Mikko Mononen 5fc5626938 Log is printed to stdout after build.
Fixed tile data deletion in tilenavmesh (thanks jswigart).
Adjusted default border size in tiled versions.
Added experimental monotone region builder.
2009-08-27 09:01:15 +00:00

1255 lines
30 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
static unsigned short* calculateDistanceField(rcCompactHeightfield& chf,
unsigned short* src, unsigned short* dst,
unsigned short& maxDist)
{
const int w = chf.width;
const int h = chf.height;
// Init distance and points.
for (int i = 0; i < chf.spanCount; ++i)
src[i] = 0xffff;
// Mark boundary cells.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int nc = 0;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != 0xf)
nc++;
}
if (nc != 4)
src[i] = 0;
}
}
}
// Pass 1
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 0) != 0xf)
{
// (-1,0)
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (-1,-1)
if (rcGetCon(as, 3) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(3);
const int aay = ay + rcGetDirOffsetY(3);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
if (rcGetCon(s, 3) != 0xf)
{
// (0,-1)
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (1,-1)
if (rcGetCon(as, 2) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(2);
const int aay = ay + rcGetDirOffsetY(2);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
}
}
}
// Pass 2
for (int y = h-1; y >= 0; --y)
{
for (int x = w-1; x >= 0; --x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 2) != 0xf)
{
// (1,0)
const int ax = x + rcGetDirOffsetX(2);
const int ay = y + rcGetDirOffsetY(2);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (1,1)
if (rcGetCon(as, 1) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(1);
const int aay = ay + rcGetDirOffsetY(1);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
if (rcGetCon(s, 1) != 0xf)
{
// (0,1)
const int ax = x + rcGetDirOffsetX(1);
const int ay = y + rcGetDirOffsetY(1);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (-1,1)
if (rcGetCon(as, 0) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(0);
const int aay = ay + rcGetDirOffsetY(0);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
}
}
}
maxDist = 0;
for (int i = 0; i < chf.spanCount; ++i)
maxDist = rcMax(src[i], maxDist);
return src;
}
static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr,
unsigned short* src, unsigned short* dst)
{
const int w = chf.width;
const int h = chf.height;
thr *= 2;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int cd = (int)src[i];
if (cd <= thr)
{
dst[i] = cd;
continue;
}
int d = cd;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
d += (int)src[ai];
const rcCompactSpan& as = chf.spans[ai];
const int dir2 = (dir+1) & 0x3;
if (rcGetCon(as, dir2) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dir2);
const int ay2 = ay + rcGetDirOffsetY(dir2);
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
d += (int)src[ai2];
}
else
{
d += cd;
}
}
else
{
d += cd*2;
}
}
dst[i] = (unsigned short)((d+5)/9);
}
}
}
return dst;
}
static bool floodRegion(int x, int y, int i,
unsigned short level, unsigned short minLevel, unsigned short r,
rcCompactHeightfield& chf,
unsigned short* src,
rcIntArray& stack)
{
const int w = chf.width;
// Flood fill mark region.
stack.resize(0);
stack.push((int)x);
stack.push((int)y);
stack.push((int)i);
src[i*2] = r;
src[i*2+1] = 0;
unsigned short lev = level >= minLevel+2 ? level-2 : minLevel;
int count = 0;
while (stack.size() > 0)
{
int ci = stack.pop();
int cy = stack.pop();
int cx = stack.pop();
const rcCompactSpan& cs = chf.spans[ci];
// Check if any of the neighbours already have a valid region set.
unsigned short ar = 0;
for (int dir = 0; dir < 4; ++dir)
{
// 8 connected
if (rcGetCon(cs, dir) != 0xf)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
unsigned short nr = src[ai*2];
if (nr != 0 && nr != r)
ar = nr;
const rcCompactSpan& as = chf.spans[ai];
const int dir2 = (dir+1) & 0x3;
if (rcGetCon(as, dir2) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dir2);
const int ay2 = ay + rcGetDirOffsetY(dir2);
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
unsigned short nr = src[ai2*2];
if (nr != 0 && nr != r)
ar = nr;
}
}
}
if (ar != 0)
{
src[ci*2] = 0;
continue;
}
count++;
// Expand neighbours.
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(cs, dir) != 0xf)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
if (chf.spans[ai].dist >= lev)
{
if (src[ai*2] == 0)
{
src[ai*2] = r;
src[ai*2+1] = 0;
stack.push(ax);
stack.push(ay);
stack.push(ai);
}
}
}
}
}
return count > 0;
}
static unsigned short* expandRegions(int maxIter, unsigned short level,
rcCompactHeightfield& chf,
unsigned short* src,
unsigned short* dst,
rcIntArray& stack)
{
const int w = chf.width;
const int h = chf.height;
// Find cells revealed by the raised level.
stack.resize(0);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist >= level && src[i*2] == 0)
{
stack.push(x);
stack.push(y);
stack.push(i);
}
}
}
}
int iter = 0;
while (stack.size() > 0)
{
int failed = 0;
memcpy(dst, src, sizeof(unsigned short)*chf.spanCount*2);
for (int j = 0; j < stack.size(); j += 3)
{
int x = stack[j+0];
int y = stack[j+1];
int i = stack[j+2];
if (i < 0)
{
failed++;
continue;
}
unsigned short r = src[i*2];
unsigned short d2 = 0xffff;
const rcCompactSpan& s = chf.spans[i];
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) == 0xf) continue;
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
if (src[ai*2] > 0 && (src[ai*2] & RC_BORDER_REG) == 0)
{
if ((int)src[ai*2+1]+2 < (int)d2)
{
r = src[ai*2];
d2 = src[ai*2+1]+2;
}
}
}
if (r)
{
stack[j+2] = -1; // mark as used
dst[i*2] = r;
dst[i*2+1] = d2;
}
else
{
failed++;
}
}
// rcSwap source and dest.
rcSwap(src, dst);
if (failed*3 == stack.size())
break;
if (level > 0)
{
++iter;
if (iter >= maxIter)
break;
}
}
return src;
}
struct rcRegion
{
inline rcRegion() : count(0), id(0), remap(false) {}
int count;
unsigned short id;
bool remap;
rcIntArray connections;
rcIntArray floors;
};
static void removeAdjacentNeighbours(rcRegion& reg)
{
// Remove adjacent duplicates.
for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; )
{
int ni = (i+1) % reg.connections.size();
if (reg.connections[i] == reg.connections[ni])
{
// Remove duplicate
for (int j = i; j < reg.connections.size()-1; ++j)
reg.connections[j] = reg.connections[j+1];
reg.connections.pop();
}
else
++i;
}
}
static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId)
{
bool neiChanged = false;
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == oldId)
{
reg.connections[i] = newId;
neiChanged = true;
}
}
for (int i = 0; i < reg.floors.size(); ++i)
{
if (reg.floors[i] == oldId)
reg.floors[i] = newId;
}
if (neiChanged)
removeAdjacentNeighbours(reg);
}
static bool canMergeWithRegion(rcRegion& reg, unsigned short id)
{
int n = 0;
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == id)
n++;
}
if (n > 1)
return false;
for (int i = 0; i < reg.floors.size(); ++i)
{
if (reg.floors[i] == id)
return false;
}
return true;
}
static void addUniqueFloorRegion(rcRegion& reg, unsigned short n)
{
for (int i = 0; i < reg.floors.size(); ++i)
if (reg.floors[i] == n)
return;
reg.floors.push(n);
}
static bool mergeRegions(rcRegion& rega, rcRegion& regb)
{
unsigned short aid = rega.id;
unsigned short bid = regb.id;
// Duplicate current neighbourhood.
rcIntArray acon;
acon.resize(rega.connections.size());
for (int i = 0; i < rega.connections.size(); ++i)
acon[i] = rega.connections[i];
rcIntArray& bcon = regb.connections;
// Find insertion point on A.
int insa = -1;
for (int i = 0; i < acon.size(); ++i)
{
if (acon[i] == bid)
{
insa = i;
break;
}
}
if (insa == -1)
return false;
// Find insertion point on B.
int insb = -1;
for (int i = 0; i < bcon.size(); ++i)
{
if (bcon[i] == aid)
{
insb = i;
break;
}
}
if (insb == -1)
return false;
// Merge neighbours.
rega.connections.resize(0);
for (int i = 0, ni = acon.size(); i < ni-1; ++i)
rega.connections.push(acon[(insa+1+i) % ni]);
for (int i = 0, ni = bcon.size(); i < ni-1; ++i)
rega.connections.push(bcon[(insb+1+i) % ni]);
removeAdjacentNeighbours(rega);
for (int j = 0; j < regb.floors.size(); ++j)
addUniqueFloorRegion(rega, regb.floors[j]);
rega.count += regb.count;
regb.count = 0;
regb.connections.resize(0);
return true;
}
static bool isRegionConnectedToBorder(const rcRegion& reg)
{
// Region is connected to border if
// one of the neighbours is null id.
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == 0)
return true;
}
return false;
}
static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* src,
int x, int y, int i, int dir)
{
const rcCompactSpan& s = chf.spans[i];
unsigned short r = 0;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = src[ai*2];
}
if (r == src[i*2])
return false;
return true;
}
static void walkContour(int x, int y, int i, int dir,
rcCompactHeightfield& chf,
unsigned short* src,
rcIntArray& cont)
{
int startDir = dir;
int starti = i;
const rcCompactSpan& ss = chf.spans[i];
unsigned short curReg = 0;
if (rcGetCon(ss, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir);
curReg = src[ai*2];
}
cont.push(curReg);
int iter = 0;
while (++iter < 40000)
{
const rcCompactSpan& s = chf.spans[i];
if (isSolidEdge(chf, src, x, y, i, dir))
{
// Choose the edge corner
unsigned short r = 0;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = src[ai*2];
}
if (r != curReg)
{
curReg = r;
cont.push(curReg);
}
dir = (dir+1) & 0x3; // Rotate CW
}
else
{
int ni = -1;
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
if (rcGetCon(s, dir) != 0xf)
{
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
ni = (int)nc.index + rcGetCon(s, dir);
}
if (ni == -1)
{
// Should not happen.
return;
}
x = nx;
y = ny;
i = ni;
dir = (dir+3) & 0x3; // Rotate CCW
}
if (starti == i && startDir == dir)
{
break;
}
}
// Remove adjacent duplicates.
if (cont.size() > 1)
{
for (int i = 0; i < cont.size(); )
{
int ni = (i+1) % cont.size();
if (cont[i] == cont[ni])
{
for (int j = i; j < cont.size()-1; ++j)
cont[j] = cont[j+1];
cont.pop();
}
else
++i;
}
}
}
static bool filterSmallRegions(int minRegionSize, int mergeRegionSize,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* src)
{
const int w = chf.width;
const int h = chf.height;
int nreg = maxRegionId+1;
rcRegion* regions = new rcRegion[nreg];
if (!regions)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
for (int i = 0; i < nreg; ++i)
regions[i].id = (unsigned short)i;
// Find edge of a region and find connections around the contour.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
unsigned short r = src[i*2];
if (r == 0 || r >= nreg)
continue;
rcRegion& reg = regions[r];
reg.count++;
// Update floors.
for (int j = (int)c.index; j < ni; ++j)
{
if (i == j) continue;
unsigned short floorId = src[j*2];
if (floorId == 0 || floorId >= nreg)
continue;
addUniqueFloorRegion(reg, floorId);
}
// Have found contour
if (reg.connections.size() > 0)
continue;
// Check if this cell is next to a border.
int ndir = -1;
for (int dir = 0; dir < 4; ++dir)
{
if (isSolidEdge(chf, src, x, y, i, dir))
{
ndir = dir;
break;
}
}
if (ndir != -1)
{
// The cell is at border.
// Walk around the contour to find all the neighbours.
walkContour(x, y, i, ndir, chf, src, reg.connections);
}
}
}
}
// Remove too small unconnected regions.
for (int i = 0; i < nreg; ++i)
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
continue;
if (reg.count == 0)
continue;
if (reg.connections.size() == 1 && reg.connections[0] == 0)
{
if (reg.count < minRegionSize)
{
// Non-connected small region, remove.
reg.count = 0;
reg.id = 0;
}
}
}
// Merge too small regions to neighbour regions.
int mergeCount = 0 ;
do
{
mergeCount = 0;
for (int i = 0; i < nreg; ++i)
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
continue;
if (reg.count == 0)
continue;
// Check to see if the region should be merged.
if (reg.count > mergeRegionSize && isRegionConnectedToBorder(reg))
continue;
// Small region with more than 1 connection.
// Or region which is not connected to a border at all.
// Find smallest neighbour region that connects to this one.
int smallest = 0xfffffff;
unsigned short mergeId = reg.id;
for (int j = 0; j < reg.connections.size(); ++j)
{
if (reg.connections[j] & RC_BORDER_REG) continue;
rcRegion& mreg = regions[reg.connections[j]];
if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue;
if (mreg.count < smallest &&
canMergeWithRegion(reg, mreg.id) &&
canMergeWithRegion(mreg, reg.id))
{
smallest = mreg.count;
mergeId = mreg.id;
}
}
// Found new id.
if (mergeId != reg.id)
{
unsigned short oldId = reg.id;
rcRegion& target = regions[mergeId];
// Merge neighbours.
if (mergeRegions(target, reg))
{
// Fixup regions pointing to current region.
for (int j = 0; j < nreg; ++j)
{
if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue;
// If another region was already merged into current region
// change the nid of the previous region too.
if (regions[j].id == oldId)
regions[j].id = mergeId;
// Replace the current region with the new one if the
// current regions is neighbour.
replaceNeighbour(regions[j], oldId, mergeId);
}
mergeCount++;
}
}
}
}
while (mergeCount > 0);
// Compress region Ids.
for (int i = 0; i < nreg; ++i)
{
regions[i].remap = false;
if (regions[i].id == 0) continue; // Skip nil regions.
if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
regions[i].remap = true;
}
unsigned short regIdGen = 0;
for (int i = 0; i < nreg; ++i)
{
if (!regions[i].remap)
continue;
unsigned short oldId = regions[i].id;
unsigned short newId = ++regIdGen;
for (int j = i; j < nreg; ++j)
{
if (regions[j].id == oldId)
{
regions[j].id = newId;
regions[j].remap = false;
}
}
}
maxRegionId = regIdGen;
// Remap regions.
for (int i = 0; i < chf.spanCount; ++i)
{
if ((src[i*2] & RC_BORDER_REG) == 0)
src[i*2] = regions[src[i*2]].id;
}
delete [] regions;
return true;
}
bool rcBuildDistanceField(rcCompactHeightfield& chf)
{
rcTimeVal startTime = rcGetPerformanceTimer();
unsigned short* dist0 = new unsigned short[chf.spanCount];
if (!dist0)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist0' (%d).", chf.spanCount);
return false;
}
unsigned short* dist1 = new unsigned short[chf.spanCount];
if (!dist1)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist1' (%d).", chf.spanCount);
delete [] dist0;
return false;
}
unsigned short* src = dist0;
unsigned short* dst = dist1;
unsigned short maxDist = 0;
rcTimeVal distStartTime = rcGetPerformanceTimer();
if (calculateDistanceField(chf, src, dst, maxDist) != src)
rcSwap(src, dst);
chf.maxDistance = maxDist;
rcTimeVal distEndTime = rcGetPerformanceTimer();
rcTimeVal blurStartTime = rcGetPerformanceTimer();
// Blur
if (boxBlur(chf, 1, src, dst) != src)
rcSwap(src, dst);
// Store distance.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].dist = src[i];
rcTimeVal blurEndTime = rcGetPerformanceTimer();
delete [] dist0;
delete [] dist1;
rcTimeVal endTime = rcGetPerformanceTimer();
/* if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Build distance field: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - dist: %.3f ms", rcGetDeltaTimeUsec(distStartTime, distEndTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.3f ms", rcGetDeltaTimeUsec(blurStartTime, blurEndTime)/1000.0f);
}*/
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildDistanceField += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildDistanceFieldDist += rcGetDeltaTimeUsec(distStartTime, distEndTime);
rcGetBuildTimes()->buildDistanceFieldBlur += rcGetDeltaTimeUsec(blurStartTime, blurEndTime);
}
return true;
}
static void paintRectRegion(int minx, int maxx, int miny, int maxy,
unsigned short regId, unsigned short minLevel,
rcCompactHeightfield& chf, unsigned short* src)
{
const int w = chf.width;
for (int y = miny; y < maxy; ++y)
{
for (int x = minx; x < maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist >= minLevel)
src[i*2] = regId;
}
}
}
}
struct rcSweepSpan
{
unsigned short rid; // row id
unsigned short id; // region id
unsigned short ns; // number samples
unsigned short nei; // neighbour id
};
bool rcBuildRegionsMonotone(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize)
{
rcTimeVal startTime = rcGetPerformanceTimer();
unsigned short* src = 0;
rcSweepSpan* sweeps = 0;
rcIntArray prev(256);
const int w = chf.width;
const int h = chf.height;
unsigned short minLevel = (unsigned short)(walkableRadius*2);
unsigned short id = 1;
src = new unsigned short[chf.spanCount*2];
if (!src)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount*2);
goto failure;
}
memset(src,0,sizeof(unsigned short)*2*chf.spanCount);
sweeps = new rcSweepSpan[chf.width];
if (!sweeps)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'sweeps' (%d).", chf.width);
goto failure;
}
// Mark border regions.
paintRectRegion(0, borderSize, 0, h, id|RC_BORDER_REG, minLevel, chf, src); id++;
paintRectRegion(w-borderSize, w, 0, h, id|RC_BORDER_REG, minLevel, chf, src); id++;
paintRectRegion(0, w, 0, borderSize, id|RC_BORDER_REG, minLevel, chf, src); id++;
paintRectRegion(0, w, h-borderSize, h, id|RC_BORDER_REG, minLevel, chf, src); id++;
// Sweep one line at a time.
for (int y = borderSize; y < h-borderSize; ++y)
{
// Collect spans from this row.
prev.resize(id+1);
memset(&prev[0],0,sizeof(int)*id);
unsigned short rid = 1;
for (int x = borderSize; x < w-borderSize; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (s.dist < minLevel) continue;
// -x
unsigned short previd = 0;
if (rcGetCon(s, 0) != 0xf)
{
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
if ((src[ai*2] & RC_BORDER_REG) == 0)
previd = src[ai*2];
}
if (!previd)
{
previd = rid++;
sweeps[previd].rid = previd;
sweeps[previd].ns = 0;
sweeps[previd].nei = 0;
}
if (previd != 0)
{
// -y
if (rcGetCon(s,3) != 0xf)
{
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
if (src[ai*2] && (src[ai*2] & RC_BORDER_REG) == 0)
{
unsigned char nr = src[ai*2];
if (!sweeps[previd].nei || sweeps[previd].nei == nr)
{
sweeps[previd].nei = nr;
sweeps[previd].ns++;
prev[nr]++;
}
else
{
sweeps[previd].nei = 0xffff;
}
}
}
}
src[i*2] = previd;
}
}
// Create unique ID.
for (int i = 1; i < rid; ++i)
{
if (sweeps[i].nei != 0xffff && sweeps[i].nei != 0 &&
prev[sweeps[i].nei] == (int)sweeps[i].ns)
{
sweeps[i].id = sweeps[i].nei;
}
else
{
sweeps[i].id = id++;
}
}
// Remap IDs
for (int x = borderSize; x < w-borderSize; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (src[i*2] > 0 && src[i*2] < rid)
src[i*2] = sweeps[src[i*2]].id;
}
}
}
rcTimeVal filterStartTime = rcGetPerformanceTimer();
// Filter out small regions.
chf.maxRegions = id;
if (!filterSmallRegions(minRegionSize, mergeRegionSize, chf.maxRegions, chf, src))
goto failure;
rcTimeVal filterEndTime = rcGetPerformanceTimer();
// Write the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = src[i*2];
delete [] src;
delete [] sweeps;
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildRegions += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildRegionsFilter += rcGetDeltaTimeUsec(filterStartTime, filterEndTime);
}
return true;
failure:
delete [] src;
delete [] sweeps;
return false;
}
bool rcBuildRegions(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = chf.width;
const int h = chf.height;
unsigned short* tmp1 = new unsigned short[chf.spanCount*2];
if (!tmp1)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp1' (%d).", chf.spanCount*2);
return false;
}
unsigned short* tmp2 = new unsigned short[chf.spanCount*2];
if (!tmp2)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp2' (%d).", chf.spanCount*2);
delete [] tmp1;
return false;
}
rcTimeVal regStartTime = rcGetPerformanceTimer();
rcIntArray stack(1024);
rcIntArray visited(1024);
unsigned short* src = tmp1;
unsigned short* dst = tmp2;
memset(src, 0, sizeof(unsigned short) * chf.spanCount*2);
unsigned short regionId = 1;
unsigned short level = (chf.maxDistance+1) & ~1;
unsigned short minLevel = (unsigned short)(walkableRadius*2);
const int expandIters = 4 + walkableRadius * 2;
// Mark border regions.
paintRectRegion(0, borderSize, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(w-borderSize, w, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(0, w, 0, borderSize, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(0, w, h-borderSize, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
rcTimeVal expTime = 0;
rcTimeVal floodTime = 0;
while (level > minLevel)
{
level = level >= 2 ? level-2 : 0;
rcTimeVal expStartTime = rcGetPerformanceTimer();
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters, level, chf, src, dst, stack) != src)
rcSwap(src, dst);
expTime += rcGetPerformanceTimer() - expStartTime;
rcTimeVal floodStartTime = rcGetPerformanceTimer();
// Mark new regions with IDs.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist < level || src[i*2] != 0)
continue;
if (floodRegion(x, y, i, minLevel, level, regionId, chf, src, stack))
regionId++;
}
}
}
floodTime += rcGetPerformanceTimer() - floodStartTime;
}
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters*8, minLevel, chf, src, dst, stack) != src)
rcSwap(src, dst);
rcTimeVal regEndTime = rcGetPerformanceTimer();
rcTimeVal filterStartTime = rcGetPerformanceTimer();
// Filter out small regions.
chf.maxRegions = regionId;
if (!filterSmallRegions(minRegionSize, mergeRegionSize, chf.maxRegions, chf, src))
return false;
rcTimeVal filterEndTime = rcGetPerformanceTimer();
// Write the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = src[i*2];
delete [] tmp1;
delete [] tmp2;
rcTimeVal endTime = rcGetPerformanceTimer();
/* if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Build regions: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - reg: %.3f ms", rcGetDeltaTimeUsec(regStartTime, regEndTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - exp: %.3f ms", rcGetDeltaTimeUsec(0, expTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - flood: %.3f ms", rcGetDeltaTimeUsec(0, floodTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.3f ms", rcGetDeltaTimeUsec(filterStartTime, filterEndTime)/1000.0f);
}
*/
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildRegions += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildRegionsReg += rcGetDeltaTimeUsec(regStartTime, regEndTime);
rcGetBuildTimes()->buildRegionsExp += rcGetDeltaTimeUsec(0, expTime);
rcGetBuildTimes()->buildRegionsFlood += rcGetDeltaTimeUsec(0, floodTime);
rcGetBuildTimes()->buildRegionsFilter += rcGetDeltaTimeUsec(filterStartTime, filterEndTime);
}
return true;
}