Stephen Pratt 5553d19d59 Recast: Detail API documentation for the elements declared in Recast.h. (Partial)
The elements through rcPolyMesh are complete.
2011-08-22 21:49:21 +00:00

910 lines
39 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
/**
* @defgroup recast Recast
* Elements related to path planning.
* @note This list is not yet complete. (The documentation effort is still underway.)
*/
/// The value of PI used by Recast.
static const float RC_PI = 3.14159265f;
/// Recast log categories.
/// @ingroup recast
/// @see rcContext
enum rcLogCategory
{
RC_LOG_PROGRESS = 1, ///< A progress log entry.
RC_LOG_WARNING, ///< A warning log entry.
RC_LOG_ERROR, ///< An error log entry.
};
/// Recast performance timer categories.
/// @ingroup recast
/// @see rcContext
enum rcTimerLabel
{
/// The user defined total time of the build.
RC_TIMER_TOTAL,
/// A user defined build time.
RC_TIMER_TEMP,
/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
RC_TIMER_RASTERIZE_TRIANGLES,
/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
/// The total time to build the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS,
/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS_TRACE,
/// The time to simplify the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
RC_TIMER_FILTER_BORDER,
/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
RC_TIMER_FILTER_WALKABLE,
/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
RC_TIMER_MEDIAN_AREA,
/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
RC_TIMER_FILTER_LOW_OBSTACLES,
/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
RC_TIMER_BUILD_POLYMESH,
/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
RC_TIMER_MERGE_POLYMESH,
/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
RC_TIMER_ERODE_AREA,
/// The time to mark a box area. (See: #rcMarkBoxArea)
RC_TIMER_MARK_BOX_AREA,
/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
RC_TIMER_MARK_CYLINDER_AREA,
/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
RC_TIMER_MARK_CONVEXPOLY_AREA,
/// The total time to build the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD,
/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
/// The time to blur the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
RC_TIMER_BUILD_REGIONS,
/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_WATERSHED,
/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_EXPAND,
/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_FLOOD,
/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
RC_TIMER_BUILD_REGIONS_FILTER,
/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
RC_TIMER_BUILD_LAYERS,
/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
RC_TIMER_BUILD_POLYMESHDETAIL,
/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
RC_TIMER_MERGE_POLYMESHDETAIL,
/// The maximum number of timers. (Used for iterating timers.)
RC_MAX_TIMERS
};
/// Provides an interface for optional logging and performance tracking of the Recast
/// build process.
class rcContext
{
public:
/// Contructor.
/// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
/// Enables or disables logging.
/// @param[in] state TRUE if logging should be enabled.
inline void enableLog(bool state) { m_logEnabled = state; }
/// Clears all log entries.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
/// Logs a message.
/// @param[in] category The category of the message.
/// @param[in] format The message.
void log(const rcLogCategory category, const char* format, ...);
/// Enables or disables the performance timers.
/// @param[in] state TRUE if timers should be enabled.
inline void enableTimer(bool state) { m_timerEnabled = state; }
/// Clears all peformance timers. (Resets all to unused.)
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
/// Starts the specified performance timer.
/// @param label The category of timer.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
/// Stops the specified performance timer.
/// @param label The category of the timer.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
/// Returns the total accumulated time of the specified performance timer.
/// @param label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
protected:
/// @name Custom implementation functions.
/// Logging and timer functionality must be provided by a concrete
/// implementation of these functions. This class does not implement these functions.
///@{
/// Clears all log entries.
virtual void doResetLog() {}
/// Logs a message.
/// @param[in] category The category of the message.
/// @param[in] msg The formatted message.
/// @param[in] len The length of the formatted message.
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
/// Clears all timers. (Resets all to unused.)
virtual void doResetTimers() {}
/// Starts the specified performance timer.
/// @param[in] label The category of timer.
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
/// Stops the specified performance timer.
/// @param[in] label The category of the timer.
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
/// Returns the total accumulated time of the specified performance timer.
/// @param[in] label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
///@}
/// True if logging is enabled.
bool m_logEnabled;
/// True if the performance timers are enabled.
bool m_timerEnabled;
};
/// Specifies a configuration to use when performing Recast builds.
struct rcConfig
{
/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
int width;
/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
int height;
/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
int tileSize;
/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
int borderSize;
/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
float cs;
/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
float ch;
/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
float bmin[3];
/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
float bmax[3];
/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
float walkableSlopeAngle;
/// Minimum floor to 'ceiling' height that will still allow the floor area to
/// be considered walkable. [Limit: >= 3] [Units: vx]
int walkableHeight;
/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
int walkableClimb;
/// The distance to erode/shrink the walkable area of the heightfield away from
/// obstructions. [Limit: >=0] [Units: vx]
int walkableRadius;
/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
int maxEdgeLen;
/// The maximum distance a simplfied contour's border edges should deviate
/// the original raw contour. [Limit: >=0] [Units: wu]
float maxSimplificationError;
/// The minimum number of cells allowed to form isolated island regions. [Limit: >=0] [Units: vx]
int minRegionArea;
/// Any regions with a cell count smaller than this value will, if possible,
/// be merged with larger regions. [Limit: >=0] [Units: vx]
int mergeRegionArea;
/// The maximum number of vertices allowed for polygons generated during the
/// contour to polygon conversion process. [Limit: >= 3]
int maxVertsPerPoly;
/// Sets the sampling distance to use when generating the detail mesh.
/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
float detailSampleDist;
/// The maximum distance the detail mesh surface should deviate from heightfield
/// data. (For height detail only.) [Limit: >=0] [Units: wu]
float detailSampleMaxError;
};
/// Defines number of bits in rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
/// Represents a span in a heightfield.
/// @see rcHeightfield
struct rcSpan
{
unsigned int smin : 13; ///< The mimum height of the span.
unsigned int smax : 13; ///< The maximum height of the span.
unsigned int area : 6; ///< The area id assigned to the span.
rcSpan* next; ///< The next span higher up in column.
};
/// The number of spans allocated per span spool.
/// @see rcSpanPool
static const int RC_SPANS_PER_POOL = 2048;
/// A memory pool used for quick allocation of spans within a heightfield.
/// @see rcHeightfield
struct rcSpanPool
{
rcSpanPool* next; ///< The next span pool.
rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
};
/// A dynamic heightfield representing obstructed space.
struct rcHeightfield
{
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcSpan** spans; ///< Heightfield of spans (width*height).
rcSpanPool* pools; ///< Linked list of span pools.
rcSpan* freelist; ///< The next free span.
};
/// Allocates a heightfield object using the Recast allocator.
/// @return A heightfield that is ready for initialization, or null on failure.
/// @ingroup recast
rcHeightfield* rcAllocHeightfield();
/// Frees the specified heightfield object using the Recast allocator.
/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
/// @ingroup recast
void rcFreeHeightField(rcHeightfield* hf);
/// Provides information on the content of a cell column in a compact heightfield.
struct rcCompactCell
{
unsigned int index : 24; ///< Index to the first span in the column.
unsigned int count : 8; ///< Number of spans in the column.
};
/// Represents a span of unobstructed space within a compact heightfield.
struct rcCompactSpan
{
unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
unsigned int con : 24; ///< Packed neighbor connection data.
unsigned int h : 8; ///< The height of the span. (Measured from #y.)
};
/// A compact, static heightfield representing unobstructed space.
struct rcCompactHeightfield
{
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int spanCount; ///< The number of spans in the heightfield.
int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
unsigned short maxDistance; ///< The maximum distance value of any span within the field.
unsigned short maxRegions; ///< The maximum region id of any span within the field.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
};
/// Allocates a compact heightfield object using the Recast allocator.
/// @return A compact heightfield that is ready for initialization, or null on failure.
/// @ingroup recast
rcCompactHeightfield* rcAllocCompactHeightfield();
/// Frees the specified compact heightfield object using the Recast allocator.
/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
/// @ingroup recast
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
/// Represents a heightfield layer within a layer set.
/// @ingroup recast
/// @see rcHeightfieldLayerSet
struct rcHeightfieldLayer
{
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int minx; ///< The minimum x-bounds of usable data.
int maxx; ///< The maximum x-bounds of usable data.
int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
unsigned char* heights; ///< The heightfield. [Size: (width - borderSize*2) * (h - borderSize*2)]
unsigned char* areas; ///< Area ids. [Size: Same as #heights]
unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
};
/// Represents a set of heightfield layers.
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
struct rcHeightfieldLayerSet
{
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
int nlayers; ///< The number of layers in the set.
};
/// Allocates a heightfield layer set using the Recast allocator.
/// @return A heightfield layer set that is ready for initialization, or null on failure.
/// @ingroup recast
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
/// Frees the specified heightfield layer set using the Recast allocator.
/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
/// @ingroup recast
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
/// Represents a simple, non-overlapping contour in field space.
struct rcContour
{
int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
int nverts; ///< The number of vertices in the simplified contour.
int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
int nrverts; ///< The number of vertices in the raw contour.
unsigned short reg; ///< The region id of the contour.
unsigned char area; ///< The area id of the contour.
};
/// Represents a group of related contours.
struct rcContourSet
{
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
int nconts; ///< The number of contours in the set.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int width; ///< The width of the set. (Along the x-axis in cell units.)
int height; ///< The height of the set. (Along the z-axis in cell units.)
int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
};
/// Allocates a contour set object using the Recast allocator.
/// @return A contour set that is ready for initialization, or null on failure.
/// @ingroup recast
rcContourSet* rcAllocContourSet();
/// Frees the specified contour set using the Recast allocator.
/// @param[in] cset A contour set allocated using #rcAllocContourSet
/// @ingroup recast
void rcFreeContourSet(rcContourSet* cset);
/// Represents a polygon mesh suitable for use in building a navigation mesh.
struct rcPolyMesh
{
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
int nverts; ///< The number of vertices.
int npolys; ///< The number of polygons.
int maxpolys; ///< The number of allocated polygons.
int nvp; ///< The maximum number of vertices per polygon.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
};
/// Allocates a polygon mesh object using the Recast allocator.
/// @return A polygon mesh that is ready for initialization, or null on failure.
/// @ingroup recast
rcPolyMesh* rcAllocPolyMesh();
/// Frees the specified polygon mesh using the Recast allocator.
/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
/// @ingroup recast
void rcFreePolyMesh(rcPolyMesh* pmesh);
/// Detail mesh generated from a rcPolyMesh.
/// Each submesh represents a polygon in the polymesh and they are stored in
/// exactly same order. Each submesh is described as 4 values:
/// base vertex, vertex count, base triangle, triangle count. That is,
/// const unsigned char* t = &dmesh.tris[(tbase+i)*4]; and
/// const float* v = &dmesh.verts[(vbase+t[j])*3];
/// If the input polygon has 'n' vertices, those vertices are first in the
/// submesh vertex list. This allows to compres the mesh by not storing the
/// first vertices and using the polymesh vertices instead.
/// Max number of vertices per submesh is 127 and
/// max number of triangles per submesh is 255.
struct rcPolyMeshDetail
{
unsigned int* meshes; ///< Pointer to all mesh data.
float* verts; ///< Pointer to all vertex data.
unsigned char* tris; ///< Pointer to all triangle data.
int nmeshes; ///< Number of meshes.
int nverts; ///< Number of total vertices.
int ntris; ///< Number of triangles.
};
rcPolyMeshDetail* rcAllocPolyMeshDetail();
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
/// If heightfield region ID has the following bit set, the region is on border area
/// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
/// If contour region ID has the following bit set, the vertex will be later
/// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
static const int RC_AREA_BORDER = 0x20000;
enum rcBuildContoursFlags
{
RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate wall edges
RC_CONTOUR_TESS_AREA_EDGES = 0x02, ///< Tessellate edges between areas.
};
/// Mask used with contours to extract region id.
static const int RC_CONTOUR_REG_MASK = 0xffff;
/// Null index which is used with meshes to mark unset or invalid indices.
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
/// Area ID that is considered empty.
static const unsigned char RC_NULL_AREA = 0;
/// Area ID that is considered generally walkable.
static const unsigned char RC_WALKABLE_AREA = 63;
/// Value returned by rcGetCon() if the direction is not connected.
static const int RC_NOT_CONNECTED = 0x3f;
/// Compact span neighbour helpers.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
unsigned int con = s.con;
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
return (s.con >> shift) & 0x3f;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
/// @name Common helper functions
///@{
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
float rcSqrt(float x);
inline int rcAlign4(int x) { return (x+3) & ~3; }
///@}
/// @name Common vector helper functions.
///@{
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return rcSqrt(dx*dx + dy*dy + dz*dz);
}
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool rcVequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = rcVdistSqr(p0, p1);
return d < thr;
}
///@}
/// Calculated bounding box of array of vertices.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param bmin,bmax [out] bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
/// Calculates grid size based on bounding box and grid cell size.
/// @param bmin,bmax [in] bounding box
/// @param cs [in] grid cell size
/// @param w [out] grid width
/// @param h [out] grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
/// Creates and initializes new heightfield.
/// @param hf [in,out] heightfield to initialize.
/// @param width [in] width of the heightfield.
/// @param height [in] height of the heightfield.
/// @param bmin,bmax [in] bounding box of the heightfield
/// @param cs [in] grid cell size
/// @param ch [in] grid cell height
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
/// Sets the RC_WALKABLE_AREA for every triangle whose slope is below
/// the maximum walkable slope angle.
/// @param walkableSlopeAngle [in] maximum slope angle in degrees.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param nt [in] triangle count
/// @param areas [out] array of triangle area types
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Sets the RC_NULL_AREA for every triangle whose slope is steeper than
/// the maximum walkable slope angle.
/// @param walkableSlopeAngle [in] maximum slope angle in degrees.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param nt [in] triangle count
/// @param areas [out] array of triangle are types
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Adds span to heightfield.
/// The span addition can set to favor flags. If the span is merged to
/// another span and the new smax is within 'flagMergeThr' units away
/// from the existing span the span flags are merged and stored.
/// @param x,y [in] location on the heightfield where the span is added
/// @param smin,smax [in] spans min/max height
/// @param area
/// @param flagMergeThr [in] merge threshold.
void rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr);
/// Rasterizes a triangle into heightfield spans.
/// @param v0,v1,v2 [in] the vertices of the triangle.
/// @param area [in] area type of the triangle.
/// @param solid [in] heightfield where the triangle is rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
/// Rasterizes indexed triangle mesh into heightfield spans.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes indexed triangle mesh into heightfield spans.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes the triangles into heightfield spans.
/// @param verts [in] array of vertices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Marks non-walkable low obstacles as walkable if they are closer than walkableClimb
/// from a walkable surface. Applying this filter allows to step over low hanging
/// low obstacles.
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param solid [in,out] heightfield describing the solid space
/// @warning TODO: Misses ledge flag, must be called before rcFilterLedgeSpans!
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
/// Removes WALKABLE flag from all spans that are at ledges. This filtering
/// removes possible overestimation of the conservative voxelization so that
/// the resulting mesh will not have regions hanging in air over ledges.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param solid [in,out] heightfield describing the solid space
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
/// Removes WALKABLE flag from all spans which have smaller than
/// 'walkableHeight' clearance above them.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param solid [in,out] heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
/// Returns number of spans contained in a heightfield.
/// @param hf [in] heightfield to be compacted
/// @returns number of spans.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
/// Builds compact representation of the heightfield.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param hf [in] heightfield to be compacted
/// @param chf [out] compact heightfield representing the open space.
/// @returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
/// Erodes walkable area.
/// @param radius [in] radius of erosion (max 255).
/// @param chf [in,out] compact heightfield to erode.
/// @returns false if operation ran out of memory.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
/// Applies median filter to walkable area types, removing noise.
/// @param chf [in,out] compact heightfield to erode.
/// @returns false if operation ran out of memory.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
/// Marks the area of the convex polygon into the area type of the compact heightfield.
/// @param bmin,bmax [in] bounds of the axis aligned box.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Marks the area of the convex polygon into the area type of the compact heightfield.
/// @param verts [in] vertices of the convex polygon.
/// @param nverts [in] number of vertices in the polygon.
/// @param hmin,hmax [in] min and max height of the polygon.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Marks the area of the cylinder into the area type of the compact heightfield.
/// @param pos [in] center bottom location of hte cylinder.
/// @param r [in] radius of the cylinder.
/// @param h [in] height of the cylinder.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
const float r, const float h, unsigned char areaId,
rcCompactHeightfield& chf);
/// Builds distance field and stores it into the combat heightfield.
/// @param chf [in,out] compact heightfield representing the open space.
/// @returns false if operation ran out of memory.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
/// Divides the walkable heighfied into simple regions using watershed partitioning.
/// Each region has only one contour and no overlaps.
/// The regions are stored in the compact heightfield 'reg' field.
/// The process sometimes creates small regions. If the area of a regions is
/// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
/// region if possible. If multiple regions form an area which is smaller than
/// 'minRegionArea' all the regions belonging to that area will be removed.
/// Here area means the count of spans in an area.
/// @param chf [in,out] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param minRegionArea [in] the smallest allowed region area.
/// @param maxMergeRegionArea [in] the largest allowed region area which can be merged.
/// @returns false if operation ran out of memory.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Divides the walkable heighfied into simple regions using simple monotone partitioning.
/// Each region has only one contour and no overlaps.
/// The regions are stored in the compact heightfield 'reg' field.
/// The process sometimes creates small regions. If the area of a regions is
/// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
/// region if possible. If multiple regions form an area which is smaller than
/// 'minRegionArea' all the regions belonging to that area will be removed.
/// Here area means the count of spans in an area.
/// @param chf [in,out] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param minRegionArea [in] the smallest allowed regions size.
/// @param maxMergeRegionArea [in] the largest allowed regions size which can be merged.
/// @returns false if operation ran out of memory.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Builds 2D layer representation of a heighfield.
/// @param chf [in] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param walkableHeight [in] minimum height where the agent can still walk.
/// @param lset [out] set of 2D heighfield layers.
/// @returns false if operation ran out of memory.
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int walkableHeight,
rcHeightfieldLayerSet& lset);
/// Builds simplified contours from the regions outlines.
/// @param chf [in] compact heightfield which has regions set.
/// @param maxError [in] maximum allowed distance between simplified contour and cells.
/// @param maxEdgeLen [in] maximum allowed contour edge length in cells.
/// @param cset [out] Resulting contour set.
/// @param flags [in] build flags, see rcBuildContoursFlags.
/// @returns false if operation ran out of memory.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
/// Builds connected convex polygon mesh from contour polygons.
/// @param cset [in] contour set.
/// @param nvp [in] maximum number of vertices per polygon.
/// @param mesh [out] poly mesh.
/// @returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
/// Builds detail triangle mesh for each polygon in the poly mesh.
/// @param mesh [in] poly mesh to detail.
/// @param chf [in] compact height field, used to query height for new vertices.
/// @param sampleDist [in] spacing between height samples used to generate more detail into mesh.
/// @param sampleMaxError [in] maximum allowed distance between simplified detail mesh and height sample.
/// @param dmesh [out] detail mesh.
/// @returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H
///////////////////////////////////////////////////////////////////////////
// Due to the large amount of detail documentation for this file,
// the content normally located at the end of the header file has been separated
// out to a file in the /Docs/Extern directory.