2010-11-21 14:59:58 +00:00

689 lines
26 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
// Some math headers don't have PI defined.
static const float RC_PI = 3.14159265f;
enum rcLogCategory
{
RC_LOG_PROGRESS = 1,
RC_LOG_WARNING,
RC_LOG_ERROR,
};
enum rcTimerLabel
{
RC_TIMER_TOTAL,
RC_TIMER_TEMP,
RC_TIMER_RASTERIZE_TRIANGLES,
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
RC_TIMER_BUILD_CONTOURS,
RC_TIMER_BUILD_CONTOURS_TRACE,
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
RC_TIMER_FILTER_BORDER,
RC_TIMER_FILTER_WALKABLE,
RC_TIMER_MEDIAN_AREA,
RC_TIMER_FILTER_LOW_OBSTACLES,
RC_TIMER_BUILD_POLYMESH,
RC_TIMER_MERGE_POLYMESH,
RC_TIMER_ERODE_AREA,
RC_TIMER_MARK_BOX_AREA,
RC_TIMER_MARK_CONVEXPOLY_AREA,
RC_TIMER_BUILD_DISTANCEFIELD,
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
RC_TIMER_BUILD_REGIONS,
RC_TIMER_BUILD_REGIONS_WATERSHED,
RC_TIMER_BUILD_REGIONS_EXPAND,
RC_TIMER_BUILD_REGIONS_FLOOD,
RC_TIMER_BUILD_REGIONS_FILTER,
RC_TIMER_BUILD_POLYMESHDETAIL,
RC_TIMER_MERGE_POLYMESHDETAIL,
RC_MAX_TIMERS
};
// Build context provides several optional utilities needed for the build process,
// such as timing, logging, and build time collecting.
class rcContext
{
public:
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
// Enables or disables logging.
inline void enableLog(bool state) { m_logEnabled = state; }
// Resets log.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
// Logs a message.
void log(const rcLogCategory category, const char* format, ...);
// Enables or disables timer.
inline void enableTimer(bool state) { m_timerEnabled = state; }
// Resets all timers.
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
// Starts timer, used for performance timing.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
// Stops timer, used for performance timing.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
// Returns time accumulated between timer start/stop.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
protected:
// Virtual functions to override for custom implementations.
virtual void doResetLog() {}
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
virtual void doResetTimers() {}
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
bool m_logEnabled;
bool m_timerEnabled;
};
// The units of the parameters are specified in parenthesis as follows:
// (vx) voxels, (wu) world units
struct rcConfig
{
int width, height; // Dimensions of the rasterized heightfield (vx)
int tileSize; // Width and Height of a tile (vx)
int borderSize; // Non-navigable Border around the heightfield (vx)
float cs, ch; // Grid cell size and height (wu)
float bmin[3], bmax[3]; // Grid bounds (wu)
float walkableSlopeAngle; // Maximum walkable slope angle in degrees.
int walkableHeight; // Minimum height where the agent can still walk (vx)
int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
int walkableRadius; // Radius of the agent in cells (vx)
int maxEdgeLen; // Maximum contour edge length (vx)
float maxSimplificationError; // Maximum distance error from contour to cells (vx)
int minRegionArea; // Regions whose area is smaller than this threshold will be removed. (vx)
int mergeRegionArea; // Regions whose area is smaller than this threshold will be merged (vx)
int maxVertsPerPoly; // Max number of vertices per polygon
float detailSampleDist; // Detail mesh sample spacing.
float detailSampleMaxError; // Detail mesh simplification max sample error.
};
// Define number of bits in the above structure for smin/smax.
// The max height is used for clamping rasterized values.
static const int RC_SPAN_HEIGHT_BITS = 13;
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
// Heightfield span.
struct rcSpan
{
unsigned int smin : 13; // Span min height.
unsigned int smax : 13; // Span max height.
unsigned int area : 6; // Span area type.
rcSpan* next; // Next span in column.
};
// Number of spans allocated per pool.
static const int RC_SPANS_PER_POOL = 2048;
// Memory pool used for quick span allocation.
struct rcSpanPool
{
rcSpanPool* next; // Pointer to next pool.
rcSpan items[RC_SPANS_PER_POOL]; // Array of spans.
};
// Dynamic span-heightfield.
struct rcHeightfield
{
int width, height; // Dimension of the heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield
float cs, ch; // Cell size and height.
rcSpan** spans; // Heightfield of spans (width*height).
rcSpanPool* pools; // Linked list of span pools.
rcSpan* freelist; // Pointer to next free span.
};
rcHeightfield* rcAllocHeightfield();
void rcFreeHeightField(rcHeightfield* hf);
struct rcCompactCell
{
unsigned int index : 24; // Index to first span in column.
unsigned int count : 8; // Number of spans in this column.
};
struct rcCompactSpan
{
unsigned short y; // Bottom coordinate of the span.
unsigned short reg;
unsigned int con : 24; // Connections to neighbour cells.
unsigned int h : 8; // Height of the span.
};
// Compact static heightfield.
struct rcCompactHeightfield
{
int width, height; // Width and height of the heightfield.
int spanCount; // Number of spans in the heightfield.
int walkableHeight, walkableClimb; // Agent properties.
unsigned short maxDistance; // Maximum distance value stored in heightfield.
unsigned short maxRegions; // Maximum Region Id stored in heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
rcCompactCell* cells; // Pointer to width*height cells.
rcCompactSpan* spans; // Pointer to spans.
unsigned short* dist; // Pointer to per span distance to border.
unsigned char* areas; // Pointer to per span area ID.
};
rcCompactHeightfield* rcAllocCompactHeightfield();
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
struct rcContour
{
int* verts; // Vertex coordinates, each vertex contains 4 components.
int nverts; // Number of vertices.
int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
int nrverts; // Number of raw vertices.
unsigned short reg; // Region ID of the contour.
unsigned char area; // Area ID of the contour.
};
struct rcContourSet
{
rcContour* conts; // Pointer to all contours.
int nconts; // Number of contours.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
};
rcContourSet* rcAllocContourSet();
void rcFreeContourSet(rcContourSet* cset);
// Polymesh store a connected mesh of polygons.
// The polygons are store in an array where each polygons takes
// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
// and the second 'nvp' elements are indices to neighbour polygons.
// If a polygon has less than 'bvp' vertices, the remaining indices
// are set to RC_MESH_NULL_IDX. If an polygon edge does not have a neighbour
// the neighbour index is set to RC_MESH_NULL_IDX.
// Vertices can be transformed into world space as follows:
// x = bmin[0] + verts[i*3+0]*cs;
// y = bmin[1] + verts[i*3+1]*ch;
// z = bmin[2] + verts[i*3+2]*cs;
struct rcPolyMesh
{
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
unsigned short* regs; // Region ID of the polygons.
unsigned short* flags; // Per polygon flags.
unsigned char* areas; // Area ID of polygons.
int nverts; // Number of vertices.
int npolys; // Number of polygons.
int maxpolys; // Number of allocated polygons.
int nvp; // Max number of vertices per polygon.
float bmin[3], bmax[3]; // Bounding box of the mesh.
float cs, ch; // Cell size and height.
};
rcPolyMesh* rcAllocPolyMesh();
void rcFreePolyMesh(rcPolyMesh* pmesh);
// Detail mesh generated from a rcPolyMesh.
// Each submesh represents a polygon in the polymesh and they are stored in
// exactly same order. Each submesh is described as 4 values:
// base vertex, vertex count, base triangle, triangle count. That is,
// const unsigned char* t = &dmesh.tris[(tbase+i)*4]; and
// const float* v = &dmesh.verts[(vbase+t[j])*3];
// If the input polygon has 'n' vertices, those vertices are first in the
// submesh vertex list. This allows to compres the mesh by not storing the
// first vertices and using the polymesh vertices instead.
// Max number of vertices per submesh is 127 and
// max number of triangles per submesh is 255.
struct rcPolyMeshDetail
{
unsigned int* meshes; // Pointer to all mesh data.
float* verts; // Pointer to all vertex data.
unsigned char* tris; // Pointer to all triangle data.
int nmeshes; // Number of meshes.
int nverts; // Number of total vertices.
int ntris; // Number of triangles.
};
rcPolyMeshDetail* rcAllocPolyMeshDetail();
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
// If heightfield region ID has the following bit set, the region is on border area
// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
// If contour region ID has the following bit set, the vertex will be later
// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
static const int RC_AREA_BORDER = 0x20000;
enum rcBuildContoursFlags
{
RC_CONTOUR_TESS_WALL_EDGES = 0x01, // Tessellate wall edges
RC_CONTOUR_TESS_AREA_EDGES = 0x02, // Tessellate edges between areas.
};
// Mask used with contours to extract region id.
static const int RC_CONTOUR_REG_MASK = 0xffff;
// Null index which is used with meshes to mark unset or invalid indices.
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
// Area ID that is considered empty.
static const unsigned char RC_NULL_AREA = 0;
// Area ID that is considered generally walkable.
static const unsigned char RC_WALKABLE_AREA = 63;
// Value returned by rcGetCon() if the direction is not connected.
static const int RC_NOT_CONNECTED = 0x3f;
// Compact span neighbour helpers.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
unsigned int con = s.con;
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
return (s.con >> shift) & 0x3f;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
// Common helper functions
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
float rcSqrt(float x);
// Common vector helper functions.
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return rcSqrt(dx*dx + dy*dy + dz*dz);
}
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool rcVequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = rcVdistSqr(p0, p1);
return d < thr;
}
// Calculated bounding box of array of vertices.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// bmin, bmax - (out) bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
// Calculates grid size based on bounding box and grid cell size.
// Params:
// bmin, bmax - (in) bounding box
// cs - (in) grid cell size
// w - (out) grid width
// h - (out) grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
// Creates and initializes new heightfield.
// Params:
// hf - (in/out) heightfield to initialize.
// width - (in) width of the heightfield.
// height - (in) height of the heightfield.
// bmin, bmax - (in) bounding box of the heightfield
// cs - (in) grid cell size
// ch - (in) grid cell height
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
// Sets the RC_WALKABLE_AREA for every triangle whose slope is below
// the maximum walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximum slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// areas - (out) array of triangle area types
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
// Sets the RC_NULL_AREA for every triangle whose slope is steeper than
// the maximum walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximum slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// areas - (out) array of triangle are types
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
// Adds span to heightfield.
// The span addition can set to favor flags. If the span is merged to
// another span and the new smax is within 'flagMergeThr' units away
// from the existing span the span flags are merged and stored.
// Params:
// solid - (in) heightfield where the spans is added to
// x,y - (in) location on the heightfield where the span is added
// smin,smax - (in) spans min/max height
// flags - (in) span flags (zero or WALKABLE)
// flagMergeThr - (in) merge threshold.
void rcAddSpan(rcContext* ctx, rcHeightfield& solid, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned short area, const int flagMergeThr);
// Rasterizes a triangle into heightfield spans.
// Params:
// v0,v1,v2 - (in) the vertices of the triangle.
// area - (in) area type of the triangle.
// solid - (in) heightfield where the triangle is rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
// Rasterizes indexed triangle mesh into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Rasterizes indexed triangle mesh into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Rasterizes the triangles into heightfield spans.
// Params:
// verts - (in) array of vertices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Marks non-walkable low obstacles as walkable if they are closer than walkableClimb
// from a walkable surface. Applying this filter allows to step over low hanging
// low obstacles.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
// TODO: Missuses ledge flag, must be called before rcFilterLedgeSpans!
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
// Removes WALKABLE flag from all spans that are at ledges. This filtering
// removes possible overestimation of the conservative voxelization so that
// the resulting mesh will not have regions hanging in air over ledges.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
// Removes WALKABLE flag from all spans which have smaller than
// 'walkableHeight' clearance above them.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
// Returns number of spans contained in a heightfield.
// Params:
// hf - (in) heightfield to be compacted
// Returns number of spans.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
// Builds compact representation of the heightfield.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// flags - (in) require flags for a cell to be included in the compact heightfield.
// hf - (in) heightfield to be compacted
// chf - (out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
// Erodes walkable area.
// Params:
// radius - (in) radius of erosion (max 255).
// chf - (in/out) compact heightfield to erode.
// Returns false if operation ran out of memory.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
// Applies median filter to walkable area types, removing noise.
// Params:
// chf - (in/out) compact heightfield to erode.
// Returns false if operation ran out of memory.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
// Marks the area of the convex polygon into the area type of the compact heightfield.
// Params:
// bmin/bmax - (in) bounds of the axis aligned box.
// areaId - (in) area ID to mark.
// chf - (in/out) compact heightfield to mark.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
// Marks the area of the convex polygon into the area type of the compact heightfield.
// Params:
// verts - (in) vertices of the convex polygon.
// nverts - (in) number of vertices in the polygon.
// hmin/hmax - (in) min and max height of the polygon.
// areaId - (in) area ID to mark.
// chf - (in/out) compact heightfield to mark.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
// Builds distance field and stores it into the combat heightfield.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
// Divides the walkable heighfied into simple regions using watershed partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The process sometimes creates small regions. If the area of a regions is
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
// region if possible. If multiple regions form an area which is smaller than
// 'minRegionArea' all the regions belonging to that area will be removed.
// Here area means the count of spans in an area.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// minRegionArea - (in) the smallest allowed region area.
// maxMergeRegionArea - (in) the largest allowed region area which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
// Divides the walkable heighfied into simple regions using simple monotone partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The process sometimes creates small regions. If the area of a regions is
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
// region if possible. If multiple regions form an area which is smaller than
// 'minRegionArea' all the regions belonging to that area will be removed.
// Here area means the count of spans in an area.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// minRegionArea - (in) the smallest allowed regions size.
// maxMergeRegionArea - (in) the largest allowed regions size which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
// Builds simplified contours from the regions outlines.
// Params:
// chf - (in) compact heightfield which has regions set.
// maxError - (in) maximum allowed distance between simplified contour and cells.
// maxEdgeLen - (in) maximum allowed contour edge length in cells.
// cset - (out) Resulting contour set.
// flags - (in) build flags, see rcBuildContoursFlags.
// Returns false if operation ran out of memory.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
// Builds connected convex polygon mesh from contour polygons.
// Params:
// cset - (in) contour set.
// nvp - (in) maximum number of vertices per polygon.
// mesh - (out) poly mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
// Builds detail triangle mesh for each polygon in the poly mesh.
// Params:
// mesh - (in) poly mesh to detail.
// chf - (in) compact height field, used to query height for new vertices.
// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
// pmdtl - (out) detail mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H