2287 lines
61 KiB
C++
2287 lines
61 KiB
C++
//
|
|
// Copyright (c) 2009 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "DetourNavMesh.h"
|
|
#include "DetourNode.h"
|
|
#include "DetourCommon.h"
|
|
|
|
|
|
inline int opposite(int side) { return (side+4) & 0x7; }
|
|
|
|
inline bool overlapBoxes(const float* amin, const float* amax,
|
|
const float* bmin, const float* bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
inline bool overlapRects(const float* amin, const float* amax,
|
|
const float* bmin, const float* bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
static void calcRect(const float* va, const float* vb,
|
|
float* bmin, float* bmax,
|
|
int side, float padx, float pady)
|
|
{
|
|
if (side == 0 || side == 4)
|
|
{
|
|
bmin[0] = min(va[2],vb[2]) + padx;
|
|
bmin[1] = min(va[1],vb[1]) - pady;
|
|
bmax[0] = max(va[2],vb[2]) - padx;
|
|
bmax[1] = max(va[1],vb[1]) + pady;
|
|
}
|
|
else if (side == 2 || side == 6)
|
|
{
|
|
bmin[0] = min(va[0],vb[0]) + padx;
|
|
bmin[1] = min(va[1],vb[1]) - pady;
|
|
bmax[0] = max(va[0],vb[0]) - padx;
|
|
bmax[1] = max(va[1],vb[1]) + pady;
|
|
}
|
|
}
|
|
|
|
inline int computeTileHash(int x, int y, const int mask)
|
|
{
|
|
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
|
|
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
|
|
unsigned int n = h1 * x + h2 * y;
|
|
return (int)(n & mask);
|
|
}
|
|
|
|
inline unsigned int allocLink(dtMeshTile* tile)
|
|
{
|
|
if (tile->linksFreeList == DT_NULL_LINK)
|
|
return DT_NULL_LINK;
|
|
unsigned int link = tile->linksFreeList;
|
|
tile->linksFreeList = tile->links[link].next;
|
|
return link;
|
|
}
|
|
|
|
inline void freeLink(dtMeshTile* tile, unsigned int link)
|
|
{
|
|
tile->links[link].next = tile->linksFreeList;
|
|
tile->linksFreeList = link;
|
|
}
|
|
|
|
|
|
inline bool passFilter(dtQueryFilter* filter, unsigned short flags)
|
|
{
|
|
return (flags & filter->includeFlags) != 0 && (flags & filter->excludeFlags) == 0;
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
dtNavMesh::dtNavMesh() :
|
|
m_tileWidth(0),
|
|
m_tileHeight(0),
|
|
m_maxTiles(0),
|
|
m_tileLutSize(0),
|
|
m_tileLutMask(0),
|
|
m_posLookup(0),
|
|
m_nextFree(0),
|
|
m_tiles(0),
|
|
m_saltBits(0),
|
|
m_tileBits(0),
|
|
m_polyBits(0),
|
|
m_nodePool(0),
|
|
m_openList(0)
|
|
{
|
|
m_orig[0] = 0;
|
|
m_orig[1] = 0;
|
|
m_orig[2] = 0;
|
|
|
|
for (int i = 0; i < DT_MAX_AREAS; ++i)
|
|
m_areaCost[i] = 1.0f;
|
|
}
|
|
|
|
dtNavMesh::~dtNavMesh()
|
|
{
|
|
for (int i = 0; i < m_maxTiles; ++i)
|
|
{
|
|
if (m_tiles[i].data && m_tiles[i].ownsData)
|
|
{
|
|
delete [] m_tiles[i].data;
|
|
m_tiles[i].data = 0;
|
|
m_tiles[i].dataSize = 0;
|
|
}
|
|
}
|
|
delete m_nodePool;
|
|
delete m_openList;
|
|
delete [] m_posLookup;
|
|
delete [] m_tiles;
|
|
}
|
|
|
|
bool dtNavMesh::init(const float* orig, float tileWidth, float tileHeight,
|
|
int maxTiles, int maxPolys, int maxNodes)
|
|
{
|
|
vcopy(m_orig, orig);
|
|
m_tileWidth = tileWidth;
|
|
m_tileHeight = tileHeight;
|
|
|
|
// Init tiles
|
|
m_maxTiles = maxTiles;
|
|
m_tileLutSize = nextPow2(maxTiles/4);
|
|
if (!m_tileLutSize) m_tileLutSize = 1;
|
|
m_tileLutMask = m_tileLutSize-1;
|
|
|
|
m_tiles = new dtMeshTile[m_maxTiles];
|
|
if (!m_tiles)
|
|
return false;
|
|
m_posLookup = new dtMeshTile*[m_tileLutSize];
|
|
if (!m_posLookup)
|
|
return false;
|
|
memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
|
|
memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
|
|
m_nextFree = 0;
|
|
for (int i = m_maxTiles-1; i >= 0; --i)
|
|
{
|
|
m_tiles[i].next = m_nextFree;
|
|
m_nextFree = &m_tiles[i];
|
|
}
|
|
|
|
if (!m_nodePool)
|
|
{
|
|
m_nodePool = new dtNodePool(maxNodes, nextPow2(maxNodes/4));
|
|
if (!m_nodePool)
|
|
return false;
|
|
}
|
|
|
|
if (!m_openList)
|
|
{
|
|
m_openList = new dtNodeQueue(maxNodes);
|
|
if (!m_openList)
|
|
return false;
|
|
}
|
|
|
|
// Init ID generator values.
|
|
m_tileBits = max((unsigned int)1,ilog2(nextPow2((unsigned int)maxTiles)));
|
|
m_polyBits = max((unsigned int)1,ilog2(nextPow2((unsigned int)maxPolys)));
|
|
m_saltBits = 32 - m_tileBits - m_polyBits;
|
|
if (m_saltBits < 10)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool dtNavMesh::init(unsigned char* data, int dataSize, bool ownsData, int maxNodes)
|
|
{
|
|
// Make sure the data is in right format.
|
|
dtMeshHeader* header = (dtMeshHeader*)data;
|
|
if (header->magic != DT_NAVMESH_MAGIC)
|
|
return false;
|
|
if (header->version != DT_NAVMESH_VERSION)
|
|
return false;
|
|
|
|
const float w = header->bmax[0] - header->bmin[0];
|
|
const float h = header->bmax[2] - header->bmin[2];
|
|
if (!init(header->bmin, w, h, 1, header->polyCount, maxNodes))
|
|
return false;
|
|
|
|
return addTileAt(0,0, data, dataSize, ownsData);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
|
|
dtMeshTile* tile, int side,
|
|
dtPolyRef* con, float* conarea, int maxcon)
|
|
{
|
|
if (!tile) return 0;
|
|
|
|
float amin[2], amax[2];
|
|
calcRect(va,vb, amin,amax, side, 0.01f, tile->header->walkableClimb);
|
|
|
|
// Remove links pointing to 'side' and compact the links array.
|
|
float bmin[2], bmax[2];
|
|
unsigned short m = DT_EXT_LINK | (unsigned short)side;
|
|
int n = 0;
|
|
|
|
dtPolyRef base = getTileId(tile);
|
|
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
dtPoly* poly = &tile->polys[i];
|
|
const int nv = poly->vertCount;
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
// Skip edges which do not point to the right side.
|
|
if (poly->neis[j] != m) continue;
|
|
// Check if the segments touch.
|
|
const float* vc = &tile->verts[poly->verts[j]*3];
|
|
const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3];
|
|
calcRect(vc,vd, bmin,bmax, side, 0.01f, tile->header->walkableClimb);
|
|
if (!overlapRects(amin,amax, bmin,bmax)) continue;
|
|
// Add return value.
|
|
if (n < maxcon)
|
|
{
|
|
conarea[n*2+0] = max(amin[0], bmin[0]);
|
|
conarea[n*2+1] = min(amax[0], bmax[0]);
|
|
con[n] = base | (unsigned int)i;
|
|
n++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, int side)
|
|
{
|
|
if (!tile) return;
|
|
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
dtPoly* poly = &tile->polys[i];
|
|
unsigned int j = poly->firstLink;
|
|
unsigned int pj = DT_NULL_LINK;
|
|
while (j != DT_NULL_LINK)
|
|
{
|
|
if (tile->links[j].side == side)
|
|
{
|
|
// Revove link.
|
|
unsigned int nj = tile->links[j].next;
|
|
if (pj == DT_NULL_LINK)
|
|
poly->firstLink = nj;
|
|
else
|
|
tile->links[pj].next = nj;
|
|
freeLink(tile, j);
|
|
j = nj;
|
|
}
|
|
else
|
|
{
|
|
// Advance
|
|
pj = j;
|
|
j = tile->links[j].next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
|
|
{
|
|
if (!tile) return;
|
|
|
|
// Connect border links.
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
dtPoly* poly = &tile->polys[i];
|
|
|
|
// Create new links.
|
|
unsigned short m = DT_EXT_LINK | (unsigned short)side;
|
|
const int nv = poly->vertCount;
|
|
for (int j = 0; j < nv; ++j)
|
|
{
|
|
// Skip edges which do not point to the right side.
|
|
if (poly->neis[j] != m) continue;
|
|
|
|
// Create new links
|
|
const float* va = &tile->verts[poly->verts[j]*3];
|
|
const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
|
|
dtPolyRef nei[4];
|
|
float neia[4*2];
|
|
int nnei = findConnectingPolys(va,vb, target, opposite(side), nei,neia,4);
|
|
for (int k = 0; k < nnei; ++k)
|
|
{
|
|
unsigned int idx = allocLink(tile);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
dtLink* link = &tile->links[idx];
|
|
link->ref = nei[k];
|
|
link->edge = (unsigned char)j;
|
|
link->side = (unsigned char)side;
|
|
|
|
link->next = poly->firstLink;
|
|
poly->firstLink = idx;
|
|
|
|
// Compress portal limits to a byte value.
|
|
if (side == 0 || side == 4)
|
|
{
|
|
const float lmin = min(va[2], vb[2]);
|
|
const float lmax = max(va[2], vb[2]);
|
|
link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
|
|
link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
|
|
}
|
|
else if (side == 2 || side == 6)
|
|
{
|
|
const float lmin = min(va[0], vb[0]);
|
|
const float lmax = max(va[0], vb[0]);
|
|
link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
|
|
link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side)
|
|
{
|
|
if (!tile) return;
|
|
|
|
// Connect off-mesh links.
|
|
// We are interested on links which land from target tile to this tile.
|
|
const unsigned char oppositeSide = (unsigned char)opposite(side);
|
|
dtQueryFilter defaultFilter;
|
|
|
|
for (int i = 0; i < target->header->offMeshConCount; ++i)
|
|
{
|
|
dtOffMeshConnection* targetCon = &target->offMeshCons[i];
|
|
if (targetCon->side != oppositeSide)
|
|
continue;
|
|
|
|
dtPoly* targetPoly = &target->polys[targetCon->poly];
|
|
|
|
const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad };
|
|
|
|
// Find polygon to connect to.
|
|
const float* p = &targetCon->pos[3];
|
|
float nearestPt[3];
|
|
dtPolyRef ref = findNearestPolyInTile(tile, p, ext, &defaultFilter, nearestPt);
|
|
if (!ref) continue;
|
|
// findNearestPoly may return too optimistic results, further check to make sure.
|
|
if (sqr(nearestPt[0]-p[0])+sqr(nearestPt[2]-p[2]) > sqr(targetCon->rad))
|
|
continue;
|
|
// Make sure the location is on current mesh.
|
|
float* v = &target->verts[targetPoly->verts[1]*3];
|
|
vcopy(v, nearestPt);
|
|
|
|
// Link off-mesh connection to target poly.
|
|
unsigned int idx = allocLink(target);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
dtLink* link = &target->links[idx];
|
|
link->ref = ref;
|
|
link->edge = (unsigned char)1;
|
|
link->side = oppositeSide;
|
|
link->bmin = link->bmax = 0;
|
|
// Add to linked list.
|
|
link->next = targetPoly->firstLink;
|
|
targetPoly->firstLink = idx;
|
|
}
|
|
|
|
// Link target poly to off-mesh connection.
|
|
if (targetCon->flags & DT_OFFMESH_CON_BIDIR)
|
|
{
|
|
unsigned int idx = allocLink(tile);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
unsigned short landPolyIdx = decodePolyIdPoly(ref);
|
|
dtPoly* landPoly = &tile->polys[landPolyIdx];
|
|
dtLink* link = &tile->links[idx];
|
|
link->ref = getTileId(target) | (unsigned int)(targetCon->poly);
|
|
link->edge = 0;
|
|
link->side = side;
|
|
link->bmin = link->bmax = 0;
|
|
// Add to linked list.
|
|
link->next = landPoly->firstLink;
|
|
landPoly->firstLink = idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void dtNavMesh::connectIntLinks(dtMeshTile* tile)
|
|
{
|
|
if (!tile) return;
|
|
|
|
dtPolyRef base = getTileId(tile);
|
|
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
dtPoly* poly = &tile->polys[i];
|
|
poly->firstLink = DT_NULL_LINK;
|
|
|
|
if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
continue;
|
|
|
|
// Build edge links backwards so that the links will be
|
|
// in the linked list from lowest index to highest.
|
|
for (int j = poly->vertCount-1; j >= 0; --j)
|
|
{
|
|
// Skip hard and non-internal edges.
|
|
if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
|
|
|
|
unsigned int idx = allocLink(tile);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
dtLink* link = &tile->links[idx];
|
|
link->ref = base | (unsigned int)(poly->neis[j]-1);
|
|
link->edge = (unsigned char)j;
|
|
link->side = 0xff;
|
|
link->bmin = link->bmax = 0;
|
|
// Add to linked list.
|
|
link->next = poly->firstLink;
|
|
poly->firstLink = idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dtNavMesh::connectIntOffMeshLinks(dtMeshTile* tile)
|
|
{
|
|
if (!tile) return;
|
|
|
|
dtPolyRef base = getTileId(tile);
|
|
|
|
// Find Off-mesh connection end points.
|
|
for (int i = 0; i < tile->header->offMeshConCount; ++i)
|
|
{
|
|
dtOffMeshConnection* con = &tile->offMeshCons[i];
|
|
dtPoly* poly = &tile->polys[con->poly];
|
|
dtQueryFilter defaultFilter;
|
|
|
|
const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad };
|
|
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
unsigned char side = j == 0 ? 0xff : con->side;
|
|
|
|
if (side == 0xff)
|
|
{
|
|
// Find polygon to connect to.
|
|
const float* p = &con->pos[j*3];
|
|
float nearestPt[3];
|
|
dtPolyRef ref = findNearestPolyInTile(tile, p, ext, &defaultFilter, nearestPt);
|
|
if (!ref) continue;
|
|
// findNearestPoly may return too optimistic results, further check to make sure.
|
|
if (sqr(nearestPt[0]-p[0])+sqr(nearestPt[2]-p[2]) > sqr(con->rad))
|
|
continue;
|
|
// Make sure the location is on current mesh.
|
|
float* v = &tile->verts[poly->verts[j]*3];
|
|
vcopy(v, nearestPt);
|
|
|
|
// Link off-mesh connection to target poly.
|
|
unsigned int idx = allocLink(tile);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
dtLink* link = &tile->links[idx];
|
|
link->ref = ref;
|
|
link->edge = (unsigned char)j;
|
|
link->side = 0xff;
|
|
link->bmin = link->bmax = 0;
|
|
// Add to linked list.
|
|
link->next = poly->firstLink;
|
|
poly->firstLink = idx;
|
|
}
|
|
|
|
// Start end-point is always connect back to off-mesh connection,
|
|
// Destination end-point only if it is bidirectional link.
|
|
if (j == 0 || (j == 1 && (con->flags & DT_OFFMESH_CON_BIDIR)))
|
|
{
|
|
// Link target poly to off-mesh connection.
|
|
unsigned int idx = allocLink(tile);
|
|
if (idx != DT_NULL_LINK)
|
|
{
|
|
unsigned short landPolyIdx = decodePolyIdPoly(ref);
|
|
dtPoly* landPoly = &tile->polys[landPolyIdx];
|
|
dtLink* link = &tile->links[idx];
|
|
link->ref = base | (unsigned int)(con->poly);
|
|
link->edge = 0;
|
|
link->side = 0xff;
|
|
link->bmin = link->bmax = 0;
|
|
// Add to linked list.
|
|
link->next = landPoly->firstLink;
|
|
landPoly->firstLink = idx;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool dtNavMesh::addTileAt(int x, int y, unsigned char* data, int dataSize, bool ownsData)
|
|
{
|
|
if (getTileAt(x,y))
|
|
return false;
|
|
// Make sure there is enough space for new tile.
|
|
if (!m_nextFree)
|
|
return false;
|
|
// Make sure the data is in right format.
|
|
dtMeshHeader* header = (dtMeshHeader*)data;
|
|
if (header->magic != DT_NAVMESH_MAGIC)
|
|
return false;
|
|
if (header->version != DT_NAVMESH_VERSION)
|
|
return false;
|
|
|
|
// Allocate a tile.
|
|
dtMeshTile* tile = m_nextFree;
|
|
m_nextFree = tile->next;
|
|
tile->next = 0;
|
|
|
|
// Insert tile into the position lut.
|
|
int h = computeTileHash(x,y,m_tileLutMask);
|
|
tile->next = m_posLookup[h];
|
|
m_posLookup[h] = tile;
|
|
|
|
// Patch header pointers.
|
|
const int headerSize = align4(sizeof(dtMeshHeader));
|
|
const int vertsSize = align4(sizeof(float)*3*header->vertCount);
|
|
const int polysSize = align4(sizeof(dtPoly)*header->polyCount);
|
|
const int linksSize = align4(sizeof(dtLink)*(header->maxLinkCount));
|
|
const int detailMeshesSize = align4(sizeof(dtPolyDetail)*header->detailMeshCount);
|
|
const int detailVertsSize = align4(sizeof(float)*3*header->detailVertCount);
|
|
const int detailTrisSize = align4(sizeof(unsigned char)*4*header->detailTriCount);
|
|
const int bvtreeSize = align4(sizeof(dtBVNode)*header->bvNodeCount);
|
|
const int offMeshLinksSize = align4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
|
|
|
|
unsigned char* d = data + headerSize;
|
|
tile->verts = (float*)d; d += vertsSize;
|
|
tile->polys = (dtPoly*)d; d += polysSize;
|
|
tile->links = (dtLink*)d; d += linksSize;
|
|
tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize;
|
|
tile->detailVerts = (float*)d; d += detailVertsSize;
|
|
tile->detailTris = (unsigned char*)d; d += detailTrisSize;
|
|
tile->bvTree = (dtBVNode*)d; d += bvtreeSize;
|
|
tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize;
|
|
|
|
// Build links freelist
|
|
tile->linksFreeList = 0;
|
|
tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
|
|
for (int i = 0; i < header->maxLinkCount-1; ++i)
|
|
tile->links[i].next = i+1;
|
|
|
|
// Init tile.
|
|
tile->header = header;
|
|
tile->x = x;
|
|
tile->y = y;
|
|
tile->data = data;
|
|
tile->dataSize = dataSize;
|
|
tile->ownsData = ownsData;
|
|
|
|
connectIntLinks(tile);
|
|
connectIntOffMeshLinks(tile);
|
|
|
|
// Create connections connections.
|
|
for (int i = 0; i < 8; ++i)
|
|
{
|
|
dtMeshTile* nei = getNeighbourTileAt(x,y,i);
|
|
if (nei)
|
|
{
|
|
connectExtLinks(tile, nei, i);
|
|
connectExtLinks(nei, tile, opposite(i));
|
|
connectExtOffMeshLinks(tile, nei, i);
|
|
connectExtOffMeshLinks(nei, tile, opposite(i));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
dtMeshTile* dtNavMesh::getTileAt(int x, int y)
|
|
{
|
|
// Find tile based on hash.
|
|
int h = computeTileHash(x,y,m_tileLutMask);
|
|
dtMeshTile* tile = m_posLookup[h];
|
|
while (tile)
|
|
{
|
|
if (tile->x == x && tile->y == y)
|
|
return tile;
|
|
tile = tile->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int dtNavMesh::getMaxTiles() const
|
|
{
|
|
return m_maxTiles;
|
|
}
|
|
|
|
dtMeshTile* dtNavMesh::getTile(int i)
|
|
{
|
|
return &m_tiles[i];
|
|
}
|
|
|
|
const dtMeshTile* dtNavMesh::getTile(int i) const
|
|
{
|
|
return &m_tiles[i];
|
|
}
|
|
|
|
const dtMeshTile* dtNavMesh::getTileByRef(dtPolyRef ref, int* polyIndex) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
|
|
if (polyIndex) *polyIndex = (int)ip;
|
|
return &m_tiles[it];
|
|
}
|
|
|
|
dtMeshTile* dtNavMesh::getNeighbourTileAt(int x, int y, int side)
|
|
{
|
|
switch (side)
|
|
{
|
|
case 0: x++; break;
|
|
case 1: x++; y++; break;
|
|
case 2: y++; break;
|
|
case 3: x--; y++; break;
|
|
case 4: x--; break;
|
|
case 5: x--; y--; break;
|
|
case 6: y--; break;
|
|
case 7: x++; y--; break;
|
|
};
|
|
return getTileAt(x,y);
|
|
}
|
|
|
|
bool dtNavMesh::removeTileAt(int x, int y, unsigned char** data, int* dataSize)
|
|
{
|
|
// Remove tile from hash lookup.
|
|
int h = computeTileHash(x,y,m_tileLutMask);
|
|
dtMeshTile* prev = 0;
|
|
dtMeshTile* tile = m_posLookup[h];
|
|
while (tile)
|
|
{
|
|
if (tile->x == x && tile->y == y)
|
|
{
|
|
if (prev)
|
|
prev->next = tile->next;
|
|
else
|
|
m_posLookup[h] = tile->next;
|
|
break;
|
|
}
|
|
prev = tile;
|
|
tile = tile->next;
|
|
}
|
|
if (!tile)
|
|
return false;
|
|
|
|
// Remove connections to neighbour tiles.
|
|
for (int i = 0; i < 8; ++i)
|
|
{
|
|
dtMeshTile* nei = getNeighbourTileAt(x,y,i);
|
|
if (!nei) continue;
|
|
unconnectExtLinks(nei, opposite(i));
|
|
}
|
|
|
|
|
|
// Reset tile.
|
|
if (tile->ownsData)
|
|
{
|
|
// Owns data
|
|
delete [] tile->data;
|
|
tile->data = 0;
|
|
tile->dataSize = 0;
|
|
if (data) *data = 0;
|
|
if (dataSize) *dataSize = 0;
|
|
}
|
|
else
|
|
{
|
|
if (data) *data = tile->data;
|
|
if (dataSize) *dataSize = tile->dataSize;
|
|
}
|
|
tile->header = 0;
|
|
tile->linksFreeList = 0;
|
|
tile->polys = 0;
|
|
tile->verts = 0;
|
|
tile->links = 0;
|
|
tile->detailMeshes = 0;
|
|
tile->detailVerts = 0;
|
|
tile->detailTris = 0;
|
|
tile->bvTree = 0;
|
|
tile->offMeshCons = 0;
|
|
|
|
tile->x = tile->y = 0;
|
|
tile->salt++;
|
|
|
|
// Add to free list.
|
|
tile->next = m_nextFree;
|
|
m_nextFree = tile;
|
|
|
|
return true;
|
|
}
|
|
|
|
dtPolyRef dtNavMesh::getTileId(const dtMeshTile* tile) const
|
|
{
|
|
if (!tile) return 0;
|
|
const unsigned int it = tile - m_tiles;
|
|
return encodePolyId(tile->salt, it, 0);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
bool dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshHeader* header = m_tiles[it].header;
|
|
if (ip >= (unsigned int)header->polyCount) return false;
|
|
|
|
return closestPointOnPolyInTile(&m_tiles[it], ip, pos, closest);
|
|
}
|
|
|
|
bool dtNavMesh::closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip, const float* pos, float* closest) const
|
|
{
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
float closestDistSqr = FLT_MAX;
|
|
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
|
|
|
for (int j = 0; j < pd->triCount; ++j)
|
|
{
|
|
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
|
|
const float* v[3];
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
if (t[k] < poly->vertCount)
|
|
v[k] = &tile->verts[poly->verts[t[k]]*3];
|
|
else
|
|
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
|
|
}
|
|
float pt[3];
|
|
closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
|
|
float d = vdistSqr(pos, pt);
|
|
if (d < closestDistSqr)
|
|
{
|
|
vcopy(closest, pt);
|
|
closestDistSqr = d;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool dtNavMesh::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
|
|
if (ip >= (unsigned int)tile->header->polyCount) return false;
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
// Collect vertices.
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
float edged[DT_VERTS_PER_POLYGON];
|
|
float edget[DT_VERTS_PER_POLYGON];
|
|
int nv = 0;
|
|
for (int i = 0; i < (int)poly->vertCount; ++i)
|
|
{
|
|
vcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
|
|
nv++;
|
|
}
|
|
|
|
bool inside = distancePtPolyEdgesSqr(pos, verts, nv, edged, edget);
|
|
if (inside)
|
|
{
|
|
// Point is inside the polygon, return the point.
|
|
vcopy(closest, pos);
|
|
}
|
|
else
|
|
{
|
|
// Point is outside the polygon, clamp to nearest edge.
|
|
float dmin = FLT_MAX;
|
|
int imin = -1;
|
|
for (int i = 0; i < nv; ++i)
|
|
{
|
|
if (edged[i] < dmin)
|
|
{
|
|
dmin = edged[i];
|
|
imin = i;
|
|
}
|
|
}
|
|
const float* va = &verts[imin*3];
|
|
const float* vb = &verts[((imin+1)%nv)*3];
|
|
vlerp(closest, va, vb, edget[imin]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns start and end location of an off-mesh link polygon.
|
|
bool dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
|
|
// Get current polygon
|
|
decodePolyId(polyRef, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
if (ip >= (unsigned int)tile->header->polyCount) return false;
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
// Make sure that the current poly is indeed off-mesh link.
|
|
if (poly->type != DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
return false;
|
|
|
|
// Figure out which way to hand out the vertices.
|
|
int idx0 = 0, idx1 = 1;
|
|
|
|
// Find link that points to first vertex.
|
|
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
|
|
{
|
|
if (tile->links[i].edge == 0)
|
|
{
|
|
if (tile->links[i].ref != prevRef)
|
|
{
|
|
idx0 = 1;
|
|
idx1 = 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
vcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
|
|
vcopy(endPos, &tile->verts[poly->verts[idx1]*3]);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool dtNavMesh::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
|
|
if (ip >= (unsigned int)tile->header->polyCount) return false;
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
const float* v0 = &tile->verts[poly->verts[0]*3];
|
|
const float* v1 = &tile->verts[poly->verts[1]*3];
|
|
const float d0 = vdist(pos, v0);
|
|
const float d1 = vdist(pos, v1);
|
|
const float u = d0 / (d0+d1);
|
|
if (height)
|
|
*height = v0[1] + (v1[1] - v0[1]) * u;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
|
for (int j = 0; j < pd->triCount; ++j)
|
|
{
|
|
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
|
|
const float* v[3];
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
if (t[k] < poly->vertCount)
|
|
v[k] = &tile->verts[poly->verts[t[k]]*3];
|
|
else
|
|
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
|
|
}
|
|
float h;
|
|
if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
|
|
{
|
|
if (height)
|
|
*height = h;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void dtNavMesh::setAreaCost(const int area, float cost)
|
|
{
|
|
if (area >= 0 && area < DT_MAX_AREAS)
|
|
m_areaCost[area] = cost;
|
|
}
|
|
|
|
float dtNavMesh::getAreaCost(const int area) const
|
|
{
|
|
if (area >= 0 && area < DT_MAX_AREAS)
|
|
return m_areaCost[area];
|
|
return -1;
|
|
}
|
|
|
|
dtPolyRef dtNavMesh::findNearestPoly(const float* center, const float* extents, dtQueryFilter* filter, float* nearestPt)
|
|
{
|
|
// Get nearby polygons from proximity grid.
|
|
dtPolyRef polys[128];
|
|
int polyCount = queryPolygons(center, extents, filter, polys, 128);
|
|
|
|
// Find nearest polygon amongst the nearby polygons.
|
|
dtPolyRef nearest = 0;
|
|
float nearestDistanceSqr = FLT_MAX;
|
|
for (int i = 0; i < polyCount; ++i)
|
|
{
|
|
dtPolyRef ref = polys[i];
|
|
float closestPtPoly[3];
|
|
if (!closestPointOnPoly(ref, center, closestPtPoly))
|
|
continue;
|
|
float d = vdistSqr(center, closestPtPoly);
|
|
if (d < nearestDistanceSqr)
|
|
{
|
|
if (nearestPt)
|
|
vcopy(nearestPt, closestPtPoly);
|
|
nearestDistanceSqr = d;
|
|
nearest = ref;
|
|
}
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
dtPolyRef dtNavMesh::findNearestPolyInTile(dtMeshTile* tile, const float* center, const float* extents,
|
|
dtQueryFilter* filter, float* nearestPt)
|
|
{
|
|
float bmin[3], bmax[3];
|
|
vsub(bmin, center, extents);
|
|
vadd(bmax, center, extents);
|
|
|
|
// Get nearby polygons from proximity grid.
|
|
dtPolyRef polys[128];
|
|
int polyCount = queryPolygonsInTile(tile, bmin, bmax, filter, polys, 128);
|
|
|
|
// Find nearest polygon amongst the nearby polygons.
|
|
dtPolyRef nearest = 0;
|
|
float nearestDistanceSqr = FLT_MAX;
|
|
for (int i = 0; i < polyCount; ++i)
|
|
{
|
|
dtPolyRef ref = polys[i];
|
|
float closestPtPoly[3];
|
|
if (!closestPointOnPolyInTile(tile, decodePolyIdPoly(ref), center, closestPtPoly))
|
|
continue;
|
|
float d = vdistSqr(center, closestPtPoly);
|
|
if (d < nearestDistanceSqr)
|
|
{
|
|
if (nearestPt)
|
|
vcopy(nearestPt, closestPtPoly);
|
|
nearestDistanceSqr = d;
|
|
nearest = ref;
|
|
}
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
int dtNavMesh::queryPolygonsInTile(dtMeshTile* tile, const float* qmin, const float* qmax,
|
|
dtQueryFilter* filter,
|
|
dtPolyRef* polys, const int maxPolys)
|
|
{
|
|
if (tile->bvTree)
|
|
{
|
|
const dtBVNode* node = &tile->bvTree[0];
|
|
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
|
|
const float* tbmin = tile->header->bmin;
|
|
const float* tbmax = tile->header->bmax;
|
|
const float qfac = tile->header->bvQuantFactor;
|
|
|
|
// Calculate quantized box
|
|
unsigned short bmin[3], bmax[3];
|
|
// Clamp query box to world box.
|
|
float minx = clamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
|
|
float miny = clamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
|
|
float minz = clamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
|
|
float maxx = clamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
|
|
float maxy = clamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
|
|
float maxz = clamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
|
|
// Quantize
|
|
bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
|
|
bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
|
|
bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
|
|
bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
|
|
bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
|
|
bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
|
|
|
|
// Traverse tree
|
|
dtPolyRef base = getTileId(tile);
|
|
int n = 0;
|
|
while (node < end)
|
|
{
|
|
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
|
|
bool isLeafNode = node->i >= 0;
|
|
|
|
if (isLeafNode && overlap)
|
|
{
|
|
if (passFilter(filter, tile->polys[node->i].flags))
|
|
{
|
|
if (n < maxPolys)
|
|
polys[n++] = base | (dtPolyRef)node->i;
|
|
}
|
|
}
|
|
|
|
if (overlap || isLeafNode)
|
|
node++;
|
|
else
|
|
{
|
|
const int escapeIndex = -node->i;
|
|
node += escapeIndex;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
else
|
|
{
|
|
float bmin[3], bmax[3];
|
|
int n = 0;
|
|
dtPolyRef base = getTileId(tile);
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
// Calc polygon bounds.
|
|
dtPoly* p = &tile->polys[i];
|
|
const float* v = &tile->verts[p->verts[0]*3];
|
|
vcopy(bmin, v);
|
|
vcopy(bmax, v);
|
|
for (int j = 1; j < p->vertCount; ++j)
|
|
{
|
|
v = &tile->verts[p->verts[j]*3];
|
|
vmin(bmin, v);
|
|
vmax(bmax, v);
|
|
}
|
|
if (overlapBoxes(qmin,qmax, bmin,bmax))
|
|
{
|
|
if (passFilter(filter, p->flags))
|
|
{
|
|
if (n < maxPolys)
|
|
polys[n++] = base | (dtPolyRef)i;
|
|
}
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
}
|
|
|
|
int dtNavMesh::queryPolygons(const float* center, const float* extents, dtQueryFilter* filter,
|
|
dtPolyRef* polys, const int maxPolys)
|
|
{
|
|
float bmin[3], bmax[3];
|
|
vsub(bmin, center, extents);
|
|
vadd(bmax, center, extents);
|
|
|
|
// Find tiles the query touches.
|
|
const int minx = (int)((bmin[0]-m_orig[0]) / m_tileWidth);
|
|
const int maxx = (int)((bmax[0]-m_orig[0]) / m_tileWidth);
|
|
const int miny = (int)((bmin[2]-m_orig[2]) / m_tileHeight);
|
|
const int maxy = (int)((bmax[2]-m_orig[2]) / m_tileHeight);
|
|
|
|
int n = 0;
|
|
for (int y = miny; y <= maxy; ++y)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
dtMeshTile* tile = getTileAt(x,y);
|
|
if (!tile) continue;
|
|
n += queryPolygonsInTile(tile, bmin, bmax, filter, polys+n, maxPolys-n);
|
|
if (n >= maxPolys) return n;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
int dtNavMesh::findPath(dtPolyRef startRef, dtPolyRef endRef,
|
|
const float* startPos, const float* endPos,
|
|
dtQueryFilter* filter,
|
|
dtPolyRef* path, const int maxPathSize)
|
|
{
|
|
if (!startRef || !endRef)
|
|
return 0;
|
|
|
|
if (!maxPathSize)
|
|
return 0;
|
|
|
|
if (!getPolyByRef(startRef) || !getPolyByRef(endRef))
|
|
return 0;
|
|
|
|
if (startRef == endRef)
|
|
{
|
|
path[0] = startRef;
|
|
return 1;
|
|
}
|
|
|
|
if (!m_nodePool || !m_openList)
|
|
return 0;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
static const float H_SCALE = 0.999f; // Heuristic scale.
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = vdist(startPos, endPos) * H_SCALE;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtNode* lastBestNode = startNode;
|
|
float lastBestNodeCost = startNode->total;
|
|
|
|
unsigned int it, ip;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
// Remove node from open list and put it in closed list.
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Reached the goal, stop searching.
|
|
if (bestNode->id == endRef)
|
|
{
|
|
lastBestNode = bestNode;
|
|
break;
|
|
}
|
|
|
|
float previousEdgeMidPoint[3];
|
|
|
|
// Get current poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
it = decodePolyIdTile(bestRef);
|
|
ip = decodePolyIdPoly(bestRef);
|
|
const dtMeshTile* bestTile = &m_tiles[it];
|
|
const dtPoly* bestPoly = &bestTile->polys[ip];
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
{
|
|
it = decodePolyIdTile(parentRef);
|
|
ip = decodePolyIdPoly(parentRef);
|
|
parentTile = &m_tiles[it];
|
|
parentPoly = &parentTile->polys[ip];
|
|
|
|
getEdgeMidPoint(parentRef, parentPoly, parentTile,
|
|
bestRef, bestPoly, bestTile, previousEdgeMidPoint);
|
|
}
|
|
else
|
|
{
|
|
vcopy(previousEdgeMidPoint, startPos);
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
dtPolyRef neighbourRef = bestTile->links[i].ref;
|
|
|
|
// Skip invalid ids and do not expand back to where we came from.
|
|
if (!neighbourRef || neighbourRef == bestRef)
|
|
continue;
|
|
|
|
// Get neighbour poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
it = decodePolyIdTile(neighbourRef);
|
|
ip = decodePolyIdPoly(neighbourRef);
|
|
const dtMeshTile* neighbourTile = &m_tiles[it];
|
|
const dtPoly* neighbourPoly = &neighbourTile->polys[ip];
|
|
|
|
if (!passFilter(filter, neighbourPoly->flags))
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.pidx = m_nodePool->getNodeIdx(bestNode);
|
|
newNode.id = neighbourRef;
|
|
|
|
// Calculate cost.
|
|
float edgeMidPoint[3];
|
|
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile, edgeMidPoint);
|
|
|
|
// Special case for last node.
|
|
float h = 0;
|
|
if (neighbourRef == endRef)
|
|
{
|
|
// Cost
|
|
newNode.cost = bestNode->cost +
|
|
vdist(previousEdgeMidPoint,edgeMidPoint) * m_areaCost[bestPoly->area] +
|
|
vdist(edgeMidPoint, endPos) * m_areaCost[neighbourPoly->area];
|
|
// Heuristic
|
|
h = 0;
|
|
}
|
|
else
|
|
{
|
|
// Cost
|
|
newNode.cost = bestNode->cost +
|
|
vdist(previousEdgeMidPoint,edgeMidPoint) * m_areaCost[bestPoly->area];
|
|
// Heuristic
|
|
h = vdist(edgeMidPoint,endPos)*H_SCALE;
|
|
}
|
|
newNode.total = newNode.cost + h;
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((actualNode->flags & DT_NODE_OPEN) && newNode.total >= actualNode->total)
|
|
continue;
|
|
// The node is already visited and process, and the new result is worse, skip.
|
|
if ((actualNode->flags & DT_NODE_CLOSED) && newNode.total >= actualNode->total)
|
|
continue;
|
|
|
|
// Add or update the node.
|
|
actualNode->flags &= ~DT_NODE_CLOSED;
|
|
actualNode->pidx = newNode.pidx;
|
|
actualNode->cost = newNode.cost;
|
|
actualNode->total = newNode.total;
|
|
|
|
// Update nearest node to target so far.
|
|
if (h < lastBestNodeCost)
|
|
{
|
|
lastBestNodeCost = h;
|
|
lastBestNode = actualNode;
|
|
}
|
|
|
|
if (actualNode->flags & DT_NODE_OPEN)
|
|
{
|
|
// Already in open, update node location.
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
// Put the node in open list.
|
|
actualNode->flags |= DT_NODE_OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reverse the path.
|
|
dtNode* prev = 0;
|
|
dtNode* node = lastBestNode;
|
|
do
|
|
{
|
|
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
|
|
node->pidx = m_nodePool->getNodeIdx(prev);
|
|
prev = node;
|
|
node = next;
|
|
}
|
|
while (node);
|
|
|
|
// Store path
|
|
node = prev;
|
|
int n = 0;
|
|
do
|
|
{
|
|
path[n++] = node->id;
|
|
node = m_nodePool->getNodeAtIdx(node->pidx);
|
|
}
|
|
while (node && n < maxPathSize);
|
|
|
|
return n;
|
|
}
|
|
|
|
int dtNavMesh::findStraightPath(const float* startPos, const float* endPos,
|
|
const dtPolyRef* path, const int pathSize,
|
|
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
|
const int maxStraightPathSize)
|
|
{
|
|
if (!maxStraightPathSize)
|
|
return 0;
|
|
|
|
if (!path[0])
|
|
return 0;
|
|
|
|
int straightPathSize = 0;
|
|
|
|
// TODO: Should this be callers responsibility?
|
|
float closestStartPos[3];
|
|
if (!closestPointOnPolyBoundary(path[0], startPos, closestStartPos))
|
|
return 0;
|
|
|
|
// Add start point.
|
|
vcopy(&straightPath[straightPathSize*3], closestStartPos);
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_START;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize] = path[0];
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
|
|
float closestEndPos[3];
|
|
if (!closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos))
|
|
return 0;
|
|
|
|
if (pathSize > 1)
|
|
{
|
|
float portalApex[3], portalLeft[3], portalRight[3];
|
|
vcopy(portalApex, closestStartPos);
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
int apexIndex = 0;
|
|
int leftIndex = 0;
|
|
int rightIndex = 0;
|
|
|
|
unsigned char leftPolyType = 0;
|
|
unsigned char rightPolyType = 0;
|
|
|
|
dtPolyRef leftPolyRef = path[0];
|
|
dtPolyRef rightPolyRef = path[0];
|
|
|
|
for (int i = 0; i < pathSize; ++i)
|
|
{
|
|
float left[3], right[3];
|
|
unsigned char fromType, toType;
|
|
|
|
if (i+1 < pathSize)
|
|
{
|
|
// Next portal.
|
|
if (!getPortalPoints(path[i], path[i+1], left, right, fromType, toType))
|
|
{
|
|
if (!closestPointOnPolyBoundary(path[i], endPos, closestEndPos))
|
|
return 0;
|
|
|
|
vcopy(&straightPath[straightPathSize*3], closestEndPos);
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize] = 0;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize] = path[i];
|
|
straightPathSize++;
|
|
|
|
return straightPathSize;
|
|
}
|
|
|
|
// If starting really close the portal, advance.
|
|
if (i == 0)
|
|
{
|
|
float t;
|
|
if (distancePtSegSqr2D(portalApex, left, right, t) < (0.001*0.001f))
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// End of the path.
|
|
vcopy(left, closestEndPos);
|
|
vcopy(right, closestEndPos);
|
|
|
|
fromType = toType = DT_POLYTYPE_GROUND;
|
|
}
|
|
|
|
// Right vertex.
|
|
if (vequal(portalApex, portalRight))
|
|
{
|
|
vcopy(portalRight, right);
|
|
rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
|
|
rightPolyType = toType;
|
|
rightIndex = i;
|
|
}
|
|
else
|
|
{
|
|
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
|
|
{
|
|
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
|
|
{
|
|
vcopy(portalRight, right);
|
|
rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
|
|
rightPolyType = toType;
|
|
rightIndex = i;
|
|
}
|
|
else
|
|
{
|
|
vcopy(portalApex, portalLeft);
|
|
apexIndex = leftIndex;
|
|
|
|
unsigned char flags = (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) ? DT_STRAIGHTPATH_OFFMESH_CONNECTION : 0;
|
|
dtPolyRef ref = leftPolyRef;
|
|
|
|
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
|
|
{
|
|
vcopy(&straightPath[straightPathSize*3], portalApex);
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize] = ref;
|
|
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
}
|
|
else
|
|
{
|
|
// The vertices are equal, update flags and poly.
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize-1] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize-1] = ref;
|
|
}
|
|
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Left vertex.
|
|
if (vequal(portalApex, portalLeft))
|
|
{
|
|
vcopy(portalLeft, left);
|
|
leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
|
|
leftPolyType = toType;
|
|
leftIndex = i;
|
|
}
|
|
else
|
|
{
|
|
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
|
|
{
|
|
if (triArea2D(portalApex, portalRight, left) < 0.0f)
|
|
{
|
|
vcopy(portalLeft, left);
|
|
leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
|
|
leftPolyType = toType;
|
|
leftIndex = i;
|
|
}
|
|
else
|
|
{
|
|
vcopy(portalApex, portalRight);
|
|
apexIndex = rightIndex;
|
|
|
|
unsigned char flags = (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) ? DT_STRAIGHTPATH_OFFMESH_CONNECTION : 0;
|
|
dtPolyRef ref = rightPolyRef;
|
|
|
|
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
|
|
{
|
|
vcopy(&straightPath[straightPathSize*3], portalApex);
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize] = ref;
|
|
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
}
|
|
else
|
|
{
|
|
// The vertices are equal, update flags and poly.
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize-1] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize-1] = ref;
|
|
}
|
|
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add end point.
|
|
vcopy(&straightPath[straightPathSize*3], closestEndPos);
|
|
if (straightPathFlags)
|
|
straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_END;
|
|
if (straightPathRefs)
|
|
straightPathRefs[straightPathSize] = 0;
|
|
|
|
straightPathSize++;
|
|
|
|
return straightPathSize;
|
|
}
|
|
|
|
// Moves towards end position a long the path corridor.
|
|
// Returns: Index to the result path polygon.
|
|
int dtNavMesh::moveAlongPathCorridor(const float* startPos, const float* endPos, float* resultPos,
|
|
const dtPolyRef* path, const int pathSize)
|
|
{
|
|
if (!pathSize)
|
|
return 0;
|
|
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
float edged[DT_VERTS_PER_POLYGON];
|
|
float edget[DT_VERTS_PER_POLYGON];
|
|
int n = 0;
|
|
|
|
static const float SLOP = 0.01f;
|
|
|
|
vcopy(resultPos, startPos);
|
|
|
|
while (n < pathSize)
|
|
{
|
|
// Get current polygon and poly vertices.
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(path[n], salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return n;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return n;
|
|
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return n;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
// In case of Off-Mesh link, just snap to the end location and advance over it.
|
|
if (poly->type == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
if (n+1 < pathSize)
|
|
{
|
|
float left[3], right[3];
|
|
unsigned char fromType, toType;
|
|
if (!getPortalPoints(path[n], path[n+1], left, right, fromType, toType))
|
|
return n;
|
|
vcopy(resultPos, endPos);
|
|
}
|
|
return n+1;
|
|
}
|
|
|
|
// Collect vertices.
|
|
int nv = 0;
|
|
for (int i = 0; i < (int)poly->vertCount; ++i)
|
|
{
|
|
vcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
|
|
nv++;
|
|
}
|
|
|
|
bool inside = distancePtPolyEdgesSqr(endPos, verts, nv, edged, edget);
|
|
if (inside)
|
|
{
|
|
// The end point is inside the current polygon.
|
|
vcopy(resultPos, endPos);
|
|
return n;
|
|
}
|
|
|
|
// Constraint the point on the polygon boundary.
|
|
// This results sliding movement.
|
|
float dmin = FLT_MAX;
|
|
int imin = -1;
|
|
for (int i = 0; i < nv; ++i)
|
|
{
|
|
if (edged[i] < dmin)
|
|
{
|
|
dmin = edged[i];
|
|
imin = i;
|
|
}
|
|
}
|
|
const float* va = &verts[imin*3];
|
|
const float* vb = &verts[((imin+1)%nv)*3];
|
|
vlerp(resultPos, va, vb, edget[imin]);
|
|
|
|
// Check to see if the point is on the portal edge to the next polygon.
|
|
if (n+1 >= pathSize)
|
|
return n;
|
|
// TODO: optimize
|
|
float left[3], right[3];
|
|
unsigned char fromType, toType;
|
|
if (!getPortalPoints(path[n], path[n+1], left, right, fromType, toType))
|
|
return n;
|
|
// If the clamped point is close to the next portal edge, advance to next poly.
|
|
float t;
|
|
float d = distancePtSegSqr2D(resultPos, left, right, t);
|
|
if (d > SLOP*SLOP)
|
|
return n;
|
|
// Advance to next polygon.
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
bool dtNavMesh::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
|
|
unsigned char& fromType, unsigned char& toType) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(from, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshTile* fromTile = &m_tiles[it];
|
|
if (ip >= (unsigned int)fromTile->header->polyCount) return false;
|
|
const dtPoly* fromPoly = &fromTile->polys[ip];
|
|
fromType = fromPoly->type;
|
|
|
|
decodePolyId(to, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return false;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
|
|
const dtMeshTile* toTile = &m_tiles[it];
|
|
if (ip >= (unsigned int)toTile->header->polyCount) return false;
|
|
const dtPoly* toPoly = &toTile->polys[ip];
|
|
toType = toPoly->type;
|
|
|
|
return getPortalPoints(from, fromPoly, fromTile,
|
|
to, toPoly, toTile,
|
|
left, right);
|
|
}
|
|
|
|
// Returns portal points between two polygons.
|
|
bool dtNavMesh::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
|
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
|
float* left, float* right) const
|
|
{
|
|
// Find the link that points to the 'to' polygon.
|
|
const dtLink* link = 0;
|
|
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
|
|
{
|
|
if (fromTile->links[i].ref == to)
|
|
{
|
|
link = &fromTile->links[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!link)
|
|
return false;
|
|
|
|
// Handle off-mesh connections.
|
|
if (fromPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
// Find link that points to first vertex.
|
|
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
|
|
{
|
|
if (fromTile->links[i].ref == to)
|
|
{
|
|
const int v = fromTile->links[i].edge;
|
|
vcopy(left, &fromTile->verts[fromPoly->verts[v]*3]);
|
|
vcopy(right, &fromTile->verts[fromPoly->verts[v]*3]);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (toPoly->type == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next)
|
|
{
|
|
if (toTile->links[i].ref == from)
|
|
{
|
|
const int v = toTile->links[i].edge;
|
|
vcopy(left, &toTile->verts[toPoly->verts[v]*3]);
|
|
vcopy(right, &toTile->verts[toPoly->verts[v]*3]);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Find portal vertices.
|
|
const int v0 = fromPoly->verts[link->edge];
|
|
const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount];
|
|
vcopy(left, &fromTile->verts[v0*3]);
|
|
vcopy(right, &fromTile->verts[v1*3]);
|
|
|
|
// If the link is at tile boundary, clamp the vertices to
|
|
// the link width.
|
|
if (link->side == 0 || link->side == 4)
|
|
{
|
|
// Unpack portal limits.
|
|
const float smin = min(left[2],right[2]);
|
|
const float smax = max(left[2],right[2]);
|
|
const float s = (smax-smin) / 255.0f;
|
|
const float lmin = smin + link->bmin*s;
|
|
const float lmax = smin + link->bmax*s;
|
|
left[2] = max(left[2],lmin);
|
|
left[2] = min(left[2],lmax);
|
|
right[2] = max(right[2],lmin);
|
|
right[2] = min(right[2],lmax);
|
|
}
|
|
else if (link->side == 2 || link->side == 6)
|
|
{
|
|
// Unpack portal limits.
|
|
const float smin = min(left[0],right[0]);
|
|
const float smax = max(left[0],right[0]);
|
|
const float s = (smax-smin) / 255.0f;
|
|
const float lmin = smin + link->bmin*s;
|
|
const float lmax = smin + link->bmax*s;
|
|
left[0] = max(left[0],lmin);
|
|
left[0] = min(left[0],lmax);
|
|
right[0] = max(right[0],lmin);
|
|
right[0] = min(right[0],lmax);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns edge mid point between two polygons.
|
|
bool dtNavMesh::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const
|
|
{
|
|
float left[3], right[3];
|
|
unsigned char fromType, toType;
|
|
if (!getPortalPoints(from, to, left,right, fromType, toType)) return false;
|
|
mid[0] = (left[0]+right[0])*0.5f;
|
|
mid[1] = (left[1]+right[1])*0.5f;
|
|
mid[2] = (left[2]+right[2])*0.5f;
|
|
return true;
|
|
}
|
|
|
|
bool dtNavMesh::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
|
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
|
float* mid) const
|
|
{
|
|
float left[3], right[3];
|
|
if (!getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))
|
|
return false;
|
|
mid[0] = (left[0]+right[0])*0.5f;
|
|
mid[1] = (left[1]+right[1])*0.5f;
|
|
mid[2] = (left[2]+right[2])*0.5f;
|
|
return true;
|
|
}
|
|
|
|
void dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return;
|
|
dtMeshTile* tile = &m_tiles[it];
|
|
if (ip >= (unsigned int)tile->header->polyCount) return;
|
|
dtPoly* poly = &tile->polys[ip];
|
|
// Change flags.
|
|
poly->flags = flags;
|
|
}
|
|
|
|
unsigned short dtNavMesh::getPolyFlags(dtPolyRef ref) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
if (ip >= (unsigned int)tile->header->polyCount) return 0;
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
return poly->flags;
|
|
}
|
|
|
|
void dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return;
|
|
dtMeshTile* tile = &m_tiles[it];
|
|
if (ip >= (unsigned int)tile->header->polyCount) return;
|
|
dtPoly* poly = &tile->polys[ip];
|
|
poly->area = area;
|
|
}
|
|
|
|
unsigned char dtNavMesh::getPolyArea(dtPolyRef ref) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
if (ip >= (unsigned int)tile->header->polyCount) return 0;
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
return poly->area;
|
|
}
|
|
|
|
int dtNavMesh::raycast(dtPolyRef centerRef, const float* startPos, const float* endPos, dtQueryFilter* filter,
|
|
float& t, float* hitNormal, dtPolyRef* path, const int pathSize)
|
|
{
|
|
t = 0;
|
|
|
|
if (!centerRef || !getPolyByRef(centerRef))
|
|
return 0;
|
|
|
|
dtPolyRef curRef = centerRef;
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
int n = 0;
|
|
|
|
hitNormal[0] = 0;
|
|
hitNormal[1] = 0;
|
|
hitNormal[2] = 0;
|
|
|
|
while (curRef)
|
|
{
|
|
// Cast ray against current polygon.
|
|
|
|
// The API input has been cheked already, skip checking internal data.
|
|
unsigned int it = decodePolyIdTile(curRef);
|
|
unsigned int ip = decodePolyIdPoly(curRef);
|
|
const dtMeshTile* tile = &m_tiles[it];
|
|
const dtPoly* poly = &tile->polys[ip];
|
|
|
|
// Collect vertices.
|
|
int nv = 0;
|
|
for (int i = 0; i < (int)poly->vertCount; ++i)
|
|
{
|
|
vcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
|
|
nv++;
|
|
}
|
|
|
|
float tmin, tmax;
|
|
int segMin, segMax;
|
|
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
|
|
{
|
|
// Could not hit the polygon, keep the old t and report hit.
|
|
return n;
|
|
}
|
|
// Keep track of furthest t so far.
|
|
if (tmax > t)
|
|
t = tmax;
|
|
|
|
if (n < pathSize)
|
|
path[n++] = curRef;
|
|
|
|
// Follow neighbours.
|
|
dtPolyRef nextRef = 0;
|
|
|
|
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
|
|
{
|
|
const dtLink* link = &tile->links[i];
|
|
if ((int)link->edge == segMax)
|
|
{
|
|
// If the link is internal, just return the ref.
|
|
if (link->side == 0xff)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
|
|
// If the link is at tile boundary,
|
|
const int v0 = poly->verts[link->edge];
|
|
const int v1 = poly->verts[(link->edge+1) % poly->vertCount];
|
|
const float* left = &tile->verts[v0*3];
|
|
const float* right = &tile->verts[v1*3];
|
|
|
|
// Check that the intersection lies inside the link portal.
|
|
if (link->side == 0 || link->side == 4)
|
|
{
|
|
// Calculate link size.
|
|
const float smin = min(left[2],right[2]);
|
|
const float smax = max(left[2],right[2]);
|
|
const float s = (smax-smin) / 255.0f;
|
|
const float lmin = smin + link->bmin*s;
|
|
const float lmax = smin + link->bmax*s;
|
|
// Find Z intersection.
|
|
float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
|
|
if (z >= lmin && z <= lmax)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
}
|
|
else if (link->side == 2 || link->side == 6)
|
|
{
|
|
// Calculate link size.
|
|
const float smin = min(left[0],right[0]);
|
|
const float smax = max(left[0],right[0]);
|
|
const float s = (smax-smin) / 255.0f;
|
|
const float lmin = smin + link->bmin*s;
|
|
const float lmax = smin + link->bmax*s;
|
|
// Find X intersection.
|
|
float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
|
|
if (x >= lmin && x <= lmax)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!nextRef || !passFilter(filter, getPolyFlags(nextRef)))
|
|
{
|
|
// No neighbour, we hit a wall.
|
|
|
|
// Calculate hit normal.
|
|
const int a = segMax;
|
|
const int b = segMax+1 < nv ? segMax+1 : 0;
|
|
const float* va = &verts[a*3];
|
|
const float* vb = &verts[b*3];
|
|
const float dx = vb[0] - va[0];
|
|
const float dz = vb[2] - va[2];
|
|
hitNormal[0] = dz;
|
|
hitNormal[1] = 0;
|
|
hitNormal[2] = -dx;
|
|
vnormalize(hitNormal);
|
|
|
|
return n;
|
|
}
|
|
|
|
// No hit, advance to neighbour polygon.
|
|
curRef = nextRef;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
int dtNavMesh::findPolysAround(dtPolyRef centerRef, const float* centerPos, float radius, dtQueryFilter* filter,
|
|
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
|
const int maxResult)
|
|
{
|
|
if (!centerRef) return 0;
|
|
if (!getPolyByRef(centerRef)) return 0;
|
|
if (!m_nodePool || !m_openList) return 0;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(centerRef);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = centerRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
int n = 0;
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = startNode->id;
|
|
if (resultParent)
|
|
resultParent[n] = 0;
|
|
if (resultCost)
|
|
resultCost[n] = 0;
|
|
++n;
|
|
}
|
|
|
|
const float radiusSqr = sqr(radius);
|
|
|
|
unsigned int it, ip;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
|
|
float previousEdgeMidPoint[3];
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
it = decodePolyIdTile(bestRef);
|
|
ip = decodePolyIdPoly(bestRef);
|
|
const dtMeshTile* bestTile = &m_tiles[it];
|
|
const dtPoly* bestPoly = &bestTile->polys[ip];
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
{
|
|
it = decodePolyIdTile(parentRef);
|
|
ip = decodePolyIdPoly(parentRef);
|
|
parentTile = &m_tiles[it];
|
|
parentPoly = &parentTile->polys[ip];
|
|
|
|
getEdgeMidPoint(parentRef, parentPoly, parentTile,
|
|
bestRef, bestPoly, bestTile, previousEdgeMidPoint);
|
|
}
|
|
else
|
|
{
|
|
vcopy(previousEdgeMidPoint, centerPos);
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3];
|
|
const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3];
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Expand to neighbour
|
|
it = decodePolyIdTile(neighbourRef);
|
|
ip = decodePolyIdPoly(neighbourRef);
|
|
const dtMeshTile* neighbourTile = &m_tiles[it];
|
|
const dtPoly* neighbourPoly = &neighbourTile->polys[ip];
|
|
|
|
if (!passFilter(filter, neighbourPoly->flags))
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.pidx = m_nodePool->getNodeIdx(bestNode);
|
|
newNode.id = neighbourRef;
|
|
|
|
// Cost
|
|
float edgeMidPoint[3];
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile, edgeMidPoint);
|
|
|
|
newNode.total = bestNode->total + vdist(previousEdgeMidPoint, edgeMidPoint);
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
|
|
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
|
|
{
|
|
actualNode->flags &= ~DT_NODE_CLOSED;
|
|
actualNode->pidx = newNode.pidx;
|
|
actualNode->total = newNode.total;
|
|
|
|
if (actualNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = actualNode->id;
|
|
if (resultParent)
|
|
resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
|
|
if (resultCost)
|
|
resultCost[n] = actualNode->total;
|
|
++n;
|
|
}
|
|
actualNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
float dtNavMesh::findDistanceToWall(dtPolyRef centerRef, const float* centerPos, float maxRadius, dtQueryFilter* filter,
|
|
float* hitPos, float* hitNormal)
|
|
{
|
|
if (!centerRef) return 0;
|
|
if (!getPolyByRef(centerRef)) return 0;
|
|
if (!m_nodePool || !m_openList) return 0;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(centerRef);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = centerRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
float radiusSqr = sqr(maxRadius);
|
|
|
|
unsigned int it, ip;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
|
|
float previousEdgeMidPoint[3];
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
it = decodePolyIdTile(bestRef);
|
|
ip = decodePolyIdPoly(bestRef);
|
|
const dtMeshTile* bestTile = &m_tiles[it];
|
|
const dtPoly* bestPoly = &bestTile->polys[ip];
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
{
|
|
it = decodePolyIdTile(parentRef);
|
|
ip = decodePolyIdPoly(parentRef);
|
|
parentTile = &m_tiles[it];
|
|
parentPoly = &parentTile->polys[ip];
|
|
|
|
getEdgeMidPoint(parentRef, parentPoly, parentTile,
|
|
bestRef, bestPoly, bestTile, previousEdgeMidPoint);
|
|
}
|
|
else
|
|
{
|
|
vcopy(previousEdgeMidPoint, centerPos);
|
|
}
|
|
|
|
// Hit test walls.
|
|
for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++)
|
|
{
|
|
// Skip non-solid edges.
|
|
if (bestPoly->neis[j] & DT_EXT_LINK)
|
|
{
|
|
// Tile border.
|
|
bool solid = true;
|
|
for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[k];
|
|
if (link->edge == j)
|
|
{
|
|
if (link->ref != 0 && passFilter(filter, getPolyFlags(link->ref)))
|
|
solid = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!solid) continue;
|
|
}
|
|
else if (bestPoly->neis[j] && passFilter(filter, bestTile->polys[bestPoly->neis[j]].flags))
|
|
{
|
|
// Internal edge
|
|
continue;
|
|
}
|
|
|
|
// Calc distance to the edge.
|
|
const float* vj = &bestTile->verts[bestPoly->verts[j]*3];
|
|
const float* vi = &bestTile->verts[bestPoly->verts[i]*3];
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
|
|
|
|
// Edge is too far, skip.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Hit wall, update radius.
|
|
radiusSqr = distSqr;
|
|
// Calculate hit pos.
|
|
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
|
|
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
|
|
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3];
|
|
const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3];
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Expand to neighbour.
|
|
it = decodePolyIdTile(neighbourRef);
|
|
ip = decodePolyIdPoly(neighbourRef);
|
|
const dtMeshTile* neighbourTile = &m_tiles[it];
|
|
const dtPoly* neighbourPoly = &neighbourTile->polys[ip];
|
|
|
|
if (!passFilter(filter, neighbourPoly->flags))
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.pidx = m_nodePool->getNodeIdx(bestNode);
|
|
newNode.id = neighbourRef;
|
|
|
|
// Cost
|
|
float edgeMidPoint[3];
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile, edgeMidPoint);
|
|
|
|
newNode.total = bestNode->total + vdist(previousEdgeMidPoint, edgeMidPoint);
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
|
|
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
|
|
{
|
|
actualNode->flags &= ~DT_NODE_CLOSED;
|
|
actualNode->pidx = newNode.pidx;
|
|
actualNode->total = newNode.total;
|
|
|
|
if (actualNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
actualNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calc hit normal.
|
|
vsub(hitNormal, centerPos, hitPos);
|
|
vnormalize(hitNormal);
|
|
|
|
return sqrtf(radiusSqr);
|
|
}
|
|
|
|
const dtPoly* dtNavMesh::getPolyByRef(dtPolyRef ref) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
|
|
return &m_tiles[it].polys[ip];
|
|
}
|
|
|
|
const float* dtNavMesh::getPolyVertsByRef(dtPolyRef ref) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
|
|
return m_tiles[it].verts;
|
|
}
|
|
|
|
const dtLink* dtNavMesh::getPolyLinksByRef(dtPolyRef ref) const
|
|
{
|
|
unsigned int salt, it, ip;
|
|
decodePolyId(ref, salt, it, ip);
|
|
if (it >= (unsigned int)m_maxTiles) return 0;
|
|
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
|
|
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
|
|
return m_tiles[it].links;
|
|
}
|
|
|
|
bool dtNavMesh::isInClosedList(dtPolyRef ref) const
|
|
{
|
|
if (!m_nodePool) return false;
|
|
const dtNode* node = m_nodePool->findNode(ref);
|
|
return node && node->flags & DT_NODE_CLOSED;
|
|
}
|
|
|