#define _USE_MATH_DEFINES #include #include #include #include "SDL.h" #include "SDL_opengl.h" #include "imgui.h" #include "Sample.h" #include "Sample_SoloMeshTiled.h" #include "Recast.h" #include "RecastTimer.h" #include "RecastDebugDraw.h" #include "DetourNavMesh.h" #include "DetourNavMeshBuilder.h" #include "DetourDebugDraw.h" #ifdef WIN32 # define snprintf _snprintf #endif Sample_SoloMeshTiled::Sample_SoloMeshTiled() : m_measurePerTileTimings(false), m_keepInterResults(false), m_tileSize(64), m_chunkyMesh(0), m_pmesh(0), m_dmesh(0), m_tileSet(0), m_statPolysPerTileSamples(0), m_statTimePerTileSamples(0), m_drawMode(DRAWMODE_NAVMESH) { } Sample_SoloMeshTiled::~Sample_SoloMeshTiled() { cleanup(); } void Sample_SoloMeshTiled::cleanup() { delete m_chunkyMesh; m_chunkyMesh = 0; delete m_tileSet; m_tileSet = 0; delete m_pmesh; m_pmesh = 0; delete m_dmesh; m_dmesh = 0; toolCleanup(); m_statTimePerTileSamples = 0; m_statPolysPerTileSamples = 0; } void Sample_SoloMeshTiled::handleSettings() { Sample::handleCommonSettings(); imguiLabel("Tiling"); imguiSlider("TileSize", &m_tileSize, 16.0f, 1024.0f, 16.0f); char text[64]; int gw = 0, gh = 0; rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh); const int ts = (int)m_tileSize; const int tw = (gw + ts-1) / ts; const int th = (gh + ts-1) / ts; snprintf(text, 64, "Tiles %d x %d", tw, th); imguiValue(text); imguiSeparator(); if (imguiCheck("Keep Itermediate Results", m_keepInterResults)) m_keepInterResults = !m_keepInterResults; if (imguiCheck("Measure Per Tile Timings", m_measurePerTileTimings)) m_measurePerTileTimings = !m_measurePerTileTimings; imguiSeparator(); } void Sample_SoloMeshTiled::handleDebugMode() { // Check which modes are valid. bool valid[MAX_DRAWMODE]; for (int i = 0; i < MAX_DRAWMODE; ++i) valid[i] = false; bool hasChf = false; bool hasSolid = false; bool hasCset = false; bool hasPmesh = false; bool hasDmesh = false; if (m_tileSet) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].solid) hasSolid = true; if (m_tileSet->tiles[i].chf) hasChf = true; if (m_tileSet->tiles[i].cset) hasCset = true; if (m_tileSet->tiles[i].pmesh) hasPmesh = true; if (m_tileSet->tiles[i].dmesh) hasDmesh = true; } } if (m_pmesh) hasPmesh = true; if (m_dmesh) hasDmesh = true; if (m_verts && m_tris) { valid[DRAWMODE_NAVMESH] = m_navMesh != 0; valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0; valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0; valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0; valid[DRAWMODE_MESH] = true; valid[DRAWMODE_VOXELS] = hasSolid; valid[DRAWMODE_VOXELS_WALKABLE] = hasSolid; valid[DRAWMODE_COMPACT] = hasChf; valid[DRAWMODE_COMPACT_DISTANCE] = hasChf; valid[DRAWMODE_COMPACT_REGIONS] = hasChf; valid[DRAWMODE_REGION_CONNECTIONS] = hasCset; valid[DRAWMODE_RAW_CONTOURS] = hasCset; valid[DRAWMODE_BOTH_CONTOURS] = hasCset; valid[DRAWMODE_CONTOURS] = hasCset; valid[DRAWMODE_POLYMESH] = hasPmesh; valid[DRAWMODE_POLYMESH_DETAIL] = hasDmesh; } int unavail = 0; for (int i = 0; i < MAX_DRAWMODE; ++i) if (!valid[i]) unavail++; if (unavail == MAX_DRAWMODE) return; imguiLabel("Draw"); if (imguiCheck("Input Mesh", m_drawMode == DRAWMODE_MESH, valid[DRAWMODE_MESH])) m_drawMode = DRAWMODE_MESH; if (imguiCheck("Navmesh", m_drawMode == DRAWMODE_NAVMESH, valid[DRAWMODE_NAVMESH])) m_drawMode = DRAWMODE_NAVMESH; if (imguiCheck("Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS, valid[DRAWMODE_NAVMESH_INVIS])) m_drawMode = DRAWMODE_NAVMESH_INVIS; if (imguiCheck("Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS, valid[DRAWMODE_NAVMESH_TRANS])) m_drawMode = DRAWMODE_NAVMESH_TRANS; if (imguiCheck("Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE, valid[DRAWMODE_NAVMESH_BVTREE])) m_drawMode = DRAWMODE_NAVMESH_BVTREE; if (imguiCheck("Voxels", m_drawMode == DRAWMODE_VOXELS, valid[DRAWMODE_VOXELS])) m_drawMode = DRAWMODE_VOXELS; if (imguiCheck("Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE, valid[DRAWMODE_VOXELS_WALKABLE])) m_drawMode = DRAWMODE_VOXELS_WALKABLE; if (imguiCheck("Compact", m_drawMode == DRAWMODE_COMPACT, valid[DRAWMODE_COMPACT])) m_drawMode = DRAWMODE_COMPACT; if (imguiCheck("Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE, valid[DRAWMODE_COMPACT_DISTANCE])) m_drawMode = DRAWMODE_COMPACT_DISTANCE; if (imguiCheck("Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS, valid[DRAWMODE_COMPACT_REGIONS])) m_drawMode = DRAWMODE_COMPACT_REGIONS; if (imguiCheck("Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS, valid[DRAWMODE_REGION_CONNECTIONS])) m_drawMode = DRAWMODE_REGION_CONNECTIONS; if (imguiCheck("Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS, valid[DRAWMODE_RAW_CONTOURS])) m_drawMode = DRAWMODE_RAW_CONTOURS; if (imguiCheck("Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS, valid[DRAWMODE_BOTH_CONTOURS])) m_drawMode = DRAWMODE_BOTH_CONTOURS; if (imguiCheck("Contours", m_drawMode == DRAWMODE_CONTOURS, valid[DRAWMODE_CONTOURS])) m_drawMode = DRAWMODE_CONTOURS; if (imguiCheck("Poly Mesh", m_drawMode == DRAWMODE_POLYMESH, valid[DRAWMODE_POLYMESH])) m_drawMode = DRAWMODE_POLYMESH; if (imguiCheck("Poly Mesh Detail", m_drawMode == DRAWMODE_POLYMESH_DETAIL, valid[DRAWMODE_POLYMESH_DETAIL])) m_drawMode = DRAWMODE_POLYMESH_DETAIL; if (unavail) { imguiValue("Tick 'Keep Itermediate Results'"); imguiValue("to see more debug mode options."); } } void Sample_SoloMeshTiled::handleRender() { if (!m_verts || !m_tris || !m_trinorms) return; float col[4]; DebugDrawGL dd; glEnable(GL_FOG); glDepthMask(GL_TRUE); if (m_drawMode == DRAWMODE_MESH) { // Draw mesh rcDebugDrawMeshSlope(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, m_agentMaxSlope); } else if (m_drawMode != DRAWMODE_NAVMESH_TRANS) { // Draw mesh rcDebugDrawMesh(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, 0); } glDisable(GL_FOG); glDepthMask(GL_FALSE); // Draw bounds col[0] = 1; col[1] = 1; col[2] = 1; col[3] = 0.5f; rcDebugDrawBoxWire(&dd, m_bmin[0],m_bmin[1],m_bmin[2], m_bmax[0],m_bmax[1],m_bmax[2], col); // Tiling grid. const int ts = (int)m_tileSize; int gw = 0, gh = 0; rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh); int tw = (gw + ts-1) / ts; int th = (gh + ts-1) / ts; const float s = ts*m_cellSize; glBegin(GL_LINES); glColor4ub(0,0,0,64); for (int y = 0; y < th; ++y) { for (int x = 0; x < tw; ++x) { float fx, fy, fz; fx = m_bmin[0] + x*s; fy = m_bmin[1]; fz = m_bmin[2] + y*s; glVertex3f(fx,fy,fz); glVertex3f(fx+s,fy,fz); glVertex3f(fx,fy,fz); glVertex3f(fx,fy,fz+s); if (x+1 >= tw) { glVertex3f(fx+s,fy,fz); glVertex3f(fx+s,fy,fz+s); } if (y+1 >= th) { glVertex3f(fx,fy,fz+s); glVertex3f(fx+s,fy,fz+s); } } } glEnd(); if (m_navMesh && (m_drawMode == DRAWMODE_NAVMESH || m_drawMode == DRAWMODE_NAVMESH_TRANS || m_drawMode == DRAWMODE_NAVMESH_BVTREE || m_drawMode == DRAWMODE_NAVMESH_INVIS)) { int flags = NAVMESH_TOOLS; if (m_drawMode != DRAWMODE_NAVMESH_INVIS) flags |= NAVMESH_POLYS; if (m_drawMode == DRAWMODE_NAVMESH_BVTREE) flags |= NAVMESH_BVTREE; toolRender(flags); } glDepthMask(GL_TRUE); if (m_tileSet) { if (m_drawMode == DRAWMODE_COMPACT) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].chf) rcDebugDrawCompactHeightfieldSolid(&dd, *m_tileSet->tiles[i].chf); } } if (m_drawMode == DRAWMODE_COMPACT_DISTANCE) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].chf) rcDebugDrawCompactHeightfieldDistance(&dd, *m_tileSet->tiles[i].chf); } } if (m_drawMode == DRAWMODE_COMPACT_REGIONS) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].chf) rcDebugDrawCompactHeightfieldRegions(&dd, *m_tileSet->tiles[i].chf); } } if (m_drawMode == DRAWMODE_VOXELS) { glEnable(GL_FOG); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].solid) rcDebugDrawHeightfieldSolid(&dd, *m_tileSet->tiles[i].solid); } glDisable(GL_FOG); } if (m_drawMode == DRAWMODE_VOXELS_WALKABLE) { glEnable(GL_FOG); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].solid) rcDebugDrawHeightfieldWalkable(&dd, *m_tileSet->tiles[i].solid); } glDisable(GL_FOG); } if (m_drawMode == DRAWMODE_RAW_CONTOURS) { glDepthMask(GL_FALSE); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].cset) rcDebugDrawRawContours(&dd, *m_tileSet->tiles[i].cset); } glDepthMask(GL_TRUE); } if (m_drawMode == DRAWMODE_BOTH_CONTOURS) { glDepthMask(GL_FALSE); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].cset) { rcDebugDrawRawContours(&dd, *m_tileSet->tiles[i].cset, 0.5f); rcDebugDrawContours(&dd, *m_tileSet->tiles[i].cset); } } glDepthMask(GL_TRUE); } if (m_drawMode == DRAWMODE_CONTOURS) { glDepthMask(GL_FALSE); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].cset) rcDebugDrawContours(&dd, *m_tileSet->tiles[i].cset); } glDepthMask(GL_TRUE); } if (m_drawMode == DRAWMODE_REGION_CONNECTIONS) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].chf) rcDebugDrawCompactHeightfieldRegions(&dd, *m_tileSet->tiles[i].chf); } glDepthMask(GL_FALSE); for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].cset) rcDebugDrawRegionConnections(&dd, *m_tileSet->tiles[i].cset); } glDepthMask(GL_TRUE); } if (/*m_pmesh &&*/ m_drawMode == DRAWMODE_POLYMESH) { glDepthMask(GL_FALSE); if (m_pmesh) { rcDebugDrawPolyMesh(&dd, *m_pmesh); } else { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].pmesh) rcDebugDrawPolyMesh(&dd, *m_tileSet->tiles[i].pmesh); } } glDepthMask(GL_TRUE); } if (/*m_dmesh &&*/ m_drawMode == DRAWMODE_POLYMESH_DETAIL) { glDepthMask(GL_FALSE); if (m_dmesh) { rcDebugDrawPolyMeshDetail(&dd, *m_dmesh); } else { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].dmesh) rcDebugDrawPolyMeshDetail(&dd, *m_tileSet->tiles[i].dmesh); } } glDepthMask(GL_TRUE); } } static const float startCol[4] = { 0.5f, 0.1f, 0.0f, 0.75f }; static const float endCol[4] = { 0.2f, 0.4f, 0.0f, 0.75f }; if (m_sposSet) drawAgent(m_spos, m_agentRadius, m_agentHeight, m_agentMaxClimb, startCol); if (m_eposSet) drawAgent(m_epos, m_agentRadius, m_agentHeight, m_agentMaxClimb, endCol); } static float nicenum(float x, int round) { float expv = floorf(log10f(x)); float f = x / powf(10.0f, expv); float nf; if (round) { if (f < 1.5f) nf = 1.0f; else if (f < 3.0f) nf = 2.0f; else if (f < 7.0f) nf = 5.0f; else nf = 10.0f; } else { if (f <= 1.0f) nf = 1.0f; else if (f <= 2.0f) nf = 2.0f; else if (f <= 5.0f) nf = 5.0f; else nf = 10.0f; } return nf*powf(10.0f, expv); } static void drawLabels(int x, int y, int w, int h, int nticks, float vmin, float vmax, const char* unit) { char str[8], temp[32]; float range = nicenum(vmax-vmin, 0); float d = nicenum(range/(float)(nticks-1), 1); float graphmin = floorf(vmin/d)*d; float graphmax = ceilf(vmax/d)*d; int nfrac = (int)-floorf(log10f(d)); if (nfrac < 0) nfrac = 0; snprintf(str, 6, "%%.%df %%s", nfrac); for (float v = graphmin; v < graphmax+d/2; v += d) { float lx = x + (v-vmin)/(vmax-vmin)*w; if (lx < 0 || lx > w) continue; snprintf(temp, 20, str, v, unit); imguiDrawText((int)lx+2, (int)y+2, IMGUI_ALIGN_LEFT, temp, imguiRGBA(255,255,255)); glColor4ub(0,0,0,64); glBegin(GL_LINES); glVertex2f(lx,(float)y); glVertex2f(lx,(float)(y+h)); glEnd(); } } static void drawGraph(const char* name, int x, int y, int w, int h, float sd, const int* samples, int n, int nsamples, const char* unit) { char text[64]; int first, last, maxval; first = 0; last = n-1; while (first < n && samples[first] == 0) first++; while (last >= 0 && samples[last] == 0) last--; if (first == last) return; maxval = 1; for (int i = first; i <= last; ++i) { if (samples[i] > maxval) maxval = samples[i]; } const float sx = (float)w / (float)(last-first); const float sy = (float)h / (float)maxval; glBegin(GL_QUADS); glColor4ub(32,32,32,64); glVertex2i(x,y); glVertex2i(x+w,y); glVertex2i(x+w,y+h); glVertex2i(x,y+h); glEnd(); glColor4ub(255,255,255,64); glBegin(GL_LINES); for (int i = 0; i <= 4; ++i) { int yy = y+i*h/4; glVertex2i(x,yy); glVertex2i(x+w,yy); } glEnd(); glColor4ub(0,196,255,255); glBegin(GL_LINE_STRIP); for (int i = first; i <= last; ++i) { float fx = x + (i-first)*sx; float fy = y + samples[i]*sy; glVertex2f(fx,fy); } glEnd(); snprintf(text,64,"%d", maxval); imguiDrawText((int)x+w-2, (int)y+h-20, IMGUI_ALIGN_RIGHT, text, imguiRGBA(0,0,0)); imguiDrawText((int)x+2, (int)y+h-20, IMGUI_ALIGN_LEFT, name, imguiRGBA(255,255,255)); drawLabels(x, y, w, h, 10, first*sd, last*sd, unit); } void Sample_SoloMeshTiled::handleRenderOverlay(double* proj, double* model, int* view) { toolRenderOverlay(proj, model, view); if (m_measurePerTileTimings) { if (m_statTimePerTileSamples) drawGraph("Build Time/Tile", 10, 10, 500, 100, 1.0f, m_statTimePerTile, MAX_STAT_BUCKETS, m_statTimePerTileSamples, "ms"); if (m_statPolysPerTileSamples) drawGraph("Polygons/Tile", 10, 120, 500, 100, 1.0f, m_statPolysPerTile, MAX_STAT_BUCKETS, m_statPolysPerTileSamples, ""); int validTiles = 0; if (m_tileSet) { for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i) { if (m_tileSet->tiles[i].buildTime > 0) validTiles++; } } char text[64]; snprintf(text,64,"Tiles %d\n", validTiles); imguiDrawText(10, 240, IMGUI_ALIGN_LEFT, text, imguiRGBA(255,255,255)); } } void Sample_SoloMeshTiled::handleMeshChanged(const float* verts, int nverts, const int* tris, const float* trinorms, int ntris, const float* bmin, const float* bmax) { Sample::handleMeshChanged(verts, nverts, tris, trinorms, ntris, bmin, bmax); toolCleanup(); toolReset(); m_statTimePerTileSamples = 0; m_statPolysPerTileSamples = 0; } bool Sample_SoloMeshTiled::handleBuild() { if (!m_verts || ! m_tris) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified."); return false; } if (m_measurePerTileTimings) { memset(m_statPolysPerTile, 0, sizeof(m_statPolysPerTile)); memset(m_statTimePerTile, 0, sizeof(m_statTimePerTile)); m_statPolysPerTileSamples = 0; m_statTimePerTileSamples = 0; } cleanup(); toolCleanup(); toolReset(); // Init build configuration from GUI memset(&m_cfg, 0, sizeof(m_cfg)); m_cfg.cs = m_cellSize; m_cfg.ch = m_cellHeight; m_cfg.walkableSlopeAngle = m_agentMaxSlope; m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch); m_cfg.walkableClimb = (int)ceilf(m_agentMaxClimb / m_cfg.ch); m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs); m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize); m_cfg.maxSimplificationError = m_edgeMaxError; m_cfg.minRegionSize = (int)rcSqr(m_regionMinSize); m_cfg.mergeRegionSize = (int)rcSqr(m_regionMergeSize); m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly; m_cfg.tileSize = (int)m_tileSize; m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding. m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist; m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError; // Set the area where the navigation will be build. // Here the bounds of the input mesh are used, but the // area could be specified by an user defined box, etc. vcopy(m_cfg.bmin, m_bmin); vcopy(m_cfg.bmax, m_bmax); rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height); // Reset build times gathering. memset(&m_buildTimes, 0, sizeof(m_buildTimes)); rcSetBuildTimes(&m_buildTimes); // Start the build process. rcTimeVal totStartTime = rcGetPerformanceTimer(); // Calculate the number of tiles in the output and initialize tiles. m_tileSet = new TileSet; if (!m_tileSet) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'tileSet'."); return false; } vcopy(m_tileSet->bmin, m_cfg.bmin); vcopy(m_tileSet->bmax, m_cfg.bmax); m_tileSet->cs = m_cfg.cs; m_tileSet->ch = m_cfg.ch; m_tileSet->width = (m_cfg.width + m_cfg.tileSize-1) / m_cfg.tileSize; m_tileSet->height = (m_cfg.height + m_cfg.tileSize-1) / m_cfg.tileSize; m_tileSet->tiles = new Tile[m_tileSet->height * m_tileSet->width]; if (!m_tileSet->tiles) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'tileSet->tiles' (%d).", m_tileSet->height * m_tileSet->width); return false; } // Build chunky trimesh for local polygon queries. rcTimeVal chunkyStartTime = rcGetPerformanceTimer(); m_chunkyMesh = new rcChunkyTriMesh; if (!m_chunkyMesh) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'm_chunkyMesh'."); return false; } if (!rcCreateChunkyTriMesh(m_verts, m_tris, m_ntris, 256, m_chunkyMesh)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Could not build chunky mesh."); return false; } rcTimeVal chunkyEndTime = rcGetPerformanceTimer(); if (rcGetLog()) { rcGetLog()->log(RC_LOG_PROGRESS, "Building navigation:"); rcGetLog()->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height); rcGetLog()->log(RC_LOG_PROGRESS, " - %d x %d tiles", m_tileSet->width, m_tileSet->height); rcGetLog()->log(RC_LOG_PROGRESS, " - %.1f verts, %.1f tris", m_nverts/1000.0f, m_ntris/1000.0f); } // Initialize per tile config. rcConfig tileCfg; memcpy(&tileCfg, &m_cfg, sizeof(rcConfig)); tileCfg.width = m_cfg.tileSize + m_cfg.borderSize*2; tileCfg.height = m_cfg.tileSize + m_cfg.borderSize*2; // Allocate array that can hold triangle flags for all geom chunks. unsigned char* triangleFlags = new unsigned char[m_chunkyMesh->maxTrisPerChunk]; if (!triangleFlags) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'triangleFlags' (%d).", m_chunkyMesh->maxTrisPerChunk); return false; } rcHeightfield* solid = 0; rcCompactHeightfield* chf = 0; rcContourSet* cset = 0; for (int y = 0; y < m_tileSet->height; ++y) { for (int x = 0; x < m_tileSet->width; ++x) { rcTimeVal startTime = rcGetPerformanceTimer(); Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width]; // Calculate the per tile bounding box. tileCfg.bmin[0] = m_cfg.bmin[0] + (x*m_cfg.tileSize - m_cfg.borderSize)*m_cfg.cs; tileCfg.bmin[2] = m_cfg.bmin[2] + (y*m_cfg.tileSize - m_cfg.borderSize)*m_cfg.cs; tileCfg.bmax[0] = m_cfg.bmin[0] + ((x+1)*m_cfg.tileSize + m_cfg.borderSize)*m_cfg.cs; tileCfg.bmax[2] = m_cfg.bmin[2] + ((y+1)*m_cfg.tileSize + m_cfg.borderSize)*m_cfg.cs; delete solid; delete chf; solid = 0; chf = 0; float tbmin[2], tbmax[2]; tbmin[0] = tileCfg.bmin[0]; tbmin[1] = tileCfg.bmin[2]; tbmax[0] = tileCfg.bmax[0]; tbmax[1] = tileCfg.bmax[2]; int cid[256];// TODO: Make grow when returning too many items. const int ncid = rcGetChunksInRect(m_chunkyMesh, tbmin, tbmax, cid, 256); if (!ncid) continue; solid = new rcHeightfield; if (!solid) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'solid'.", x, y); continue; } if (!rcCreateHeightfield(*solid, tileCfg.width, tileCfg.height, tileCfg.bmin, tileCfg.bmax, tileCfg.cs, tileCfg.ch)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create solid heightfield.", x, y); continue; } for (int i = 0; i < ncid; ++i) { const rcChunkyTriMeshNode& node = m_chunkyMesh->nodes[cid[i]]; const int* tris = &m_chunkyMesh->tris[node.i*3]; const int ntris = node.n; memset(triangleFlags, 0, ntris*sizeof(unsigned char)); rcMarkWalkableTriangles(tileCfg.walkableSlopeAngle, m_verts, m_nverts, tris, ntris, triangleFlags); rcRasterizeTriangles(m_verts, m_nverts, tris, triangleFlags, ntris, *solid); } rcFilterLedgeSpans(tileCfg.walkableHeight, tileCfg.walkableClimb, *solid); rcFilterWalkableLowHeightSpans(tileCfg.walkableHeight, *solid); chf = new rcCompactHeightfield; if (!chf) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'chf'.", x, y); continue; } if (!rcBuildCompactHeightfield(tileCfg.walkableHeight, tileCfg.walkableClimb, RC_WALKABLE, *solid, *chf)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build compact data.", x, y); continue; } if (!rcBuildDistanceField(*chf)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build distance fields.", x, y); continue; } if (!rcBuildRegions(*chf, tileCfg.walkableRadius, tileCfg.borderSize, tileCfg.minRegionSize, tileCfg.mergeRegionSize)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build regions.", x, y); continue; } cset = new rcContourSet; if (!cset) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'cset'.", x, y); continue; } if (!rcBuildContours(*chf, tileCfg.maxSimplificationError, tileCfg.maxEdgeLen, *cset)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create contours.", x, y); continue; } if (!cset->nconts) { delete cset; cset = 0; continue; } tile.pmesh = new rcPolyMesh; if (!tile.pmesh) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'pmesh'.", x, y); continue; } if (!rcBuildPolyMesh(*cset, tileCfg.maxVertsPerPoly, *tile.pmesh)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create poly mesh.", x, y); continue; } tile.dmesh = new rcPolyMeshDetail; if (!tile.dmesh) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'dmesh'.", x, y); continue; } if (!rcBuildPolyMeshDetail(*tile.pmesh, *chf, tileCfg.detailSampleDist, tileCfg .detailSampleMaxError, *tile.dmesh)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build detail mesh.", x, y); continue; } if (m_keepInterResults) { tile.solid = solid; solid = 0; tile.chf = chf; chf = 0; tile.cset = cset; cset = 0; } rcTimeVal endTime = rcGetPerformanceTimer(); tile.buildTime += rcGetDeltaTimeUsec(startTime, endTime); // Some extra code to measure some per tile statistics, // such as build time and how many polygons there are per tile. if (tile.pmesh) { int bucket = tile.pmesh->npolys; if (bucket < 0) bucket = 0; if (bucket >= MAX_STAT_BUCKETS) bucket = MAX_STAT_BUCKETS-1; m_statPolysPerTile[bucket]++; m_statPolysPerTileSamples++; } int bucket = (tile.buildTime+500)/1000; if (bucket < 0) bucket = 0; if (bucket >= MAX_STAT_BUCKETS) bucket = MAX_STAT_BUCKETS-1; m_statTimePerTile[bucket]++; m_statTimePerTileSamples++; } } delete [] triangleFlags; delete solid; delete chf; // Merge per tile poly and detail meshes. rcPolyMesh** pmmerge = new rcPolyMesh*[m_tileSet->width*m_tileSet->height]; if (!pmmerge) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'pmmerge' (%d).", m_tileSet->width*m_tileSet->height); return false; } rcPolyMeshDetail** dmmerge = new rcPolyMeshDetail*[m_tileSet->width*m_tileSet->height]; if (!dmmerge) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'dmmerge' (%d).", m_tileSet->width*m_tileSet->height); return false; } int nmerge = 0; for (int y = 0; y < m_tileSet->height; ++y) { for (int x = 0; x < m_tileSet->width; ++x) { Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width]; if (tile.pmesh) { pmmerge[nmerge] = tile.pmesh; dmmerge[nmerge] = tile.dmesh; nmerge++; } } } m_pmesh = new rcPolyMesh; if (!m_pmesh) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'."); return false; } rcMergePolyMeshes(pmmerge, nmerge, *m_pmesh); m_dmesh = new rcPolyMeshDetail; if (!m_dmesh) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'."); return false; } rcMergePolyMeshDetails(dmmerge, nmerge, *m_dmesh); delete [] pmmerge; delete [] dmmerge; if (!m_keepInterResults) { for (int y = 0; y < m_tileSet->height; ++y) { for (int x = 0; x < m_tileSet->width; ++x) { Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width]; delete tile.cset; tile.cset = 0; delete tile.pmesh; tile.pmesh = 0; delete tile.dmesh; tile.dmesh = 0; } } } if (m_pmesh && m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON) { unsigned char* navData = 0; int navDataSize = 0; if (!dtCreateNavMeshData(m_pmesh->verts, m_pmesh->nverts, m_pmesh->polys, m_pmesh->npolys, m_pmesh->nvp, m_dmesh->meshes, m_dmesh->verts, m_dmesh->nverts, m_dmesh->tris, m_dmesh->ntris, m_pmesh->bmin, m_pmesh->bmax, m_cfg.cs, m_cfg.ch, 0, m_cfg.walkableClimb, &navData, &navDataSize)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "Could not build Detour navmesh."); return false; } m_navMesh = new dtNavMesh; if (!m_navMesh) { delete [] navData; if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "Could not create Detour navmesh"); return false; } if (!m_navMesh->init(navData, navDataSize, true, 2048)) { delete [] navData; if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "Could not init Detour navmesh"); return false; } } rcTimeVal totEndTime = rcGetPerformanceTimer(); if (rcGetLog()) { const float pc = 100.0f / rcGetDeltaTimeUsec(totStartTime, totEndTime); rcGetLog()->log(RC_LOG_PROGRESS, "Chunky Mesh: %.1fms (%.1f%%)", rcGetDeltaTimeUsec(chunkyStartTime, chunkyEndTime)/1000.0f, rcGetDeltaTimeUsec(chunkyStartTime, chunkyEndTime)*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Rasterize: %.1fms (%.1f%%)", m_buildTimes.rasterizeTriangles/1000.0f, m_buildTimes.rasterizeTriangles*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Compact: %.1fms (%.1f%%)", m_buildTimes.buildCompact/1000.0f, m_buildTimes.buildCompact*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Filter Border: %.1fms (%.1f%%)", m_buildTimes.filterBorder/1000.0f, m_buildTimes.filterBorder*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Filter Walkable: %.1fms (%.1f%%)", m_buildTimes.filterWalkable/1000.0f, m_buildTimes.filterWalkable*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Filter Reachable: %.1fms (%.1f%%)", m_buildTimes.filterMarkReachable/1000.0f, m_buildTimes.filterMarkReachable*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Distancefield: %.1fms (%.1f%%)", m_buildTimes.buildDistanceField/1000.0f, m_buildTimes.buildDistanceField*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - distance: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldDist/1000.0f, m_buildTimes.buildDistanceFieldDist*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldBlur/1000.0f, m_buildTimes.buildDistanceFieldBlur*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Regions: %.1fms (%.1f%%)", m_buildTimes.buildRegions/1000.0f, m_buildTimes.buildRegions*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - watershed: %.1fms (%.1f%%)", m_buildTimes.buildRegionsReg/1000.0f, m_buildTimes.buildRegionsReg*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - expand: %.1fms (%.1f%%)", m_buildTimes.buildRegionsExp/1000.0f, m_buildTimes.buildRegionsExp*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - find catchment basins: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFlood/1000.0f, m_buildTimes.buildRegionsFlood*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFilter/1000.0f, m_buildTimes.buildRegionsFilter*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Contours: %.1fms (%.1f%%)", m_buildTimes.buildContours/1000.0f, m_buildTimes.buildContours*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - trace: %.1fms (%.1f%%)", m_buildTimes.buildContoursTrace/1000.0f, m_buildTimes.buildContoursTrace*pc); rcGetLog()->log(RC_LOG_PROGRESS, " - simplify: %.1fms (%.1f%%)", m_buildTimes.buildContoursSimplify/1000.0f, m_buildTimes.buildContoursSimplify*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh: %.1fms (%.1f%%)", m_buildTimes.buildPolymesh/1000.0f, m_buildTimes.buildPolymesh*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh Detail: %.1fms (%.1f%%)", m_buildTimes.buildDetailMesh/1000.0f, m_buildTimes.buildDetailMesh*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Merge Polymeshes: %.1fms (%.1f%%)", m_buildTimes.mergePolyMesh/1000.0f, m_buildTimes.mergePolyMesh*pc); rcGetLog()->log(RC_LOG_PROGRESS, "Merge Polymesh Details: %.1fms (%.1f%%)", m_buildTimes.mergePolyMeshDetail/1000.0f, m_buildTimes.mergePolyMeshDetail*pc); if (m_pmesh) rcGetLog()->log(RC_LOG_PROGRESS, "Polymesh: Verts:%d Polys:%d", m_pmesh->nverts, m_pmesh->npolys); rcGetLog()->log(RC_LOG_PROGRESS, "TOTAL: %.1fms", rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f); } toolRecalc(); return true; }