return 1; case ZP: return 2; case XM|ZP: return 3; case XM: return 4; case XM|ZM: return 5; case ZM: return 6; case XP|ZM: return 7; }; return 0xff; } // TODO: Better error handling. bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) { if (params->nvp > DT_VERTS_PER_POLYGON) return false; if (params->vertCount >= 0xffff) return false; if (!params->vertCount || !params->verts) return false; if (!params->polyCount || !params->polys) return false; if (!params->detailMeshes || !params->detailVerts || !params->detailTris) return false; const int nvp = params->nvp; // Classify off-mesh connection points. We store only the connections // whose start point is inside the tile. unsigned char* offMeshConClass = new unsigned char [params->offMeshConCount*2]; if (!offMeshConClass) return false; int storedOffMeshConCount = 0; int offMeshConLinkCount = 0; for (int i = 0; i < params->offMeshConCount; ++i) { offMeshConClass[i*2+0] = classifyOffMeshPoint(¶ms->offMeshConVerts[(i*2+0)*3], params->bmin, params->bmax); offMeshConClass[i*2+1] = classifyOffMeshPoint(¶ms->offMeshConVerts[(i*2+1)*3], params->bmin, params->bmax); // Cound how many links should be allocated for off-mesh connections. if (offMeshConClass[i*2+0] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+1] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+0] == 0xff) storedOffMeshConCount++; } // Off-mesh connectionss are stored as polygons, adjust values. const int totPolyCount = params->polyCount + storedOffMeshConCount; const int totVertCount = params->vertCount + storedOffMeshConCount*2; // Find portal edges which are at tile borders. int edgeCount = 0; int portalCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*2*nvp]; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; int nj = j+1; if (nj >= nvp || p[nj] == MESH_NULL_IDX) nj = 0; const unsigned short* va = ¶ms->verts[p[j]*3]; const unsigned short* vb = ¶ms->verts[p[nj]*3]; edgeCount++; if (params->tileSize > 0) { if (va[0] == params->tileSize && vb[0] == params->tileSize) portalCount++; // x+ else if (va[2] == params->tileSize && vb[2] == params->tileSize) portalCount++; // z+ else if (va[0] == 0 && vb[0] == 0) portalCount++; // x- else if (va[2] == 0 && vb[2] == 0) portalCount++; // z- } } } const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2; // Find unique detail vertices. int uniqueDetailVertCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int ndv = params->detailMeshes[i*4+1]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } ndv -= nv; uniqueDetailVertCount += ndv; } // Calculate data size const int headerSize = align4(sizeof(dtMeshHeader)); const int vertsSize = align4(sizeof(float)*3*totVertCount); const int polysSize = align4(sizeof(dtPoly)*totPolyCount); const int linksSize = align4(sizeof(dtLink)*maxLinkCount); const int detailMeshesSize = align4(sizeof(dtPolyDetail)*params->polyCount); const int detailVertsSize = align4(sizeof(float)*3*uniqueDetailVertCount); const int detailTrisSize = align4(sizeof(unsigned char)*4*params->detailTriCount); const int bvTreeSize = align4(sizeof(dtBVNode)*params->polyCount*2); const int offMeshConsSize = align4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); const int dataSize = headerSize + vertsSize + polysSize + linksSize + detailMeshesSize + detailVertsSize + detailTrisSize + bvTreeSize + offMeshConsSize; unsigned char* data = new unsigned char[dataSize]; if (!data) return false; memset(data, 0, dataSize); unsigned char* d = data; dtMeshHeader* header = (dtMeshHeader*)d; d += headerSize; float* navVerts = (float*)d; d += vertsSize; dtPoly* navPolys = (dtPoly*)d; d += polysSize; d += linksSize; dtPolyDetail* navDMeshes = (dtPolyDetail*)d; d += detailMeshesSize; float* navDVerts = (float*)d; d += detailVertsSize; unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize; dtBVNode* navBvtree = (dtBVNode*)d; d += bvTreeSize; dtOffMeshConnection* offMeshCons = (dtOffMeshConnection*)d; d += offMeshConsSize; // Store header header->magic = DT_NAVMESH_MAGIC; header->version = DT_NAVMESH_VERSION; header->polyCount = totPolyCount; header->vertCount = totVertCount; header->maxLinkCount = maxLinkCount; vcopy(header->bmin, params->bmin); vcopy(header->bmax, params->bmax); header->detailMeshCount = params->polyCount; header->detailVertCount = uniqueDetailVertCount; header->detailTriCount = params->detailTriCount; header->bvQuantFactor = 1.0f / params->cs; header->offMeshBase = params->polyCount; header->walkableHeight = params->walkableHeight; header->walkableRadius = params->walkableRadius; header->walkableClimb = params->walkableClimb; header->offMeshConCount = storedOffMeshConCount; header->bvNodeCount = params->polyCount*2; const int offMeshVertsBase = params->vertCount; const int offMeshPolyBase = params->polyCount; // Store vertices // Mesh vertices for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; float* v = &navVerts[i*3]; v[0] = params->bmin[0] + iv[0] * params->cs; v[1] = params->bmin[1] + iv[1] * params->ch; v[2] = params->bmin[2] + iv[2] * params->cs; } // Off-mesh link vertices. int n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { const float* linkv = ¶ms->offMeshConVerts[i*2*3]; float* v = &navVerts[(offMeshVertsBase + n*2)*3]; vcopy(&v[0], &linkv[0]); vcopy(&v[3], &linkv[3]); n++; } } // Store polygons // Mesh polys const unsigned short* src = params->polys; for (int i = 0; i < params->polyCount; ++i) { dtPoly* p = &navPolys[i]; p->vertCount = 0; p->flags = params->polyFlags[i]; p->area = params->polyAreas[i]; p->type = DT_POLYTYPE_GROUND; for (int j = 0; j < nvp; ++j) { if (src[j] == MESH_NULL_IDX) break; p->verts[j] = src[j]; p->neis[j] = (src[nvp+j]+1) & 0xffff; p->vertCount++; } src += nvp*2; } // Off-mesh connection vertices. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtPoly* p = &navPolys[offMeshPolyBase+n]; p->vertCount = 2; p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); p->flags = params->offMeshConFlags[i]; p->area = params->offMeshConAreas[i]; p->type = DT_POLYTYPE_OFFMESH_CONNECTION; n++; } } // Store portal edges. if (params->tileSize > 0) { for (int i = 0; i < params->polyCount; ++i) { dtPoly* poly = &navPolys[i]; for (int j = 0; j < poly->vertCount; ++j) { int nj = j+1; if (nj >= poly->vertCount) nj = 0; const unsigned short* va = ¶ms->verts[poly->verts[j]*3]; const unsigned short* vb = ¶ms->verts[poly->verts[nj]*3]; if (va[0] == params->tileSize && vb[0] == params->tileSize) // x+ poly->neis[j] = DT_EXT_LINK | 0; else if (va[2] == params->tileSize && vb[2] == params->tileSize) // z+ poly->neis[j] = DT_EXT_LINK | 2; else if (va[0] == 0 && vb[0] == 0) // x- poly->neis[j] = DT_EXT_LINK | 4; else if (va[2] == 0 && vb[2] == 0) // z- poly->neis[j] = DT_EXT_LINK | 6; } } } // Store detail meshes and vertices. // The nav polygon vertices are stored as the first vertices on each mesh. // We compress the mesh data by skipping them and using the navmesh coordinates. unsigned short vbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int vb = params->detailMeshes[i*4+0]; const int ndv = params->detailMeshes[i*4+1]; const int nv = navPolys[i].vertCount; dtl.vertBase = vbase; dtl.vertCount = ndv-nv; dtl.triBase = params->detailMeshes[i*4+2]; dtl.triCount = params->detailMeshes[i*4+3]; // Copy vertices except the first 'nv' verts which are equal to nav poly verts. if (ndv-nv) { memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); vbase += ndv-nv; } } // Store triangles. memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); // Store and create BVtree. // TODO: take detail mesh into account! use byte per bbox extent? createBVTree(params->verts, params->vertCount, params->polys, params->polyCount, nvp, params->cs, params->ch, params->polyCount*2, navBvtree); // Store Off-Mesh connections. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtOffMeshConnection* con = &offMeshCons[n]; con->poly = offMeshPolyBase + n; // Copy connection end-points. const float* endPts = ¶ms->offMeshConVerts[i*2*3]; vcopy(&con->pos[0], &endPts[0]); vcopy(&con->pos[3], &endPts[3]); con->rad = params->offMeshConRad[i]; con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0; con->side = offMeshConClass[i*2+1]; n++; } } delete [] offMeshConClass; *outData = data; *outDataSize = dataSize; return true; } inline void swapByte(unsigned char* a, unsigned char* b) { unsigned char tmp = *a; *a = *b; *b = tmp; } inline void swapEndian(unsigned short* v) { unsigned char* x = (unsigned char*)v; swapByte(x+0, x+1); } inline void swapEndian(short* v) { unsigned char* x = (unsigned char*)v; swapByte(x+0, x+1); } inline void swapEndian(unsigned int* v) { unsigned char* x = (unsigned char*)v; swapByte(x+0, x+3); swapByte(x+1, x+2); } inline void swapEndian(int* v) { unsigned char* x = (unsigned char*)v; swapByte(x+0, x+3); swapByte(x+1, x+2); } inline void swapEndian(float* v) { unsigned char* x = (unsigned char*)v; swapByte(x+0, x+3); swapByte(x+1, x+2); } bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int dataSize) { dtMeshHeader* header = (dtMeshHeader*)data; int swappedMagic = DT_NAVMESH_MAGIC; int swappedVersion = DT_NAVMESH_VERSION; swapEndian(&swappedMagic); swapEndian(&swappedVersion); if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) && (header->magic != swappedMagic || header->version != swappedVersion)) { return false; } swapEndian(&header->magic); swapEndian(&header->version); swapEndian(&header->polyCount); swapEndian(&header->vertCount); swapEndian(&header->maxLinkCount); swapEndian(&header->detailMeshCount); swapEndian(&header->detailVertCount); swapEndian(&header->detailTriCount); swapEndian(&header->bvNodeCount); swapEndian(&header->offMeshConCount); swapEndian(&header->offMeshBase); swapEndian(&header->walkableHeight); swapEndian(&header->walkableRadius); swapEndian(&header->walkableClimb); swapEndian(&header->bmin[0]); swapEndian(&header->bmin[1]); swapEndian(&header->bmin[2]); swapEndian(&header->bmax[0]); swapEndian(&header->bmax[1]); swapEndian(&header->bmax[2]); swapEndian(&header->bvQuantFactor); // Freelist index and pointers are updated when tile is added, no need to swap. return true; } bool dtNavMeshDataSwapEndian(unsigned char* data, const int dataSize) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return false; if (header->version != DT_NAVMESH_VERSION) return false; // Patch header pointers. const int headerSize = align4(sizeof(dtMeshHeader)); const int vertsSize = align4(sizeof(float)*3*header->vertCount); const int polysSize = align4(sizeof(dtPoly)*header->polyCount); const int linksSize = align4(sizeof(dtLink)*(header->maxLinkCount)); const int detailMeshesSize = align4(sizeof(dtPolyDetail)*header->detailMeshCount); const int detailVertsSize = align4(sizeof(float)*3*header->detailVertCount); const int detailTrisSize = align4(sizeof(unsigned char)*4*header->detailTriCount); const int bvtreeSize = align4(sizeof(dtBVNode)*header->bvNodeCount); const int offMeshLinksSize = align4(sizeof(dtOffMeshConnection)*header->offMeshConCount); unsigned char* d = data + headerSize; float* verts = (float*)d; d += vertsSize; dtPoly* polys = (dtPoly*)d; d += polysSize; /*dtLink* links = (dtLink*)d;*/ d += linksSize; dtPolyDetail* detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize; float* detailVerts = (float*)d; d += detailVertsSize; /*unsigned char* detailTris = (unsigned char*)d;*/ d += detailTrisSize; dtBVNode* bvTree = (dtBVNode*)d; d += bvtreeSize; dtOffMeshConnection* offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize; // Vertices for (int i = 0; i < header->vertCount*3; ++i) { swapEndian(&verts[i]); } // Polys for (int i = 0; i < header->polyCount; ++i) { dtPoly* p = &polys[i]; // poly->firstLink is update when tile is added, no need to swap. for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j) { swapEndian(&p->verts[j]); swapEndian(&p->neis[j]); } swapEndian(&p->flags); } // Links are rebuild when tile is added, no need to swap. // Detail meshes for (int i = 0; i < header->detailMeshCount; ++i) { dtPolyDetail* pd = &detailMeshes[i]; swapEndian(&pd->vertBase); swapEndian(&pd->vertCount); swapEndian(&pd->triBase); swapEndian(&pd->triCount); } // Detail verts for (int i = 0; i < header->detailVertCount*3; ++i) { swapEndian(&detailVerts[i]); } // BV-tree for (int i = 0; i < header->bvNodeCount; ++i) { dtBVNode* node = &bvTree[i]; for (int j = 0; j < 3; ++j) { swapEndian(&node->bmin[j]); swapEndian(&node->bmax[j]); } swapEndian(&node->i); } // Off-mesh Connections. for (int i = 0; i < header->offMeshConCount; ++i) { dtOffMeshConnection* con = &offMeshCons[i]; for (int j = 0; j < 6; ++j) swapEndian(&con->pos[j]); swapEndian(&con->rad); swapEndian(&con->poly); } return true; }