Mikko Mononen 5fc5626938 Log is printed to stdout after build.
Fixed tile data deletion in tilenavmesh (thanks jswigart).
Adjusted default border size in tiled versions.
Added experimental monotone region builder.
2009-08-27 09:01:15 +00:00

519 lines
19 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
// The units of the parameters are specified in parenthesis as follows:
// (vx) voxels, (wu) world units
struct rcConfig
{
int width, height; // Dimensions of the rasterized heighfield (vx)
int tileSize; // Width and Height of a tile (vx)
int borderSize; // Non-navigable Border around the heightfield (vx)
float cs, ch; // Grid cell size and height (wu)
float bmin[3], bmax[3]; // Grid bounds (wu)
float walkableSlopeAngle; // Maximum walkble slope angle in degrees.
int walkableHeight; // Minimum height where the agent can still walk (vx)
int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
int walkableRadius; // Radius of the agent in cells (vx)
int maxEdgeLen; // Maximum contour edge length (vx)
float maxSimplificationError; // Maximum distance error from contour to cells (vx)
int minRegionSize; // Minimum regions size. Smaller regions will be deleted (vx)
int mergeRegionSize; // Minimum regions size. Smaller regions will be merged (vx)
int maxVertsPerPoly; // Max number of vertices per polygon
float detailSampleDist; // Detail mesh sample spacing.
float detailSampleMaxError; // Detail mesh simplification max sample error.
};
// Heightfield span.
struct rcSpan
{
unsigned int smin : 15; // Span min height.
unsigned int smax : 15; // Span max height.
unsigned int flags : 2; // Span flags.
rcSpan* next; // Next span in column.
};
static const int RC_SPANS_PER_POOL = 2048;
// Memory pool used for quick span allocation.
struct rcSpanPool
{
rcSpanPool* next; // Pointer to next pool.
rcSpan items[1]; // Array of spans (size RC_SPANS_PER_POOL).
};
// Dynamic span-heightfield.
struct rcHeightfield
{
inline rcHeightfield() : width(0), height(0), spans(0), pools(0), freelist(0) {}
inline ~rcHeightfield()
{
// Delete span array.
delete [] spans;
// Delete span pools.
while (pools)
{
rcSpanPool* next = pools->next;
delete [] reinterpret_cast<unsigned char*>(pools);
pools = next;
}
}
int width, height; // Dimension of the heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield
float cs, ch; // Cell size and height.
rcSpan** spans; // Heightfield of spans (width*height).
rcSpanPool* pools; // Linked list of span pools.
rcSpan* freelist; // Pointer to next free span.
};
struct rcCompactCell
{
unsigned int index : 24; // Index to first span in column.
unsigned int count : 8; // Number of spans in this column.
};
struct rcCompactSpan
{
unsigned short y; // Bottom coordinate of the span.
unsigned short reg; // Region ID
unsigned short dist; // Distance to border
unsigned short con; // Connections to neighbour cells.
unsigned char h; // Height of the span.
unsigned char flags; // Flags.
};
// Compact static heightfield.
struct rcCompactHeightfield
{
inline rcCompactHeightfield() : maxDistance(0), maxRegions(0), cells(0), spans(0) {}
inline ~rcCompactHeightfield() { delete [] cells; delete [] spans; }
int width, height; // Width and height of the heighfield.
int spanCount; // Number of spans in the heightfield.
int walkableHeight, walkableClimb; // Agent properties.
unsigned short maxDistance; // Maximum distance value stored in heightfield.
unsigned short maxRegions; // Maximum Region Id stored in heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
rcCompactCell* cells; // Pointer to width*height cells.
rcCompactSpan* spans; // Pointer to spans.
};
struct rcContour
{
inline rcContour() : verts(0), nverts(0), rverts(0), nrverts(0) { }
inline ~rcContour() { delete [] verts; delete [] rverts; }
int* verts; // Vertex coordinates, each vertex contains 4 components.
int nverts; // Number of vertices.
int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
int nrverts; // Number of raw vertices.
unsigned short reg; // Region ID of the contour.
};
struct rcContourSet
{
inline rcContourSet() : conts(0), nconts(0) {}
inline ~rcContourSet() { delete [] conts; }
rcContour* conts; // Pointer to all contours.
int nconts; // Number of contours.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
};
// Polymesh store a connected mesh of polygons.
// The polygons are store in an array where each polygons takes
// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
// and the second 'nvp' elements are indices to neighbour polygons.
// If a polygona has less than 'bvp' vertices, the remaining indices
// are set os 0xffff. If an polygon edge does not have a neighbour
// the neighbour index is set to 0xffff.
// Vertices can be transformed into world space as follows:
// x = bmin[0] + verts[i*3+0]*cs;
// y = bmin[1] + verts[i*3+1]*ch;
// z = bmin[2] + verts[i*3+2]*cs;
struct rcPolyMesh
{
inline rcPolyMesh() : verts(0), polys(0), regs(0), nverts(0), npolys(0), nvp(3) {}
inline ~rcPolyMesh() { delete [] verts; delete [] polys; delete [] regs; }
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
unsigned short* regs; // Regions of the polygons.
int nverts; // Number of vertices.
int npolys; // Number of polygons.
int nvp; // Max number of vertices per polygon.
float bmin[3], bmax[3]; // Bounding box of the mesh.
float cs, ch; // Cell size and height.
};
// Detail mesh generated from a rcPolyMesh.
// Each submesh represents a polygon in the polymesh and they are stored in
// excatly same order. Each submesh is described as 4 values:
// base vertex, vertex count, base triangle, triangle count. That is,
// const unsigned char* t = &dtl.tris[(tbase+i)*3]; and
// const float* v = &dtl.verts[(vbase+t[j])*3];
// If the input polygon has 'n' vertices, those vertices are first in the
// submesh vertex list. This allows to compres the mesh by not storing the
// first vertices and using the polymesh vertices instead.
struct rcPolyMeshDetail
{
inline rcPolyMeshDetail() :
meshes(0), verts(0), tris(0),
nmeshes(0), nverts(0), ntris(0) {}
inline ~rcPolyMeshDetail()
{
delete [] meshes; delete [] verts; delete [] tris;
}
unsigned short* meshes; // Pointer to all mesh data.
float* verts; // Pointer to all vertex data.
unsigned char* tris; // Pointer to all triangle data.
int nmeshes; // Number of meshes.
int nverts; // Number of total vertices.
int ntris; // Number of triangles.
};
// Simple dynamic array ints.
class rcIntArray
{
int* m_data;
int m_size, m_cap;
public:
inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(n) { m_data = new int[n]; }
inline ~rcIntArray() { delete [] m_data; }
void resize(int n);
inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
inline const int& operator[](int i) const { return m_data[i]; }
inline int& operator[](int i) { return m_data[i]; }
inline int size() const { return m_size; }
};
enum rcSpanFlags
{
RC_WALKABLE = 0x01,
RC_REACHABLE = 0x02,
};
// If heightfield region ID has the following bit set, the region is on border area
// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
// If contour region ID has the following bit set, the vertex will be later
// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
// Compact span neighbour helpers.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
return (s.con >> (dir*4)) & 0xf;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
// Common helper functions
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
// Common vector helper functions.
inline void vcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float vdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void vmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void vadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void vsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void vmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void vmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void vcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float vdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return sqrtf(dx*dx + dy*dy + dz*dz);
}
inline float vdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void vnormalize(float* v)
{
float d = 1.0f / sqrtf(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool vequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = vdistSqr(p0, p1);
return d < thr;
}
// Calculated bounding box of array of vertices.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// bmin, bmax - (out) bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
// Calculates grid size based on bounding box and grid cell size.
// Params:
// bmin, bmax - (in) bounding box
// cs - (in) grid cell size
// w - (out) grid width
// h - (out) grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
// Creates and initializes new heightfield.
// Params:
// hf - (in/out) heightfield to initialize.
// width - (in) width of the heightfield.
// height - (in) height of the heightfield.
// bmin, bmax - (in) bounding box of the heightfield
// cs - (in) grid cell size
// ch - (in) grid cell height
bool rcCreateHeightfield(rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
// Sets the WALKABLE flag for every triangle whose slope is below
// the maximun walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximun slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// flags - (out) array of triangle flags
void rcMarkWalkableTriangles(const float walkableSlopeAngle,
const float* verts, int nv,
const int* tris, int nt,
unsigned char* flags);
// Rasterizes a triangle into heightfield spans.
// Params:
// v0,v1,v2 - (in) the vertices of the triangle.
// flags - (in) triangle flags (uses WALKABLE)
// solid - (in) heighfield where the triangle is rasterized
void rcRasterizeTriangle(const float* v0, const float* v1, const float* v2,
unsigned char flags, rcHeightfield& solid);
// Rasterizes the triangles into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// norms - (in) array of triangle normals
// flags - (in) array of triangle flags (uses WALKABLE)
// nt - (in) triangle count
// solid - (in) heighfield where the triangles are rasterized
void rcRasterizeTriangles(const float* verts, int nv,
const int* tris, const unsigned char* flags, int nt,
rcHeightfield& solid);
// Removes WALKABLE flag from all spans that are at ledges. This filtering
// removes possible overestimation of the conservative voxelization so that
// the resulting mesh will not have regions hanging in air over ledges.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
void rcFilterLedgeSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid);
// Removes WALKABLE flag from all spans which have smaller than
// 'walkableHeight' clearane above them.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(int walkableHeight,
rcHeightfield& solid);
// Marks spans which are reachable from any of the topmost spans.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
// Returns false if operation ran out of memory.
bool rcMarkReachableSpans(const int walkableHeight,
const int walkableClimb,
rcHeightfield& solid);
// Builds compact representation of the heightfield.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// hf - (in) heightfield to be compacted
// chf - (out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
unsigned char flags,
rcHeightfield& hf,
rcCompactHeightfield& chf);
// Builds distance field and stores it into the combat heightfield.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildDistanceField(rcCompactHeightfield& chf);
// Divides the walkable heighfied into simple regions using watershed partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The regions will be shrinked by the radius of the agent.
// The process sometimes creates small regions. The parameter
// 'minRegionSize' specifies the smallest allowed regions size.
// If the area of a regions is smaller than allowed, the regions is
// removed or merged to neighbour region.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// walkableRadius - (in) the radius of the agent.
// minRegionSize - (in) the smallest allowed regions size.
// maxMergeRegionSize - (in) the largest allowed regions size which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegions(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize);
// Divides the walkable heighfied into simple regions using simple monotone partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The regions will be shrinked by the radius of the agent.
// The process sometimes creates small regions. The parameter
// 'minRegionSize' specifies the smallest allowed regions size.
// If the area of a regions is smaller than allowed, the regions is
// removed or merged to neighbour region.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// walkableRadius - (in) the radius of the agent.
// minRegionSize - (in) the smallest allowed regions size.
// maxMergeRegionSize - (in) the largest allowed regions size which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegionsMonotone(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize);
// Builds simplified contours from the regions outlines.
// Params:
// chf - (in) compact heightfield which has regions set.
// maxError - (in) maximum allowed distance between simplified countour and cells.
// maxEdgeLen - (in) maximum allowed contour edge length in cells.
// cset - (out) Resulting contour set.
// Returns false if operation ran out of memory.
bool rcBuildContours(rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset);
// Builds connected convex polygon mesh from contour polygons.
// Params:
// cset - (in) contour set.
// nvp - (in) maximum number of vertices per polygon.
// mesh - (out) poly mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
// Builds detail triangle mesh for each polygon in the poly mesh.
// Params:
// mesh - (in) poly mesh to detail.
// chf - (in) compacy height field, used to query height for new vertices.
// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
// pmdtl - (out) detail mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H