recastnavigation_v1.6.0/RecastDemo/Source/Sample_SoloMeshTiled.cpp

1127 lines
33 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "SDL.h"
#include "SDL_opengl.h"
#include "imgui.h"
#include "InputGeom.h"
#include "Sample.h"
#include "Sample_SoloMeshTiled.h"
#include "Recast.h"
#include "RecastDebugDraw.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#include "NavMeshTesterTool.h"
#include "OffMeshConnectionTool.h"
#include "ConvexVolumeTool.h"
#include "CrowdTool.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
class TileHighlightTool : public SampleTool
{
Sample_SoloMeshTiled* m_sample;
float m_hitPos[3];
bool m_hitPosSet;
float m_agentRadius;
public:
TileHighlightTool() :
m_sample(0),
m_hitPosSet(false),
m_agentRadius(0)
{
m_hitPos[0] = m_hitPos[1] = m_hitPos[2] = 0;
}
virtual ~TileHighlightTool()
{
if (m_sample)
m_sample->setHighlightedTile(0);
}
virtual int type() { return TOOL_TILE_HIGHLIGHT; }
virtual void init(Sample* sample)
{
m_sample = (Sample_SoloMeshTiled*)sample;
}
virtual void reset() {}
virtual void handleMenu()
{
imguiValue("Click LMB to highlight a tile.");
}
virtual void handleClick(const float* /*s*/, const float* p, bool /*shift*/)
{
m_hitPosSet = true;
rcVcopy(m_hitPos,p);
if (m_sample)
m_sample->setHighlightedTile(m_hitPos);
}
virtual void handleStep() {}
virtual void handleUpdate(const float /*dt*/) {}
virtual void handleRender()
{
if (m_hitPosSet)
{
const float s = m_sample->getAgentRadius();
glColor4ub(0,0,0,128);
glLineWidth(2.0f);
glBegin(GL_LINES);
glVertex3f(m_hitPos[0]-s,m_hitPos[1]+0.1f,m_hitPos[2]);
glVertex3f(m_hitPos[0]+s,m_hitPos[1]+0.1f,m_hitPos[2]);
glVertex3f(m_hitPos[0],m_hitPos[1]-s+0.1f,m_hitPos[2]);
glVertex3f(m_hitPos[0],m_hitPos[1]+s+0.1f,m_hitPos[2]);
glVertex3f(m_hitPos[0],m_hitPos[1]+0.1f,m_hitPos[2]-s);
glVertex3f(m_hitPos[0],m_hitPos[1]+0.1f,m_hitPos[2]+s);
glEnd();
glLineWidth(1.0f);
}
}
virtual void handleRenderOverlay(double* proj, double* model, int* view)
{
GLdouble x, y, z;
// Draw start and end point labels
if (m_hitPosSet && gluProject((GLdouble)m_hitPos[0], (GLdouble)m_hitPos[1], (GLdouble)m_hitPos[2],
model, proj, view, &x, &y, &z))
{
const int tx = m_sample->getHilightedTileX();
const int ty = m_sample->getHilightedTileY();
char text[32];
snprintf(text,32,"Tile: (%d, %d)", tx, ty);
imguiDrawText((int)x, (int)y-25, IMGUI_ALIGN_CENTER, text, imguiRGBA(0,0,0,220));
}
}
};
Sample_SoloMeshTiled::Sample_SoloMeshTiled() :
m_measurePerTileTimings(false),
m_keepInterResults(false),
m_tileSize(64),
m_totalBuildTimeMs(0),
m_pmesh(0),
m_dmesh(0),
m_tileSet(0),
m_statPolysPerTileSamples(0),
m_statTimePerTileSamples(0),
m_highLightedTileX(-1),
m_highLightedTileY(-1),
m_drawMode(DRAWMODE_NAVMESH)
{
setTool(new NavMeshTesterTool);
}
Sample_SoloMeshTiled::~Sample_SoloMeshTiled()
{
cleanup();
}
void Sample_SoloMeshTiled::cleanup()
{
delete m_tileSet;
m_tileSet = 0;
rcFreePolyMesh(m_pmesh);
m_pmesh = 0;
rcFreePolyMeshDetail(m_dmesh);
m_dmesh = 0;
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
m_statTimePerTileSamples = 0;
m_statPolysPerTileSamples = 0;
}
void Sample_SoloMeshTiled::handleSettings()
{
Sample::handleCommonSettings();
imguiLabel("Tiling");
imguiSlider("TileSize", &m_tileSize, 16.0f, 1024.0f, 16.0f);
if (m_geom)
{
const float* bmin = m_geom->getMeshBoundsMin();
const float* bmax = m_geom->getMeshBoundsMax();
char text[64];
int gw = 0, gh = 0;
rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts-1) / ts;
const int th = (gh + ts-1) / ts;
snprintf(text, 64, "Tiles %d x %d", tw, th);
imguiValue(text);
}
imguiSeparator();
if (imguiCheck("Keep Itermediate Results", m_keepInterResults))
m_keepInterResults = !m_keepInterResults;
if (imguiCheck("Measure Per Tile Timings", m_measurePerTileTimings))
m_measurePerTileTimings = !m_measurePerTileTimings;
imguiSeparator();
char msg[64];
snprintf(msg, 64, "Build Time: %.1fms", m_totalBuildTimeMs);
imguiLabel(msg);
imguiSeparator();
}
void Sample_SoloMeshTiled::handleTools()
{
int type = !m_tool ? TOOL_NONE : m_tool->type();
if (imguiCheck("Test Navmesh", type == TOOL_NAVMESH_TESTER))
{
setTool(new NavMeshTesterTool);
}
if (imguiCheck("Create Off-Mesh Links", type == TOOL_OFFMESH_CONNECTION))
{
setTool(new OffMeshConnectionTool);
}
if (imguiCheck("Create Convex Volumes", type == TOOL_CONVEX_VOLUME))
{
setTool(new ConvexVolumeTool);
}
if (imguiCheck("Create Crowds", type == TOOL_CROWD))
{
setTool(new CrowdTool);
}
if (imguiCheck("Highlight Tile", type == TOOL_TILE_HIGHLIGHT))
{
setTool(new TileHighlightTool);
}
imguiSeparatorLine();
imguiIndent();
if (m_tool)
m_tool->handleMenu();
imguiUnindent();
}
void Sample_SoloMeshTiled::handleDebugMode()
{
// Check which modes are valid.
bool valid[MAX_DRAWMODE];
for (int i = 0; i < MAX_DRAWMODE; ++i)
valid[i] = false;
bool hasChf = false;
bool hasSolid = false;
bool hasCset = false;
bool hasPmesh = false;
bool hasDmesh = false;
if (m_tileSet)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].solid) hasSolid = true;
if (m_tileSet->tiles[i].chf) hasChf = true;
if (m_tileSet->tiles[i].cset) hasCset = true;
if (m_tileSet->tiles[i].pmesh) hasPmesh = true;
if (m_tileSet->tiles[i].dmesh) hasDmesh = true;
}
}
if (m_pmesh) hasPmesh = true;
if (m_dmesh) hasDmesh = true;
if (m_geom)
{
valid[DRAWMODE_NAVMESH] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_NODES] = m_navQuery != 0;
valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0;
valid[DRAWMODE_MESH] = true;
valid[DRAWMODE_VOXELS] = hasSolid;
valid[DRAWMODE_VOXELS_WALKABLE] = hasSolid;
valid[DRAWMODE_COMPACT] = hasChf;
valid[DRAWMODE_COMPACT_DISTANCE] = hasChf;
valid[DRAWMODE_COMPACT_REGIONS] = hasChf;
valid[DRAWMODE_REGION_CONNECTIONS] = hasCset;
valid[DRAWMODE_RAW_CONTOURS] = hasCset;
valid[DRAWMODE_BOTH_CONTOURS] = hasCset;
valid[DRAWMODE_CONTOURS] = hasCset;
valid[DRAWMODE_POLYMESH] = hasPmesh;
valid[DRAWMODE_POLYMESH_DETAIL] = hasDmesh;
}
int unavail = 0;
for (int i = 0; i < MAX_DRAWMODE; ++i)
if (!valid[i]) unavail++;
if (unavail == MAX_DRAWMODE)
return;
imguiLabel("Draw");
if (imguiCheck("Input Mesh", m_drawMode == DRAWMODE_MESH, valid[DRAWMODE_MESH]))
m_drawMode = DRAWMODE_MESH;
if (imguiCheck("Navmesh", m_drawMode == DRAWMODE_NAVMESH, valid[DRAWMODE_NAVMESH]))
m_drawMode = DRAWMODE_NAVMESH;
if (imguiCheck("Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS, valid[DRAWMODE_NAVMESH_INVIS]))
m_drawMode = DRAWMODE_NAVMESH_INVIS;
if (imguiCheck("Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS, valid[DRAWMODE_NAVMESH_TRANS]))
m_drawMode = DRAWMODE_NAVMESH_TRANS;
if (imguiCheck("Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE, valid[DRAWMODE_NAVMESH_BVTREE]))
m_drawMode = DRAWMODE_NAVMESH_BVTREE;
if (imguiCheck("Navmesh Nodes", m_drawMode == DRAWMODE_NAVMESH_NODES, valid[DRAWMODE_NAVMESH_NODES]))
m_drawMode = DRAWMODE_NAVMESH_NODES;
if (imguiCheck("Voxels", m_drawMode == DRAWMODE_VOXELS, valid[DRAWMODE_VOXELS]))
m_drawMode = DRAWMODE_VOXELS;
if (imguiCheck("Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE, valid[DRAWMODE_VOXELS_WALKABLE]))
m_drawMode = DRAWMODE_VOXELS_WALKABLE;
if (imguiCheck("Compact", m_drawMode == DRAWMODE_COMPACT, valid[DRAWMODE_COMPACT]))
m_drawMode = DRAWMODE_COMPACT;
if (imguiCheck("Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE, valid[DRAWMODE_COMPACT_DISTANCE]))
m_drawMode = DRAWMODE_COMPACT_DISTANCE;
if (imguiCheck("Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS, valid[DRAWMODE_COMPACT_REGIONS]))
m_drawMode = DRAWMODE_COMPACT_REGIONS;
if (imguiCheck("Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS, valid[DRAWMODE_REGION_CONNECTIONS]))
m_drawMode = DRAWMODE_REGION_CONNECTIONS;
if (imguiCheck("Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS, valid[DRAWMODE_RAW_CONTOURS]))
m_drawMode = DRAWMODE_RAW_CONTOURS;
if (imguiCheck("Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS, valid[DRAWMODE_BOTH_CONTOURS]))
m_drawMode = DRAWMODE_BOTH_CONTOURS;
if (imguiCheck("Contours", m_drawMode == DRAWMODE_CONTOURS, valid[DRAWMODE_CONTOURS]))
m_drawMode = DRAWMODE_CONTOURS;
if (imguiCheck("Poly Mesh", m_drawMode == DRAWMODE_POLYMESH, valid[DRAWMODE_POLYMESH]))
m_drawMode = DRAWMODE_POLYMESH;
if (imguiCheck("Poly Mesh Detail", m_drawMode == DRAWMODE_POLYMESH_DETAIL, valid[DRAWMODE_POLYMESH_DETAIL]))
m_drawMode = DRAWMODE_POLYMESH_DETAIL;
if (unavail)
{
imguiValue("Tick 'Keep Itermediate Results'");
imguiValue("to see more debug mode options.");
}
}
void Sample_SoloMeshTiled::handleRender()
{
if (!m_geom || !m_geom->getMesh())
return;
DebugDrawGL dd;
glEnable(GL_FOG);
glDepthMask(GL_TRUE);
if (m_drawMode == DRAWMODE_MESH)
{
// Draw mesh
duDebugDrawTriMeshSlope(&dd, m_geom->getMesh()->getVerts(), m_geom->getMesh()->getVertCount(),
m_geom->getMesh()->getTris(), m_geom->getMesh()->getNormals(), m_geom->getMesh()->getTriCount(),
m_agentMaxSlope);
m_geom->drawOffMeshConnections(&dd);
}
else if (m_drawMode != DRAWMODE_NAVMESH_TRANS)
{
// Draw mesh
duDebugDrawTriMesh(&dd, m_geom->getMesh()->getVerts(), m_geom->getMesh()->getVertCount(),
m_geom->getMesh()->getTris(), m_geom->getMesh()->getNormals(), m_geom->getMesh()->getTriCount(), 0);
m_geom->drawOffMeshConnections(&dd);
}
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
// Draw bounds
const float* bmin = m_geom->getMeshBoundsMin();
const float* bmax = m_geom->getMeshBoundsMax();
duDebugDrawBoxWire(&dd, bmin[0],bmin[1],bmin[2], bmax[0],bmax[1],bmax[2], duRGBA(255,255,255,128), 1.0f);
// Tiling grid.
int gw = 0, gh = 0;
rcCalcGridSize(bmin, bmax, m_cellSize, &gw, &gh);
const int tw = (gw + (int)m_tileSize-1) / (int)m_tileSize;
const int th = (gh + (int)m_tileSize-1) / (int)m_tileSize;
const float s = m_tileSize*m_cellSize;
duDebugDrawGridXZ(&dd, bmin[0],bmin[1],bmin[2], tw,th, s, duRGBA(0,0,0,64), 1.0f);
if (m_navMesh && m_navQuery &&
(m_drawMode == DRAWMODE_NAVMESH ||
m_drawMode == DRAWMODE_NAVMESH_TRANS ||
m_drawMode == DRAWMODE_NAVMESH_BVTREE ||
m_drawMode == DRAWMODE_NAVMESH_NODES ||
m_drawMode == DRAWMODE_NAVMESH_INVIS))
{
if (m_drawMode != DRAWMODE_NAVMESH_INVIS)
duDebugDrawNavMeshWithClosedList(&dd, *m_navMesh, *m_navQuery, m_navMeshDrawFlags);
if (m_drawMode == DRAWMODE_NAVMESH_BVTREE)
duDebugDrawNavMeshBVTree(&dd, *m_navMesh);
if (m_drawMode == DRAWMODE_NAVMESH_NODES)
duDebugDrawNavMeshNodes(&dd, *m_navQuery);
}
glDepthMask(GL_TRUE);
if (m_tileSet)
{
if (m_drawMode == DRAWMODE_COMPACT)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].chf && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawCompactHeightfieldSolid(&dd, *m_tileSet->tiles[i].chf);
}
}
if (m_drawMode == DRAWMODE_COMPACT_DISTANCE)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].chf && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawCompactHeightfieldDistance(&dd, *m_tileSet->tiles[i].chf);
}
}
if (m_drawMode == DRAWMODE_COMPACT_REGIONS)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].chf && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawCompactHeightfieldRegions(&dd, *m_tileSet->tiles[i].chf);
}
}
if (m_drawMode == DRAWMODE_VOXELS)
{
glEnable(GL_FOG);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].solid && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawHeightfieldSolid(&dd, *m_tileSet->tiles[i].solid);
}
glDisable(GL_FOG);
}
if (m_drawMode == DRAWMODE_VOXELS_WALKABLE)
{
glEnable(GL_FOG);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].solid && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawHeightfieldWalkable(&dd, *m_tileSet->tiles[i].solid);
}
glDisable(GL_FOG);
}
if (m_drawMode == DRAWMODE_RAW_CONTOURS)
{
glDepthMask(GL_FALSE);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].cset && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawRawContours(&dd, *m_tileSet->tiles[i].cset);
}
glDepthMask(GL_TRUE);
}
if (m_drawMode == DRAWMODE_BOTH_CONTOURS)
{
glDepthMask(GL_FALSE);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].cset && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
{
duDebugDrawRawContours(&dd, *m_tileSet->tiles[i].cset, 0.5f);
duDebugDrawContours(&dd, *m_tileSet->tiles[i].cset);
}
}
glDepthMask(GL_TRUE);
}
if (m_drawMode == DRAWMODE_CONTOURS)
{
glDepthMask(GL_FALSE);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].cset && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawContours(&dd, *m_tileSet->tiles[i].cset);
}
glDepthMask(GL_TRUE);
}
if (m_drawMode == DRAWMODE_REGION_CONNECTIONS)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].chf && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawCompactHeightfieldRegions(&dd, *m_tileSet->tiles[i].chf);
}
glDepthMask(GL_FALSE);
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].cset && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawRegionConnections(&dd, *m_tileSet->tiles[i].cset);
}
glDepthMask(GL_TRUE);
}
if (/*m_pmesh &&*/ m_drawMode == DRAWMODE_POLYMESH)
{
glDepthMask(GL_FALSE);
if (m_pmesh)
{
duDebugDrawPolyMesh(&dd, *m_pmesh);
}
else
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].pmesh && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawPolyMesh(&dd, *m_tileSet->tiles[i].pmesh);
}
}
glDepthMask(GL_TRUE);
}
if (/*m_dmesh &&*/ m_drawMode == DRAWMODE_POLYMESH_DETAIL)
{
glDepthMask(GL_FALSE);
if (m_dmesh)
{
duDebugDrawPolyMeshDetail(&dd, *m_dmesh);
}
else
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].dmesh && canDrawTile(m_tileSet->tiles[i].x,m_tileSet->tiles[i].y))
duDebugDrawPolyMeshDetail(&dd, *m_tileSet->tiles[i].dmesh);
}
}
glDepthMask(GL_TRUE);
}
}
m_geom->drawConvexVolumes(&dd);
if (m_tool)
m_tool->handleRender();
glDepthMask(GL_TRUE);
}
static float nicenum(float x, int round)
{
float expv = floorf(log10f(x));
float f = x / powf(10.0f, expv);
float nf;
if (round)
{
if (f < 1.5f) nf = 1.0f;
else if (f < 3.0f) nf = 2.0f;
else if (f < 7.0f) nf = 5.0f;
else nf = 10.0f;
}
else
{
if (f <= 1.0f) nf = 1.0f;
else if (f <= 2.0f) nf = 2.0f;
else if (f <= 5.0f) nf = 5.0f;
else nf = 10.0f;
}
return nf*powf(10.0f, expv);
}
static void drawLabels(int x, int y, int w, int h,
int nticks, float vmin, float vmax, const char* unit)
{
char str[8], temp[32];
float range = nicenum(vmax-vmin, 0);
float d = nicenum(range/(float)(nticks-1), 1);
float graphmin = floorf(vmin/d)*d;
float graphmax = ceilf(vmax/d)*d;
int nfrac = (int)-floorf(log10f(d));
if (nfrac < 0) nfrac = 0;
snprintf(str, 6, "%%.%df %%s", nfrac);
for (float v = graphmin; v < graphmax+d/2; v += d)
{
float lx = x + (v-vmin)/(vmax-vmin)*w;
if (lx < 0 || lx > w) continue;
snprintf(temp, 20, str, v, unit);
imguiDrawText((int)lx+2, (int)y+2, IMGUI_ALIGN_LEFT, temp, imguiRGBA(255,255,255));
glColor4ub(0,0,0,64);
glBegin(GL_LINES);
glVertex2f(lx,(float)y);
glVertex2f(lx,(float)(y+h));
glEnd();
}
}
static void drawGraph(const char* name, int x, int y, int w, int h, float sd,
const int* samples, int n, int /*nsamples*/, const char* unit)
{
char text[64];
int first, last, maxval;
first = 0;
last = n-1;
while (first < n && samples[first] == 0)
first++;
while (last >= 0 && samples[last] == 0)
last--;
if (first == last)
return;
maxval = 1;
for (int i = first; i <= last; ++i)
{
if (samples[i] > maxval)
maxval = samples[i];
}
const float sx = (float)w / (float)(last-first);
const float sy = (float)h / (float)maxval;
glBegin(GL_QUADS);
glColor4ub(32,32,32,64);
glVertex2i(x,y);
glVertex2i(x+w,y);
glVertex2i(x+w,y+h);
glVertex2i(x,y+h);
glEnd();
glColor4ub(255,255,255,64);
glBegin(GL_LINES);
for (int i = 0; i <= 4; ++i)
{
int yy = y+i*h/4;
glVertex2i(x,yy);
glVertex2i(x+w,yy);
}
glEnd();
glColor4ub(0,196,255,255);
glBegin(GL_LINE_STRIP);
for (int i = first; i <= last; ++i)
{
float fx = x + (i-first)*sx;
float fy = y + samples[i]*sy;
glVertex2f(fx,fy);
}
glEnd();
snprintf(text,64,"%d", maxval);
imguiDrawText((int)x+w-2, (int)y+h-20, IMGUI_ALIGN_RIGHT, text, imguiRGBA(0,0,0));
imguiDrawText((int)x+2, (int)y+h-20, IMGUI_ALIGN_LEFT, name, imguiRGBA(255,255,255));
drawLabels(x, y, w, h, 10, first*sd, last*sd, unit);
}
void Sample_SoloMeshTiled::handleRenderOverlay(double* proj, double* model, int* view)
{
if (m_measurePerTileTimings)
{
if (m_statTimePerTileSamples)
drawGraph("Build Time/Tile", 10, 10, 500, 100, 1.0f, m_statTimePerTile, MAX_STAT_BUCKETS, m_statTimePerTileSamples, "ms");
if (m_statPolysPerTileSamples)
drawGraph("Polygons/Tile", 10, 120, 500, 100, 1.0f, m_statPolysPerTile, MAX_STAT_BUCKETS, m_statPolysPerTileSamples, "");
int validTiles = 0;
if (m_tileSet)
{
for (int i = 0; i < m_tileSet->width*m_tileSet->height; ++i)
{
if (m_tileSet->tiles[i].buildTime > 0)
validTiles++;
}
}
char text[64];
snprintf(text,64,"Tiles %d\n", validTiles);
imguiDrawText(10, 240, IMGUI_ALIGN_LEFT, text, imguiRGBA(255,255,255));
}
if (m_tool)
m_tool->handleRenderOverlay(proj, model, view);
}
void Sample_SoloMeshTiled::handleMeshChanged(class InputGeom* geom)
{
Sample::handleMeshChanged(geom);
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
m_statTimePerTileSamples = 0;
m_statPolysPerTileSamples = 0;
if (m_tool)
{
m_tool->reset();
m_tool->init(this);
}
}
bool Sample_SoloMeshTiled::handleBuild()
{
if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh())
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return false;
}
if (m_measurePerTileTimings)
{
memset(m_statPolysPerTile, 0, sizeof(m_statPolysPerTile));
memset(m_statTimePerTile, 0, sizeof(m_statTimePerTile));
m_statPolysPerTileSamples = 0;
m_statTimePerTileSamples = 0;
}
cleanup();
const float* bmin = m_geom->getMeshBoundsMin();
const float* bmax = m_geom->getMeshBoundsMax();
const float* verts = m_geom->getMesh()->getVerts();
const int nverts = m_geom->getMesh()->getVertCount();
const int ntris = m_geom->getMesh()->getTriCount();
const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh();
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionSize = (int)rcSqr(m_regionMinSize);
m_cfg.mergeRegionSize = (int)rcSqr(m_regionMergeSize);
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
m_cfg.tileSize = (int)m_tileSize;
m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Set the area where the navigation will be build.
// Here the bounds of the input mesh are used, but the
// area could be specified by an user defined box, etc.
rcVcopy(m_cfg.bmin, bmin);
rcVcopy(m_cfg.bmax, bmax);
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
// Reset build times gathering.
m_ctx->resetBuildTimes();
// Start the build process.
rcTimeVal totStartTime = m_ctx->getTime();
// Calculate the number of tiles in the output and initialize tiles.
m_tileSet = new TileSet;
if (!m_tileSet)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'tileSet'.");
return false;
}
rcVcopy(m_tileSet->bmin, m_cfg.bmin);
rcVcopy(m_tileSet->bmax, m_cfg.bmax);
m_tileSet->cs = m_cfg.cs;
m_tileSet->ch = m_cfg.ch;
m_tileSet->width = (m_cfg.width + m_cfg.tileSize-1) / m_cfg.tileSize;
m_tileSet->height = (m_cfg.height + m_cfg.tileSize-1) / m_cfg.tileSize;
m_tileSet->tiles = new Tile[m_tileSet->height * m_tileSet->width];
if (!m_tileSet->tiles)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'tileSet->tiles' (%d).", m_tileSet->height * m_tileSet->width);
return false;
}
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d tiles", m_tileSet->width, m_tileSet->height);
m_ctx->log(RC_LOG_PROGRESS, " - %.1f verts, %.1f tris", nverts/1000.0f, ntris/1000.0f);
// Initialize per tile config.
rcConfig tileCfg;
memcpy(&tileCfg, &m_cfg, sizeof(rcConfig));
tileCfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
tileCfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
// Allocate array that can hold triangle flags for all geom chunks.
unsigned char* triangleAreas = new unsigned char[chunkyMesh->maxTrisPerChunk];
if (!triangleAreas)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'triangleAreas' (%d).",
chunkyMesh->maxTrisPerChunk);
return false;
}
for (int y = 0; y < m_tileSet->height; ++y)
{
for (int x = 0; x < m_tileSet->width; ++x)
{
rcTimeVal startTime = m_ctx->getTime();
Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width];
tile.x = x;
tile.y = y;
// Calculate the per tile bounding box.
tileCfg.bmin[0] = m_cfg.bmin[0] + (x*m_cfg.tileSize - m_cfg.borderSize)*m_cfg.cs;
tileCfg.bmin[2] = m_cfg.bmin[2] + (y*m_cfg.tileSize - m_cfg.borderSize)*m_cfg.cs;
tileCfg.bmax[0] = m_cfg.bmin[0] + ((x+1)*m_cfg.tileSize + m_cfg.borderSize)*m_cfg.cs;
tileCfg.bmax[2] = m_cfg.bmin[2] + ((y+1)*m_cfg.tileSize + m_cfg.borderSize)*m_cfg.cs;
float tbmin[2], tbmax[2];
tbmin[0] = tileCfg.bmin[0];
tbmin[1] = tileCfg.bmin[2];
tbmax[0] = tileCfg.bmax[0];
tbmax[1] = tileCfg.bmax[2];
int cid[512];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksInRect(chunkyMesh, tbmin, tbmax, cid, 512);
if (!ncid)
continue;
tile.solid = rcAllocHeightfield();
if (!tile.solid)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'solid'.", x, y);
continue;
}
if (!rcCreateHeightfield(m_ctx, *tile.solid, tileCfg.width, tileCfg.height, tileCfg.bmin, tileCfg.bmax, tileCfg.cs, tileCfg.ch))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create solid heightfield.", x, y);
continue;
}
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
const int* tris = &chunkyMesh->tris[node.i*3];
const int ntris = node.n;
memset(triangleAreas, 0, ntris*sizeof(unsigned char));
rcMarkWalkableTriangles(m_ctx, tileCfg.walkableSlopeAngle,
verts, nverts, tris, ntris, triangleAreas);
rcRasterizeTriangles(m_ctx, verts, nverts, tris, triangleAreas, ntris, *tile.solid, m_cfg.walkableClimb);
}
rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *tile.solid);
rcFilterLedgeSpans(m_ctx, tileCfg.walkableHeight, tileCfg.walkableClimb, *tile.solid);
rcFilterWalkableLowHeightSpans(m_ctx, tileCfg.walkableHeight, *tile.solid);
tile.chf = rcAllocCompactHeightfield();
if (!tile.chf)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'chf'.", x, y);
continue;
}
if (!rcBuildCompactHeightfield(m_ctx, tileCfg.walkableHeight, tileCfg.walkableClimb,
*tile.solid, *tile.chf))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build compact data.", x, y);
continue;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *tile.chf))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not erode.");
continue;
}
// (Optional) Mark areas.
const ConvexVolume* vols = m_geom->getConvexVolumes();
for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *tile.chf);
if (!rcBuildDistanceField(m_ctx, *tile.chf))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build distance fields.", x, y);
continue;
}
if (!rcBuildRegions(m_ctx, *tile.chf, tileCfg.borderSize, tileCfg.minRegionSize, tileCfg.mergeRegionSize))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build regions.", x, y);
continue;
}
tile.cset = rcAllocContourSet();
if (!tile.cset)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'cset'.", x, y);
continue;
}
if (!rcBuildContours(m_ctx, *tile.chf, tileCfg.maxSimplificationError, tileCfg.maxEdgeLen, *tile.cset))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create contours.", x, y);
continue;
}
tile.pmesh = rcAllocPolyMesh();
if (!tile.pmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'pmesh'.", x, y);
continue;
}
if (!rcBuildPolyMesh(m_ctx, *tile.cset, tileCfg.maxVertsPerPoly, *tile.pmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not create poly mesh.", x, y);
continue;
}
tile.dmesh = rcAllocPolyMeshDetail();
if (!tile.dmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Out of memory 'dmesh'.", x, y);
continue;
}
if (!rcBuildPolyMeshDetail(m_ctx, *tile.pmesh, *tile.chf, tileCfg.detailSampleDist, tileCfg .detailSampleMaxError, *tile.dmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: [%d,%d] Could not build detail mesh.", x, y);
continue;
}
if (!m_keepInterResults)
{
rcFreeHeightField(tile.solid);
tile.solid = 0;
rcFreeCompactHeightfield(tile.chf);
tile.chf = 0;
rcFreeContourSet(tile.cset);
tile.cset = 0;
}
rcTimeVal endTime = m_ctx->getTime();
tile.buildTime += m_ctx->getDeltaTimeUsec(startTime, endTime);
// Some extra code to measure some per tile statistics,
// such as build time and how many polygons there are per tile.
if (tile.pmesh)
{
int bucket = tile.pmesh->npolys;
if (bucket < 0) bucket = 0;
if (bucket >= MAX_STAT_BUCKETS) bucket = MAX_STAT_BUCKETS-1;
m_statPolysPerTile[bucket]++;
m_statPolysPerTileSamples++;
}
int bucket = (tile.buildTime+500)/1000;
if (bucket < 0) bucket = 0;
if (bucket >= MAX_STAT_BUCKETS) bucket = MAX_STAT_BUCKETS-1;
m_statTimePerTile[bucket]++;
m_statTimePerTileSamples++;
}
}
delete [] triangleAreas;
// Merge per tile poly and detail meshes.
rcPolyMesh** pmmerge = new rcPolyMesh*[m_tileSet->width*m_tileSet->height];
if (!pmmerge)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'pmmerge' (%d).", m_tileSet->width*m_tileSet->height);
return false;
}
rcPolyMeshDetail** dmmerge = new rcPolyMeshDetail*[m_tileSet->width*m_tileSet->height];
if (!dmmerge)
{
m_ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'dmmerge' (%d).", m_tileSet->width*m_tileSet->height);
return false;
}
int nmerge = 0;
for (int y = 0; y < m_tileSet->height; ++y)
{
for (int x = 0; x < m_tileSet->width; ++x)
{
Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width];
if (tile.pmesh)
{
pmmerge[nmerge] = tile.pmesh;
dmmerge[nmerge] = tile.dmesh;
nmerge++;
}
}
}
m_pmesh = rcAllocPolyMesh();
if (!m_pmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return false;
}
rcMergePolyMeshes(m_ctx, pmmerge, nmerge, *m_pmesh);
m_dmesh = rcAllocPolyMeshDetail();
if (!m_dmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
return false;
}
rcMergePolyMeshDetails(m_ctx, dmmerge, nmerge, *m_dmesh);
delete [] pmmerge;
delete [] dmmerge;
if (!m_keepInterResults)
{
for (int y = 0; y < m_tileSet->height; ++y)
{
for (int x = 0; x < m_tileSet->width; ++x)
{
Tile& tile = m_tileSet->tiles[x + y*m_tileSet->width];
rcFreeContourSet(tile.cset);
tile.cset = 0;
rcFreePolyMesh(tile.pmesh);
tile.pmesh = 0;
rcFreePolyMeshDetail(tile.dmesh);
tile.dmesh = 0;
}
}
}
if (m_pmesh && m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;
// Update poly flags from areas.
for (int i = 0; i < m_pmesh->npolys; ++i)
{
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params;
memset(&params, 0, sizeof(params));
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
params.offMeshConRad = m_geom->getOffMeshConnectionRads();
params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
params.offMeshConCount = m_geom->getOffMeshConnectionCount();
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
rcVcopy(params.bmin, m_pmesh->bmin);
rcVcopy(params.bmax, m_pmesh->bmax);
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
{
m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return false;
}
m_navMesh = dtAllocNavMesh();
if (!m_navMesh)
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh");
return false;
}
if (!m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA))
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh");
return false;
}
if (!m_navQuery->init(m_navMesh, 2048))
{
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query");
return false;
}
}
rcTimeVal totEndTime = m_ctx->getTime();
duLogBuildTimes(m_ctx, m_ctx->getDeltaTimeUsec(totStartTime, totEndTime));
m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys);
m_totalBuildTimeMs = m_ctx->getDeltaTimeUsec(totStartTime, totEndTime)/1000.0f;
if (m_tool)
m_tool->init(this);
return true;
}
bool Sample_SoloMeshTiled::canDrawTile(int x, int y)
{
if (m_highLightedTileX == -1) return true;
return m_highLightedTileX == x && m_highLightedTileY == y;
}
void Sample_SoloMeshTiled::setHighlightedTile(const float* pos)
{
if (!pos)
{
m_highLightedTileX = -1;
m_highLightedTileY = -1;
return;
}
const float* bmin = m_geom->getMeshBoundsMin();
const float ts = m_tileSize*m_cellSize;
m_highLightedTileX = (int)((pos[0] - bmin[0]) / ts);
m_highLightedTileY = (int)((pos[2] - bmin[2]) / ts);
}