1348 lines
32 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <float.h>
#include "SDL.h"
#include "SDL_opengl.h"
#include "imgui.h"
#include "CrowdTool.h"
#include "InputGeom.h"
#include "Sample.h"
#include "DetourDebugDraw.h"
#include "DetourCommon.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
static bool isectSegAABB(const float* sp, const float* sq,
const float* amin, const float* amax,
float& tmin, float& tmax)
{
static const float EPS = 1e-6f;
float d[3];
dtVsub(d, sq, sp);
tmin = 0; // set to -FLT_MAX to get first hit on line
tmax = FLT_MAX; // set to max distance ray can travel (for segment)
// For all three slabs
for (int i = 0; i < 3; i++)
{
if (fabsf(d[i]) < EPS)
{
// Ray is parallel to slab. No hit if origin not within slab
if (sp[i] < amin[i] || sp[i] > amax[i])
return false;
}
else
{
// Compute intersection t value of ray with near and far plane of slab
const float ood = 1.0f / d[i];
float t1 = (amin[i] - sp[i]) * ood;
float t2 = (amax[i] - sp[i]) * ood;
// Make t1 be intersection with near plane, t2 with far plane
if (t1 > t2) dtSwap(t1, t2);
// Compute the intersection of slab intersections intervals
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
// Exit with no collision as soon as slab intersection becomes empty
if (tmin > tmax) return false;
}
}
return true;
}
static int fixupCorridor(dtPolyRef* path, const int npath, const int maxPath,
const dtPolyRef* visited, const int nvisited)
{
int furthestPath = -1;
int furthestVisited = -1;
// Find furthest common polygon.
for (int i = npath-1; i >= 0; --i)
{
bool found = false;
for (int j = nvisited-1; j >= 0; --j)
{
if (path[i] == visited[j])
{
furthestPath = i;
furthestVisited = j;
found = true;
}
}
if (found)
break;
}
// If no intersection found just return current path.
if (furthestPath == -1 || furthestVisited == -1)
return npath;
// Concatenate paths.
// Adjust beginning of the buffer to include the visited.
const int req = nvisited - furthestVisited;
const int orig = dtMin(furthestPath+1, npath);
int size = dtMax(0, npath-orig);
if (req+size > maxPath)
size = maxPath-req;
if (size)
memmove(path+req, path+orig, size*sizeof(dtPolyRef));
// Store visited
for (int i = 0; i < req; ++i)
path[i] = visited[(nvisited-1)-i];
return req+size;
}
static int mergeCorridor(dtPolyRef* path, const int npath, const int maxPath,
const dtPolyRef* visited, const int nvisited)
{
int furthestPath = -1;
int furthestVisited = -1;
// Find furthest common polygon.
for (int i = npath-1; i >= 0; --i)
{
bool found = false;
for (int j = nvisited-1; j >= 0; --j)
{
if (path[i] == visited[j])
{
furthestPath = i;
furthestVisited = j;
found = true;
}
}
if (found)
break;
}
// If no intersection found just return current path.
if (furthestPath == -1 || furthestVisited == -1)
return npath;
// Concatenate paths.
// Adjust beginning of the buffer to include the visited.
const int req = furthestVisited;
if (req <= 0)
return npath;
const int orig = furthestPath;
int size = dtMax(0, npath-orig);
if (req+size > maxPath)
size = maxPath-req;
if (size)
memmove(path+req, path+orig, size*sizeof(dtPolyRef));
// Store visited
for (int i = 0; i < req; ++i)
path[i] = visited[i];
return req+size;
}
static void getAgentBounds(const Agent* ag, float* bmin, float* bmax)
{
bmin[0] = ag->pos[0] - ag->radius;
bmin[1] = ag->pos[1];
bmin[2] = ag->pos[2] - ag->radius;
bmax[0] = ag->pos[0] + ag->radius;
bmax[1] = ag->pos[1] + ag->height;
bmax[2] = ag->pos[2] + ag->radius;
}
static void normalizeArray(float* arr, const int n)
{
// Normalize penaly range.
float minPen = FLT_MAX;
float maxPen = -FLT_MAX;
for (int i = 0; i < n; ++i)
{
minPen = dtMin(minPen, arr[i]);
maxPen = dtMax(maxPen, arr[i]);
}
const float penRange = maxPen-minPen;
const float s = penRange > 0.001f ? (1.0f / penRange) : 1;
for (int i = 0; i < n; ++i)
arr[i] = dtClamp((arr[i]-minPen)*s, 0.0f, 1.0f);
}
void normalizeSamples(RVO* rvo)
{
normalizeArray(rvo->spen, rvo->ns);
normalizeArray(rvo->svpen, rvo->ns);
normalizeArray(rvo->svcpen, rvo->ns);
normalizeArray(rvo->sspen, rvo->ns);
normalizeArray(rvo->stpen, rvo->ns);
}
void setDynCircleBody(Body* b, const float* pos, const float rad, const float* vel, const float* dvel)
{
b->type = BODY_CIRCLE;
dtVcopy(b->p, pos);
dtVcopy(b->vel, vel);
dtVcopy(b->dvel, dvel);
b->rad = rad;
}
void setStatCircleBody(Body* b, const float* pos, const float rad)
{
b->type = BODY_CIRCLE;
dtVcopy(b->p, pos);
dtVset(b->vel, 0,0,0);
dtVset(b->dvel, 0,0,0);
b->rad = rad;
}
void setStatCapsuleBody(Body* b, const float* p, const float* q, const float rad)
{
b->type = BODY_CAPSULE;
dtVcopy(b->p, p);
dtVcopy(b->q, q);
dtVset(b->vel, 0,0,0);
dtVset(b->dvel, 0,0,0);
b->rad = rad;
}
static const float VEL_WEIGHT = 2.0f;
static const float CUR_VEL_WEIGHT = 0.75f;
static const float SIDE_WEIGHT = 0.75f;
static const float TOI_WEIGHT = 2.5f;
static int sweepCircleCircle(const float* c0, const float r0, const float* v,
const float* c1, const float r1,
float& tmin, float& tmax)
{
static const float EPS = 0.0001f;
float s[3];
dtVsub(s,c1,c0);
float r = r0+r1;
float c = dtVdot2D(s,s) - r*r;
float a = dtVdot2D(v,v);
if (a < EPS) return 0; // not moving
// Overlap, calc time to exit.
float b = dtVdot2D(v,s);
float d = b*b - a*c;
if (d < 0.0f) return 0; // no intersection.
tmin = (b - dtSqrt(d)) / a;
tmax = (b + dtSqrt(d)) / a;
return 1;
}
static int sweepCircleSegment(const float* c0, const float r0, const float* v,
const float* sa, const float* sb, const float sr,
float& tmin, float &tmax)
{
// equation parameters
float L[3], H[3];
dtVsub(L, sb, sa);
dtVsub(H, c0, sa);
const float radius = r0+sr;
const float l2 = dtVdot2D(L, L);
const float r2 = radius * radius;
const float dl = dtVperp2D(v, L);
const float hl = dtVperp2D(H, L);
const float a = dl * dl;
const float b = 2.0f * hl * dl;
const float c = hl * hl - (r2 * l2);
float d = (b*b) - (4.0f * a * c);
// infinite line missed by infinite ray.
if (d < 0.0f)
return 0;
const float i2a = 1.0f/(2*a);
d = dtSqrt(d);
tmin = (-b - d) * i2a;
tmax = (-b + d) * i2a;
// line missed by ray range.
/* if (tmax < 0.0f || tmin > 1.0f)
return 0;*/
// find what part of the ray was collided.
const float il2 = 1.0f / l2;
float Pedge[3];
dtVmad(Pedge, c0, v, tmin);
dtVsub(H, Pedge, sa);
const float e0 = dtVdot2D(H, L) * il2;
dtVmad(Pedge, c0, v, tmax);
dtVsub(H, Pedge, sa);
const float e1 = dtVdot2D(H, L) * il2;
if (e0 < 0.0f || e1 < 0.0f)
{
float ctmin, ctmax;
if (sweepCircleCircle(c0, r0, v, sa, sr, ctmin, ctmax))
{
if (e0 < 0.0f && ctmin > tmin)
tmin = ctmin;
if (e1 < 0.0f && ctmax < tmax)
tmax = ctmax;
}
else
{
return 0;
}
}
if (e0 > 1.0f || e1 > 1.0f)
{
float ctmin, ctmax;
if (sweepCircleCircle(c0, r0, v, sb, sr, ctmin, ctmax))
{
if (e0 > 1.0f && ctmin > tmin)
tmin = ctmin;
if (e1 > 1.0f && ctmax < tmax)
tmax = ctmax;
}
else
{
return 0;
}
}
return 1;
}
static void processSamples(Body* agent, const float vmax,
const Body* obs, const int nobs, RVO* rvo,
const float* spos, const float cs, const int nspos,
float* res)
{
dtVset(res, 0,0,0);
const float ivmax = 1.0f / vmax;
// Max time of collision to be considered.
const float maxToi = 2.5f;
float minPenalty = FLT_MAX;
for (int n = 0; n < nspos; ++n)
{
float vcand[3];
dtVcopy(vcand, &spos[n*3]);
dtVcopy(&rvo->spos[rvo->ns*3], &spos[n*3]);
rvo->scs[rvo->ns] = cs;
// Find min time of impact and exit amongst all obstacles.
float tmin = maxToi;
float side = 0;
int nside = 0;
for (int i = 0; i < nobs; ++i)
{
const Body* ob = &obs[i];
float htmin, htmax;
if (ob->type == BODY_CIRCLE)
{
float vab[3];
// Moving, use RVO
dtVscale(vab, vcand, 2);
dtVsub(vab, vab, agent->vel);
dtVsub(vab, vab, ob->vel);
// Side
// NOTE: dp, and dv are constant over the whole calculation,
// they can be precomputed per object.
const float* pa = agent->p;
const float* pb = ob->p;
const float orig[3] = {0,0};
float dp[3],dv[3],np[3];
dtVsub(dp,pb,pa);
dtVnormalize(dp);
dtVsub(dv, ob->dvel, agent->dvel);
const float a = dtTriArea2D(orig, dp,dv);
if (a < 0.01f)
{
np[0] = -dp[2];
np[2] = dp[0];
}
else
{
np[0] = dp[2];
np[2] = -dp[0];
}
side += dtClamp(dtMin(dtVdot2D(dp,vab)*2,dtVdot2D(np,vab)*2), 0.0f, 1.0f);
nside++;
if (!sweepCircleCircle(agent->p,agent->rad, vab, ob->p,ob->rad, htmin, htmax))
continue;
// Handle overlapping obstacles.
if (htmin < 0.0f && htmax > 0.0f)
{
// Avoid more when overlapped.
htmin = -htmin * 0.5f;
}
}
else if (ob->type == BODY_CAPSULE)
{
// NOTE: the segments are assumed to come from a navmesh which is shrunken by
// the agent radius, hence the use of really small radius.
// This can be handle more efficiently by using seg-seg test instead.
// If the whole segment is to be treated as obstacle, use agent->rad instead of 0.01f!
const float r = 0.01f; // agent->rad
float t;
if (dtDistancePtSegSqr2D(agent->p, ob->p, ob->q, t) < dtSqr(r+ob->rad))
{
float sdir[3], snorm[3];
dtVsub(sdir, ob->q, ob->p);
snorm[0] = -sdir[2];
snorm[2] = sdir[0];
// If the velocity is pointing towards the segment, no collision.
if (dtVdot2D(snorm, vcand) < 0.0f)
continue;
// Else immediate collision.
htmin = 0.0f;
htmax = 10.0f;
}
else
{
if (!sweepCircleSegment(agent->p, r, vcand, ob->p, ob->q, ob->rad, htmin, htmax))
continue;
}
// Avoid less when facing walls.
htmin *= 2.0f;
}
if (htmin >= 0.0f)
{
// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
if (htmin < tmin)
tmin = htmin;
}
}
// Normalize side bias, to prevent it dominating too much.
if (nside)
side /= nside;
const float vpen = VEL_WEIGHT * (dtVdist2D(vcand, agent->dvel) * ivmax);
const float vcpen = CUR_VEL_WEIGHT * (dtVdist2D(vcand, agent->vel) * ivmax);
const float spen = SIDE_WEIGHT * side;
const float tpen = TOI_WEIGHT * (1.0f/(0.1f+tmin/maxToi));
const float penalty = vpen + vcpen + spen + tpen;
if (penalty < minPenalty)
{
minPenalty = penalty;
dtVcopy(res, vcand);
}
// Store different penalties for debug viewing
rvo->spen[rvo->ns] = penalty;
rvo->svpen[rvo->ns] = vpen;
rvo->svcpen[rvo->ns] = vcpen;
rvo->sspen[rvo->ns] = spen;
rvo->stpen[rvo->ns] = tpen;
rvo->ns++;
}
}
void sampleRVO(Body* agent, const float vmax, const Body* obs, const int nobs, RVO* rvo, const float bias, float* nvel)
{
dtVset(nvel, 0,0,0);
float spos[MAX_RVO_SAMPLES*3];
int nspos = 0;
const float cvx = agent->dvel[0]*bias;
const float cvz = agent->dvel[2]*bias;
const float vrange = vmax*(1-bias);
const float cs = 1.0f / (float)RVO_SAMPLE_RAD*vrange;
for (int z = -RVO_SAMPLE_RAD; z <= RVO_SAMPLE_RAD; ++z)
{
for (int x = -RVO_SAMPLE_RAD; x <= RVO_SAMPLE_RAD; ++x)
{
if (nspos < MAX_RVO_SAMPLES)
{
const float vx = cvx + (float)(x+0.5f)*cs;
const float vz = cvz + (float)(z+0.5f)*cs;
if (dtSqr(vx)+dtSqr(vz) > dtSqr(vmax+cs/2)) continue;
spos[nspos*3+0] = vx;
spos[nspos*3+1] = 0;
spos[nspos*3+2] = vz;
nspos++;
}
}
}
rvo->ns = 0;
processSamples(agent, vmax, obs, nobs, rvo, spos, cs/2, nspos, nvel);
}
CrowdManager::CrowdManager() :
m_shortcutIter(0)
{
reset();
}
CrowdManager::~CrowdManager()
{
}
void CrowdManager::reset()
{
for (int i = 0; i < MAX_AGENTS; ++i)
memset(&m_agents[i], 0, sizeof(Agent));
}
const int CrowdManager::getAgentCount() const
{
return MAX_AGENTS;
}
const Agent* CrowdManager::getAgent(const int idx)
{
return &m_agents[idx];
}
int CrowdManager::addAgent(const float* pos, const float radius, const float height)
{
// Find empty slot.
int idx = -1;
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active)
{
idx = i;
break;
}
}
if (idx == -1)
return -1;
Agent* ag = &m_agents[idx];
memset(ag, 0, sizeof(Agent));
dtVcopy(ag->pos, pos);
ag->radius = radius;
ag->colradius = radius * 7.5f;
ag->height = height;
ag->active = 1;
ag->var = (rand() % 10) / 9.0f;
// Init trail
for (int i = 0; i < AGENT_MAX_TRAIL; ++i)
dtVcopy(&ag->trail[i*3], ag->pos);
ag->htrail = 0;
return idx;
}
void CrowdManager::removeAgent(const int idx)
{
if (idx >= 0 && idx < MAX_AGENTS)
memset(&m_agents[idx], 0, sizeof(Agent));
}
void CrowdManager::setMoveTarget(const int idx, const float* pos)
{
Agent* ag = &m_agents[idx];
dtVcopy(ag->target, pos);
ag->targetState = AGENT_TARGET_SET;
}
static void calcSmoothSteerDirection(const float* pos, const float* corners, const int ncorners, float* dvel)
{
const int ip0 = 0;
const int ip1 = dtMin(1, ncorners-1);
const float* p0 = &corners[ip0*3];
const float* p1 = &corners[ip1*3];
float dir0[3], dir1[3];
dtVsub(dir0, p0, pos);
dtVsub(dir1, p1, pos);
dir0[1] = 0;
dir1[1] = 0;
float len0 = dtVlen(dir0);
float len1 = dtVlen(dir1);
if (len1 > 0.001f)
dtVscale(dir1,dir1,1.0f/len1);
const float strength = 0.5f;
dvel[0] = dir0[0] - dir1[0]*len0*strength;
dvel[1] = 0;
dvel[2] = dir0[2] - dir1[2]*len0*strength;
}
void CrowdManager::update(const float dt, unsigned int flags, dtNavMesh* nmesh)
{
if (!nmesh)
return;
const float ext[3] = {2,4,2};
dtQueryFilter filter;
// Update target and agent navigation state.
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
if (!ag->npath)
{
float nearest[3];
ag->path[0] = nmesh->findNearestPoly(ag->pos, ext, &filter, nearest);
if (ag->path[0])
{
ag->npath = 1;
dtVcopy(ag->pos, nearest);
}
}
if (ag->targetState == AGENT_TARGET_SET)
{
float nearest[3];
ag->targetRef = nmesh->findNearestPoly(ag->target, ext, &filter, nearest);
if (ag->targetRef)
dtVcopy(ag->target, nearest);
ag->targetState = AGENT_TARGET_ACQUIRED;
}
if (ag->targetState == AGENT_TARGET_ACQUIRED)
{
ag->npath = nmesh->findPath(ag->path[0], ag->targetRef, ag->pos, ag->target,
&filter, ag->path, AGENT_MAX_PATH);
if (ag->npath)
{
ag->targetState = AGENT_TARGET_PATH;
// Check for partial path.
if (ag->path[ag->npath-1] != ag->targetRef)
{
// Partial path, constrain target position inside the last polygon.
ag->targetRef = ag->path[ag->npath-1];
float nearest[3];
if (nmesh->closestPointOnPoly(ag->targetRef, ag->target, nearest))
dtVcopy(ag->target, nearest);
else
ag->targetState = AGENT_TARGET_FAILED;
}
}
else
ag->targetState = AGENT_TARGET_FAILED;
}
if (ag->npath && dtVdist2DSqr(ag->pos, ag->colcenter) > dtSqr(ag->colradius*0.25f))
{
dtVcopy(ag->colcenter, ag->pos);
static const int MAX_COL_POLYS = 32;
dtPolyRef polys[MAX_COL_POLYS];
const int npolys = nmesh->findLocalNeighbourhood(ag->path[0], ag->pos, ag->colradius, &filter, polys, 0, MAX_COL_POLYS);
ag->ncolsegs = 0;
for (int j = 0; j < npolys; ++j)
{
float segs[DT_VERTS_PER_POLYGON*3*2];
const int nsegs = nmesh->getPolyWallSegments(polys[j], &filter, segs);
for (int k = 0; k < nsegs; ++k)
{
const float* s = &segs[k*6];
// Skip too distant segments.
float tseg;
const float distSqr = dtDistancePtSegSqr2D(ag->pos, s, s+3, tseg);
if (distSqr > dtSqr(ag->colradius))
continue;
if (ag->ncolsegs < AGENT_MAX_COLSEGS)
{
memcpy(&ag->colsegs[ag->ncolsegs*6], s, sizeof(float)*6);
ag->ncolsegs++;
}
}
}
}
}
static const float MAX_ACC = 8.0f;
static const float MAX_SPEED = 3.5f;
static const float MIN_TARGET_DIST = 0.01f;
// Calculate steering.
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
if (m_agents[i].targetState != AGENT_TARGET_PATH) continue;
Agent* ag = &m_agents[i];
if (flags & CROWDMAN_DRUNK)
{
ag->t += dt * (1.0f - ag->var*0.25f);
ag->maxspeed = MAX_SPEED*(1 + dtSqr(cosf(ag->t*2.0))*0.3f);
}
else
{
ag->maxspeed = MAX_SPEED;
}
unsigned char cornerFlags[AGENT_MAX_CORNERS];
dtPolyRef cornerPolys[AGENT_MAX_CORNERS];
ag->ncorners = nmesh->findStraightPath(ag->pos, ag->target, ag->path, ag->npath,
ag->corners, cornerFlags, cornerPolys, AGENT_MAX_CORNERS);
// Prune points in the beginning of the path which are too close.
while (ag->ncorners)
{
if ((cornerFlags[0] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ||
dtVdist2DSqr(&ag->corners[0], ag->pos) > dtSqr(MIN_TARGET_DIST))
break;
ag->ncorners--;
if (ag->ncorners)
{
memmove(cornerFlags, cornerFlags+1, sizeof(unsigned char)*ag->ncorners);
memmove(cornerPolys, cornerPolys+1, sizeof(dtPolyRef)*ag->ncorners);
memmove(ag->corners, ag->corners+3, sizeof(float)*3*ag->ncorners);
}
}
// Prune points after an off-mesh connection.
for (int i = 0; i < ag->ncorners; ++i)
{
if (cornerFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION)
{
ag->ncorners = i+1;
break;
}
}
if (!ag->ncorners)
{
// No corner to steer to,
dtVset(ag->dvel, 0,0,0);
}
else
{
// Calculate delta movement.
if (flags & CROWDMAN_ANTICIPATE_TURNS)
{
calcSmoothSteerDirection(ag->pos, ag->corners, ag->ncorners, ag->dvel);
}
else
{
dtVsub(ag->dvel, &ag->corners[0], ag->pos);
ag->dvel[1] = 0;
}
bool endOfPath = (cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_END) ? true : false;
bool offMeshConnection = (cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false;
// Limit desired velocity to max speed.
const float slowDownRadius = ag->radius*2;
float distToGoal = slowDownRadius;
if (endOfPath || offMeshConnection)
distToGoal = dtVdist2D(ag->pos, &ag->corners[(ag->ncorners-1)*3]);
float clampedSpeed = ag->maxspeed * dtMin(1.0f, distToGoal / slowDownRadius);
float speed = dtVlen(ag->dvel);
if (speed > 0.0001f)
clampedSpeed /= speed;
dtVscale(ag->dvel, ag->dvel, clampedSpeed);
if (flags & CROWDMAN_DRUNK)
{
const float amp = cosf(ag->var*13.69f+ag->t*3.123f) * 0.2f;
const float nx = -ag->dvel[2];
const float nz = ag->dvel[0];
ag->dvel[0] += nx*amp;
ag->dvel[2] += nz*amp;
}
}
}
// Velocity planning.
static const int MAX_BODIES = 32;
Body bodies[MAX_BODIES];
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
if (m_agents[i].targetState != AGENT_TARGET_PATH) continue;
Agent* ag = &m_agents[i];
if (flags & CROWDMAN_USE_VO)
{
int nbodies = 0;
// Add dynamic obstacles.
for (int j = 0; j < MAX_AGENTS; ++j)
{
if (i == j) continue;
if (!m_agents[j].active) continue;
Agent* nei = &m_agents[j];
float diff[3];
dtVsub(diff, ag->npos, nei->npos);
if (fabsf(diff[1]) >= (ag->height+nei->height)/2.0f)
continue;
diff[1] = 0;
float dist = dtVlenSqr(diff);
if (dist > dtSqr(ag->colradius))
continue;
if (nbodies < MAX_BODIES)
{
setDynCircleBody(&bodies[nbodies], nei->pos, nei->radius, nei->vel, nei->dvel);
nbodies++;
}
}
// Add static obstacles.
for (int j = 0; j < ag->ncolsegs; ++j)
{
const float* s = &ag->colsegs[j*6];
if (dtTriArea2D(ag->pos, s, s+3) < 0.0f)
continue;
if (nbodies < MAX_BODIES)
{
setStatCapsuleBody(&bodies[nbodies], s,s+3,0);
nbodies++;
}
}
Body agent;
setDynCircleBody(&agent, ag->pos, ag->radius, ag->vel, ag->dvel);
sampleRVO(&agent, ag->maxspeed, bodies, nbodies, &ag->rvo, 0.4f, ag->nvel);
// Normalize samples for debug draw
normalizeSamples(&ag->rvo);
}
else
{
dtVcopy(ag->nvel, ag->dvel);
}
}
// Integrate and update perceived velocity.
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
// Fake dynamic constraint.
const float maxDelta = MAX_ACC * dt;
float dv[3];
dtVsub(dv, ag->nvel, ag->vel);
float ds = dtVlen(dv);
if (ds > maxDelta)
dtVscale(dv, dv, maxDelta/ds);
dtVadd(ag->vel, ag->vel, dv);
// Integrate
if (dtVlen(ag->vel) > 0.0001f)
dtVmad(ag->npos, ag->pos, ag->vel, dt);
else
dtVcopy(ag->npos, ag->pos);
}
// Handle collisions.
for (int iter = 0; iter < 4; ++iter)
{
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
ag->disp[0] = ag->disp[1] = ag->disp[2] = 0;
float w = 0;
for (int j = 0; j < MAX_AGENTS; ++j)
{
if (i == j) continue;
if (!m_agents[j].active) continue;
Agent* nei = &m_agents[j];
float diff[3];
dtVsub(diff, ag->npos, nei->npos);
if (fabsf(diff[1]) >= (ag->height+nei->height)/2.0f)
continue;
diff[1] = 0;
float dist = dtVlenSqr(diff);
if (dist > dtSqr(ag->radius+nei->radius))
continue;
dist = sqrtf(dist);
float pen = (ag->radius+nei->radius) - dist;
if (dist > 0.0001f)
pen = (1.0f/dist) * (pen*0.5f) * 0.7f;
dtVmad(ag->disp, ag->disp, diff, pen);
w += 1.0f;
}
if (w > 0.0001f)
{
const float iw = 1.0f / w;
dtVscale(ag->disp, ag->disp, iw);
}
}
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
dtVadd(ag->npos, ag->npos, ag->disp);
}
}
// Move along navmesh and update new position.
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
float result[3];
dtPolyRef visited[16];
int nvisited = nmesh->moveAlongSurface(ag->path[0], ag->pos, ag->npos, &filter,
result, visited, 16);
ag->npath = fixupCorridor(ag->path, ag->npath, AGENT_MAX_PATH, visited, nvisited);
float h = 0;
nmesh->getPolyHeight(ag->path[0], result, &h);
result[1] = h;
dtVcopy(ag->pos, result);
ag->htrail = (ag->htrail + 1) % AGENT_MAX_TRAIL;
dtVcopy(&ag->trail[ag->htrail*3], ag->pos);
}
// Optimize path
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
Agent* ag = &m_agents[i];
if (ag->npath && ag->ncorners > 1)
{
// The target is the corner after the next corner to steer to.
const float* tgt = &ag->corners[3];
const float distSqr = dtVdist2DSqr(ag->pos, tgt);
if (distSqr > dtSqr(0.01f)) // && distSqr < dtSqr(20.0f))
{
static const int MAX_RES = 32;
dtPolyRef res[MAX_RES];
float t, norm[3];
const int nres = nmesh->raycast(ag->path[0], ag->pos, tgt, &filter, t, norm, res, MAX_RES);
if (nres > 1 && t > 0.99f)
{
ag->npath = mergeCorridor(ag->path, ag->npath, AGENT_MAX_PATH, res, nres);
}
}
}
}
}
CrowdTool::CrowdTool() :
m_sample(0),
m_targetPosSet(0),
m_expandDebugDraw(false),
m_showLabels(true),
m_showCorners(false),
m_showTargets(false),
m_showCollisionSegments(false),
m_showPath(false),
m_showVO(false),
m_expandOptions(true),
m_anticipateTurns(true),
m_useVO(true),
m_drunkMove(false),
m_run(true),
m_mode(TOOLMODE_CREATE)
{
}
CrowdTool::~CrowdTool()
{
}
void CrowdTool::init(Sample* sample)
{
m_sample = sample;
}
void CrowdTool::reset()
{
m_targetPosSet = false;
}
void CrowdTool::handleMenu()
{
if (imguiCheck("Create Agents", m_mode == TOOLMODE_CREATE))
m_mode = TOOLMODE_CREATE;
if (imguiCheck("Move Agents", m_mode == TOOLMODE_MOVE))
m_mode = TOOLMODE_MOVE;
imguiSeparator();
if (m_mode == TOOLMODE_CREATE)
{
imguiValue("Click to add agents.");
imguiValue("Shift+Click to remove.");
}
else if (m_mode == TOOLMODE_MOVE)
{
imguiValue("Click to set move target.");
}
imguiSeparator();
imguiSeparator();
if (imguiCollapse("Options", m_expandOptions))
m_expandOptions = !m_expandOptions;
if (m_expandOptions)
{
imguiIndent();
if (imguiCheck("Anticipate Turns", m_anticipateTurns))
m_anticipateTurns = !m_anticipateTurns;
if (imguiCheck("Use VO", m_useVO))
m_useVO = !m_useVO;
if (imguiCheck("Drunk Move", m_drunkMove))
m_drunkMove = !m_drunkMove;
imguiUnindent();
}
if (imguiCollapse("Debug Draw", m_expandDebugDraw))
m_expandDebugDraw = !m_expandDebugDraw;
if (m_expandDebugDraw)
{
imguiIndent();
if (imguiCheck("Show Labels", m_showLabels))
m_showLabels = !m_showLabels;
if (imguiCheck("Show Corners", m_showCorners))
m_showCorners = !m_showCorners;
if (imguiCheck("Show Targets", m_showTargets))
m_showTargets = !m_showTargets;
if (imguiCheck("Show Collision Segs", m_showCollisionSegments))
m_showCollisionSegments = !m_showCollisionSegments;
if (imguiCheck("Show Path", m_showPath))
m_showPath = !m_showPath;
if (imguiCheck("Show VO", m_showVO))
m_showVO = !m_showVO;
imguiUnindent();
}
}
void CrowdTool::handleClick(const float* s, const float* p, bool shift)
{
if (!m_sample) return;
InputGeom* geom = m_sample->getInputGeom();
if (!geom) return;
if (m_mode == TOOLMODE_CREATE)
{
if (shift)
{
// Delete
int isel = -1;
float tsel = FLT_MAX;
for (int i = 0; i < m_crowd.getAgentCount(); ++i)
{
const Agent* ag = m_crowd.getAgent(i);
if (!ag->active) continue;
float bmin[3], bmax[3];
getAgentBounds(ag, bmin, bmax);
float tmin, tmax;
if (isectSegAABB(s, p, bmin,bmax, tmin, tmax))
{
if (tmin > 0 && tmin < tsel)
{
isel = i;
tsel = tmin;
}
}
}
if (isel != -1)
{
m_crowd.removeAgent(isel);
}
}
else
{
// Add
int idx = m_crowd.addAgent(p, m_sample->getAgentRadius(), m_sample->getAgentHeight());
if (idx != -1 && m_targetPosSet)
m_crowd.setMoveTarget(idx, m_targetPos);
}
}
else if (m_mode == TOOLMODE_MOVE)
{
dtVcopy(m_targetPos, p);
m_targetPosSet = true;
for (int i = 0; i < m_crowd.getAgentCount(); ++i)
{
const Agent* ag = m_crowd.getAgent(i);
if (!ag->active) continue;
m_crowd.setMoveTarget(i, m_targetPos);
}
}
}
void CrowdTool::handleStep()
{
m_run = !m_run;
}
void CrowdTool::handleUpdate(const float dt)
{
if (!m_sample) return;
if (!m_sample->getNavMesh()) return;
if (m_run)
{
unsigned int flags = 0;
if (m_anticipateTurns)
flags |= CROWDMAN_ANTICIPATE_TURNS;
if (m_useVO)
flags |= CROWDMAN_USE_VO;
if (m_drunkMove)
flags |= CROWDMAN_DRUNK;
m_crowd.update(dt, flags, m_sample->getNavMesh());
}
}
void CrowdTool::handleRender()
{
DebugDrawGL dd;
const float s = m_sample->getAgentRadius();
dtNavMesh* nmesh = m_sample->getNavMesh();
if (!nmesh)
return;
if (m_targetPosSet)
duDebugDrawCross(&dd, m_targetPos[0],m_targetPos[1]+0.1f,m_targetPos[2], s, duRGBA(0,0,0,128), 2.0f);
for (int i = 0; i < m_crowd.getAgentCount(); ++i)
{
const Agent* ag = m_crowd.getAgent(i);
if (!ag->active) continue;
dd.depthMask(false);
if (m_showPath)
{
for (int i = 0; i < ag->npath; ++i)
duDebugDrawNavMeshPoly(&dd, *nmesh, ag->path[i], duRGBA(0,0,0,64));
}
dd.begin(DU_DRAW_LINES,3.0f);
float prev[3], preva = 1;
dtVcopy(prev, ag->pos);
for (int j = 0; j < AGENT_MAX_TRAIL-1; ++j)
{
const int idx = (ag->htrail + AGENT_MAX_TRAIL-j) % AGENT_MAX_TRAIL;
const float* v = &ag->trail[idx*3];
float a = 1 - j/(float)AGENT_MAX_TRAIL;
dd.vertex(prev[0],prev[1]+0.1f,prev[2], duRGBA(0,0,0,(int)(128*preva)));
dd.vertex(v[0],v[1]+0.1f,v[2], duRGBA(0,0,0,(int)(128*a)));
preva = a;
dtVcopy(prev, v);
}
dd.end();
if (m_showTargets)
{
if (ag->targetState != AGENT_TARGET_NONE)
{
duDebugDrawArc(&dd, ag->pos[0], ag->pos[1], ag->pos[2],
ag->target[0], ag->target[1], ag->target[2], 0.25f,
0, 0.4f, duRGBA(0,0,0,128), 1.0f);
}
}
if (m_showCorners)
{
if (ag->ncorners)
{
dd.begin(DU_DRAW_LINES, 2.0f);
for (int j = 0; j < ag->ncorners; ++j)
{
const float* va = j == 0 ? ag->pos : &ag->corners[(j-1)*3];
const float* vb = &ag->corners[j*3];
dd.vertex(va[0],va[1]+ag->radius,va[2], duRGBA(128,0,0,64));
dd.vertex(vb[0],vb[1]+ag->radius,vb[2], duRGBA(128,0,0,64));
}
dd.end();
if (m_anticipateTurns)
{
float dvel[3], pos[3];
calcSmoothSteerDirection(ag->pos, ag->corners, ag->ncorners, dvel);
pos[0] = ag->pos[0] + dvel[0];
pos[1] = ag->pos[1] + dvel[1];
pos[2] = ag->pos[2] + dvel[2];
const float off = ag->radius+0.1f;
const float* tgt = &ag->corners[0];
const float y = ag->pos[1]+off;
dd.begin(DU_DRAW_LINES, 2.0f);
dd.vertex(ag->pos[0],y,ag->pos[2], duRGBA(255,0,0,192));
dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192));
dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192));
dd.vertex(tgt[0],y,tgt[2], duRGBA(255,0,0,192));
dd.end();
}
}
}
if (m_showCollisionSegments)
{
const float off = ag->radius;
duDebugDrawCross(&dd, ag->colcenter[0],ag->colcenter[1]+off,ag->colcenter[2], s, duRGBA(192,0,128,255), 2.0f);
duDebugDrawCircle(&dd, ag->colcenter[0],ag->colcenter[1]+off,ag->colcenter[2], ag->colradius, duRGBA(192,0,128,128), 2.0f);
dd.begin(DU_DRAW_LINES, 3.0f);
for (int j = 0; j < ag->ncolsegs; ++j)
{
const float* s = &ag->colsegs[j*6];
unsigned int col = duRGBA(192,0,128,192);
if (dtTriArea2D(ag->pos, s, s+3) < 0.0f)
col = duDarkenCol(col);
// dd.vertex(s[0],s[1]+0.2f,s[2], col);
// dd.vertex(s[3],s[4]+0.2f,s[5], col);
duAppendArrow(&dd, s[0],s[1]+0.2f,s[2], s[3],s[4]+0.2f,s[5], 0.0f, 0.3f, col);
}
dd.end();
}
if (m_showVO)
{
// Draw detail about agent sela
const RVO* rvo = &ag->rvo;
const float dx = ag->pos[0];
const float dy = ag->pos[1]+ag->height;
const float dz = ag->pos[2];
dd.begin(DU_DRAW_QUADS);
for (int i = 0; i < rvo->ns; ++i)
{
const float* p = &rvo->spos[i*3];
const float sr = rvo->scs[i];
unsigned int col = duLerpCol(duRGBA(255,255,255,220), duRGBA(0,96,128,220), (int)(rvo->spen[i]*255));
dd.vertex(dx+p[0]-sr, dy, dz+p[2]-sr, col);
dd.vertex(dx+p[0]-sr, dy, dz+p[2]+sr, col);
dd.vertex(dx+p[0]+sr, dy, dz+p[2]+sr, col);
dd.vertex(dx+p[0]+sr, dy, dz+p[2]-sr, col);
}
dd.end();
}
duDebugDrawArrow(&dd, ag->pos[0],ag->pos[1]+ag->height,ag->pos[2],
ag->pos[0]+ag->vel[0],ag->pos[1]+ag->height+ag->vel[1],ag->pos[2]+ag->vel[2],
0.0f, 0.4f, duRGBA(0,0,0,192), 2.0f);
duDebugDrawArrow(&dd, ag->pos[0],ag->pos[1]+ag->height-0.1f,ag->pos[2],
ag->pos[0]+ag->dvel[0],ag->pos[1]+ag->height-0.1f+ag->dvel[1],ag->pos[2]+ag->dvel[2],
0.0f, 0.4f, duRGBA(0,192,255,192), 1.0f);
duDebugDrawCylinderWire(&dd, ag->pos[0]-ag->radius, ag->pos[1]+ag->radius*0.1f, ag->pos[2]-ag->radius,
ag->pos[0]+ag->radius, ag->pos[1]+ag->height, ag->pos[2]+ag->radius,
duRGBA(0,192,255,255), 3.0f);
dd.depthMask(true);
}
}
void CrowdTool::handleRenderOverlay(double* proj, double* model, int* view)
{
GLdouble x, y, z;
// Draw start and end point labels
if (m_targetPosSet && gluProject((GLdouble)m_targetPos[0], (GLdouble)m_targetPos[1], (GLdouble)m_targetPos[2],
model, proj, view, &x, &y, &z))
{
imguiDrawText((int)x, (int)(y+25), IMGUI_ALIGN_CENTER, "TARGET", imguiRGBA(0,0,0,220));
}
if (m_showLabels)
{
char label[32];
for (int i = 0; i < m_crowd.getAgentCount(); ++i)
{
const Agent* ag = m_crowd.getAgent(i);
if (!ag->active) continue;
if (gluProject((GLdouble)ag->pos[0], (GLdouble)ag->pos[1]+ag->height, (GLdouble)ag->pos[2],
model, proj, view, &x, &y, &z))
{
snprintf(label, 32, "%d", i);
imguiDrawText((int)x, (int)y+15, IMGUI_ALIGN_CENTER, label, imguiRGBA(0,0,0,220));
}
}
}
}