2010-09-12 16:03:32 +00:00

744 lines
18 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include "DetourNavMesh.h"
#include "DetourNavMeshQuery.h"
#include "DetourObstacleAvoidance.h"
#include "DetourCommon.h"
#include "CrowdManager.h"
#include "SampleInterfaces.h" // For timer
static const int VO_ADAPTIVE_GRID_SIZE = 4;
static const int VO_ADAPTIVE_GRID_DEPTH = 5;
static const int VO_GRID_SIZE = 33;
static int fixupCorridor(dtPolyRef* path, const int npath, const int maxPath,
const dtPolyRef* visited, const int nvisited)
{
int furthestPath = -1;
int furthestVisited = -1;
// Find furthest common polygon.
for (int i = npath-1; i >= 0; --i)
{
bool found = false;
for (int j = nvisited-1; j >= 0; --j)
{
if (path[i] == visited[j])
{
furthestPath = i;
furthestVisited = j;
found = true;
}
}
if (found)
break;
}
// If no intersection found just return current path.
if (furthestPath == -1 || furthestVisited == -1)
return npath;
// Concatenate paths.
// Adjust beginning of the buffer to include the visited.
const int req = nvisited - furthestVisited;
const int orig = dtMin(furthestPath+1, npath);
int size = dtMax(0, npath-orig);
if (req+size > maxPath)
size = maxPath-req;
if (size)
memmove(path+req, path+orig, size*sizeof(dtPolyRef));
// Store visited
for (int i = 0; i < req; ++i)
path[i] = visited[(nvisited-1)-i];
return req+size;
}
static int mergeCorridor(dtPolyRef* path, const int npath, const int maxPath,
const dtPolyRef* visited, const int nvisited)
{
int furthestPath = -1;
int furthestVisited = -1;
// Find furthest common polygon.
for (int i = npath-1; i >= 0; --i)
{
bool found = false;
for (int j = nvisited-1; j >= 0; --j)
{
if (path[i] == visited[j])
{
furthestPath = i;
furthestVisited = j;
found = true;
}
}
if (found)
break;
}
// If no intersection found just return current path.
if (furthestPath == -1 || furthestVisited == -1)
return npath;
// Concatenate paths.
// Adjust beginning of the buffer to include the visited.
const int req = furthestVisited;
if (req <= 0)
return npath;
const int orig = furthestPath;
int size = dtMax(0, npath-orig);
if (req+size > maxPath)
size = maxPath-req;
if (size)
memmove(path+req, path+orig, size*sizeof(dtPolyRef));
// Store visited
for (int i = 0; i < req; ++i)
path[i] = visited[i];
return req+size;
}
// Finds straight path towards the goal and prunes it to contain only relevant vertices.
static int findCorners(const float* pos, const float* target,
const dtPolyRef* path, const int npath,
float* cornerVerts, unsigned char* cornerFlags,
dtPolyRef* cornerPolys, const int maxCorners,
const dtNavMeshQuery* navquery)
{
static const float MIN_TARGET_DIST = 0.01f;
int ncorners = navquery->findStraightPath(pos, target, path, npath,
cornerVerts, cornerFlags, cornerPolys,
maxCorners);
// Prune points in the beginning of the path which are too close.
while (ncorners)
{
if ((cornerFlags[0] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ||
dtVdist2DSqr(&cornerVerts[0], pos) > dtSqr(MIN_TARGET_DIST))
break;
ncorners--;
if (ncorners)
{
memmove(cornerFlags, cornerFlags+1, sizeof(unsigned char)*ncorners);
memmove(cornerPolys, cornerPolys+1, sizeof(dtPolyRef)*ncorners);
memmove(cornerVerts, cornerVerts+3, sizeof(float)*3*ncorners);
}
}
// Prune points after an off-mesh connection.
for (int i = 0; i < ncorners; ++i)
{
if (cornerFlags[i] & DT_STRAIGHTPATH_OFFMESH_CONNECTION)
{
ncorners = i+1;
break;
}
}
return ncorners;
}
static int optimizePath(const float* pos, const float* next, const float maxLookAhead,
dtPolyRef* path, const int npath,
const dtNavMeshQuery* navquery, const dtQueryFilter* filter)
{
// Clamp the ray to max distance.
float goal[3];
dtVcopy(goal, next);
const float distSqr = dtVdist2DSqr(pos, goal);
// If too close to the goal, do not try to optimize.
if (distSqr < dtSqr(0.01f))
return npath;
// If too far truncate ray length.
if (distSqr > dtSqr(maxLookAhead))
{
float delta[3];
dtVsub(delta, goal, pos);
dtVmad(goal, pos, delta, dtSqr(maxLookAhead)/distSqr);
}
static const int MAX_RES = 32;
dtPolyRef res[MAX_RES];
float t, norm[3];
const int nres = navquery->raycast(path[0], pos, goal, filter, t, norm, res, MAX_RES);
if (nres > 1 && t > 0.99f)
{
return mergeCorridor(path, npath, AGENT_MAX_PATH, res, nres);
}
return npath;
}
static void updateLocalNeighbourhood(Agent* ag, dtNavMeshQuery* navquery, const dtQueryFilter* filter)
{
if (!ag->npath)
return;
// Only update the neigbourhood after certain distance has been passed.
if (dtVdist2DSqr(ag->pos, ag->colcenter) < dtSqr(ag->colradius*0.25f))
return;
dtVcopy(ag->colcenter, ag->pos);
static const int MAX_LOCALS = 32;
dtPolyRef locals[MAX_LOCALS];
const int nlocals = navquery->findLocalNeighbourhood(ag->path[0], ag->pos, ag->colradius, filter, locals, 0, MAX_LOCALS);
ag->ncolsegs = 0;
for (int j = 0; j < nlocals; ++j)
{
float segs[DT_VERTS_PER_POLYGON*3*2];
const int nsegs = navquery->getPolyWallSegments(locals[j], filter, segs);
for (int k = 0; k < nsegs; ++k)
{
const float* s = &segs[k*6];
// Skip too distant segments.
float tseg;
const float distSqr = dtDistancePtSegSqr2D(ag->pos, s, s+3, tseg);
if (distSqr > dtSqr(ag->colradius))
continue;
if (ag->ncolsegs < AGENT_MAX_COLSEGS)
{
memcpy(&ag->colsegs[ag->ncolsegs*6], s, sizeof(float)*6);
ag->ncolsegs++;
}
}
}
}
static void collectObstacles(Agent* ag, Agent** agents, const int nagents,
dtObstacleAvoidanceQuery* obstacleQuery)
{
obstacleQuery->reset();
// Add dynamic obstacles.
for (int j = 0; j < nagents; ++j)
{
const Agent* nei = agents[j];
if (nei == ag) continue;
float diff[3];
dtVsub(diff, ag->npos, nei->npos);
if (fabsf(diff[1]) >= (ag->height+nei->height)/2.0f)
continue;
diff[1] = 0;
const float distSqr = dtVlenSqr(diff);
if (distSqr > dtSqr(ag->colradius))
continue;
obstacleQuery->addCircle(nei->pos, nei->radius, nei->vel, nei->dvel, distSqr);
}
// Add static segment obstacles.
for (int j = 0; j < ag->ncolsegs; ++j)
{
const float* s = &ag->colsegs[j*6];
if (dtTriArea2D(ag->pos, s, s+3) < 0.0f)
continue;
float tseg;
const float distSqr = dtDistancePtSegSqr2D(ag->pos, s, s+3, tseg);
obstacleQuery->addSegment(s, s+3, distSqr);
}
}
static void calcSmoothSteerDirection(const float* pos, const float* corners, const int ncorners, float* dvel)
{
const int ip0 = 0;
const int ip1 = dtMin(1, ncorners-1);
const float* p0 = &corners[ip0*3];
const float* p1 = &corners[ip1*3];
float dir0[3], dir1[3];
dtVsub(dir0, p0, pos);
dtVsub(dir1, p1, pos);
dir0[1] = 0;
dir1[1] = 0;
float len0 = dtVlen(dir0);
float len1 = dtVlen(dir1);
if (len1 > 0.001f)
dtVscale(dir1,dir1,1.0f/len1);
const float strength = 0.5f;
dvel[0] = dir0[0] - dir1[0]*len0*strength;
dvel[1] = 0;
dvel[2] = dir0[2] - dir1[2]*len0*strength;
dtVnormalize(dvel);
}
static void calcStraightSteerDirection(const float* pos, const float* corners, const int ncorners, float* dvel)
{
dtVsub(dvel, &corners[0], pos);
dvel[1] = 0;
dtVnormalize(dvel);
}
CrowdManager::CrowdManager() :
m_obstacleQuery(0),
m_totalTime(0),
m_rvoTime(0),
m_sampleCount(0)
{
m_obstacleQuery = dtAllocObstacleAvoidanceQuery();
m_obstacleQuery->init(6, 10);
m_obstacleQuery->setDesiredVelocityWeight(2.0f);
m_obstacleQuery->setCurrentVelocityWeight(0.75f);
m_obstacleQuery->setPreferredSideWeight(0.75f);
m_obstacleQuery->setCollisionTimeWeight(2.5f);
m_obstacleQuery->setTimeHorizon(2.5f);
m_obstacleQuery->setVelocitySelectionBias(0.4f);
memset(m_vodebug, 0, sizeof(m_vodebug));
const int sampleCount = dtMax(VO_GRID_SIZE*VO_GRID_SIZE, (VO_ADAPTIVE_GRID_SIZE*VO_ADAPTIVE_GRID_SIZE)*VO_ADAPTIVE_GRID_DEPTH);
for (int i = 0; i < MAX_AGENTS; ++i)
{
m_vodebug[i] = dtAllocObstacleAvoidanceDebugData();
m_vodebug[i]->init(sampleCount);
}
reset();
}
CrowdManager::~CrowdManager()
{
for (int i = 0; i < MAX_AGENTS; ++i)
dtFreeObstacleAvoidanceDebugData(m_vodebug[i]);
dtFreeObstacleAvoidanceQuery(m_obstacleQuery);
}
void CrowdManager::reset()
{
for (int i = 0; i < MAX_AGENTS; ++i)
memset(&m_agents[i], 0, sizeof(Agent));
}
const int CrowdManager::getAgentCount() const
{
return MAX_AGENTS;
}
const Agent* CrowdManager::getAgent(const int idx)
{
return &m_agents[idx];
}
int CrowdManager::addAgent(const float* pos, const float radius, const float height)
{
// Find empty slot.
int idx = -1;
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active)
{
idx = i;
break;
}
}
if (idx == -1)
return -1;
Agent* ag = &m_agents[idx];
memset(ag, 0, sizeof(Agent));
dtVcopy(ag->pos, pos);
ag->radius = radius;
ag->colradius = radius * 7.5f;
ag->height = height;
ag->active = 1;
ag->var = (rand() % 10) / 9.0f;
// Init trail
for (int i = 0; i < AGENT_MAX_TRAIL; ++i)
dtVcopy(&ag->trail[i*3], ag->pos);
ag->htrail = 0;
return idx;
}
void CrowdManager::removeAgent(const int idx)
{
if (idx >= 0 && idx < MAX_AGENTS)
memset(&m_agents[idx], 0, sizeof(Agent));
}
void CrowdManager::setMoveTarget(const int idx, const float* pos)
{
Agent* ag = &m_agents[idx];
dtVcopy(ag->target, pos);
ag->targetState = AGENT_TARGET_SET;
}
int CrowdManager::getActiveAgents(Agent** agents, const int maxAgents)
{
int n = 0;
for (int i = 0; i < MAX_AGENTS; ++i)
{
if (!m_agents[i].active) continue;
if (n < maxAgents)
agents[n++] = &m_agents[i];
}
return n;
}
void CrowdManager::update(const float dt, unsigned int flags, dtNavMeshQuery* navquery)
{
m_sampleCount = 0;
m_totalTime = 0;
m_rvoTime = 0;
if (!navquery)
return;
TimeVal startTime = getPerfTime();
const float ext[3] = {2,4,2};
dtQueryFilter filter;
Agent* agents[MAX_AGENTS];
int nagents = getActiveAgents(agents, MAX_AGENTS);
// Update target and agent navigation state.
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
// Make sure that the first path polygon corresponds to the current agent location.
if (!ag->npath)
{
float nearest[3];
ag->path[0] = navquery->findNearestPoly(ag->pos, ext, &filter, nearest);
if (ag->path[0])
{
ag->npath = 1;
dtVcopy(ag->pos, nearest);
}
}
if (ag->targetState == AGENT_TARGET_SET)
{
float nearest[3];
ag->targetRef = navquery->findNearestPoly(ag->target, ext, &filter, nearest);
if (ag->targetRef)
dtVcopy(ag->target, nearest);
ag->targetState = AGENT_TARGET_ACQUIRED;
}
if (ag->targetState == AGENT_TARGET_ACQUIRED)
{
ag->npath = navquery->findPath(ag->path[0], ag->targetRef, ag->pos, ag->target,
&filter, ag->path, AGENT_MAX_PATH);
if (ag->npath)
{
ag->targetState = AGENT_TARGET_PATH;
// Check for partial path.
if (ag->path[ag->npath-1] != ag->targetRef)
{
// Partial path, constrain target position inside the last polygon.
ag->targetRef = ag->path[ag->npath-1];
float nearest[3];
if (navquery->closestPointOnPoly(ag->targetRef, ag->target, nearest))
dtVcopy(ag->target, nearest);
else
ag->targetState = AGENT_TARGET_FAILED;
}
}
else
ag->targetState = AGENT_TARGET_FAILED;
}
}
// Get nearby navmesh segments to collide with.
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
updateLocalNeighbourhood(ag, navquery, &filter);
}
static const float MAX_ACC = 8.0f;
static const float MAX_SPEED = 3.5f;
// Find next corner to steer to.
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
ag->ncorners = 0;
dtVset(ag->opts, 0,0,0);
dtVset(ag->opte, 0,0,0);
if (ag->targetState == AGENT_TARGET_PATH)
{
// Find nest couple of corners for steering.
ag->ncorners = findCorners(ag->pos, ag->target, ag->path, ag->npath,
ag->cornerVerts, ag->cornerFlags, ag->cornerPolys,
AGENT_MAX_CORNERS, navquery);
// Check to see if the corner after the next corner is directly visible,
// and short cut to there.
if (ag->ncorners > 1)
{
const float maxLookAhead = ag->colradius*4;
dtVcopy(ag->opts, ag->pos);
dtVcopy(ag->opte, ag->cornerVerts+3);
ag->npath = optimizePath(ag->pos, ag->cornerVerts+3, maxLookAhead,
ag->path, ag->npath, navquery, &filter);
}
}
}
// Calculate steering.
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
if (!ag->ncorners)
{
// No corner to steer to, stop.
dtVset(ag->dvel, 0,0,0);
}
else
{
// Calculate steering direction.
if (flags & CROWDMAN_ANTICIPATE_TURNS)
{
calcSmoothSteerDirection(ag->pos, ag->cornerVerts, ag->ncorners, ag->dvel);
}
else
{
calcStraightSteerDirection(ag->pos, ag->cornerVerts, ag->ncorners, ag->dvel);
}
// Calculate steering speed.
// Calculate speed scale, which tells the agent to slowdown at the end of the path.
float speedScale = 1.0f;
const bool endOfPath = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_END) ? true : false;
const bool offMeshConnection = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false;
const float slowDownRadius = ag->radius*2;
if (endOfPath || offMeshConnection)
{
const float distToGoal = dtVdist2D(ag->pos, &ag->cornerVerts[(ag->ncorners-1)*3]);
speedScale = dtMin(1.0f, distToGoal / slowDownRadius);
}
// Apply style.
if (flags & CROWDMAN_DRUNK)
{
// Drunken steering
// Pulsating speed.
ag->t += dt * (1.0f - ag->var*0.25f);
ag->maxspeed = MAX_SPEED*(1 + dtSqr(cosf(ag->t*2.0f))*0.3f);
dtVscale(ag->dvel, ag->dvel, ag->maxspeed * speedScale);
// Slightly wandering steering.
const float amp = cosf(ag->var*13.69f+ag->t*3.123f) * 0.2f;
const float nx = -ag->dvel[2];
const float nz = ag->dvel[0];
ag->dvel[0] += nx*amp;
ag->dvel[2] += nz*amp;
}
else
{
// Normal steering.
ag->maxspeed = MAX_SPEED;
dtVscale(ag->dvel, ag->dvel, ag->maxspeed * speedScale);
}
}
}
// Velocity planning.
TimeVal rvoStartTime = getPerfTime();
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
if (flags & CROWDMAN_USE_VO)
{
collectObstacles(ag, agents, nagents, m_obstacleQuery);
bool adaptive = true;
if (adaptive)
{
m_obstacleQuery->setSamplingGridSize(VO_ADAPTIVE_GRID_SIZE);
m_obstacleQuery->setSamplingGridDepth(VO_ADAPTIVE_GRID_DEPTH);
m_obstacleQuery->sampleVelocityAdaptive(ag->pos, ag->radius, ag->maxspeed,
ag->vel, ag->dvel, ag->nvel, m_vodebug[i]);
}
else
{
m_obstacleQuery->setSamplingGridSize(VO_GRID_SIZE);
m_obstacleQuery->sampleVelocity(ag->pos, ag->radius, ag->maxspeed, ag->vel, ag->dvel,
ag->nvel, m_vodebug[i]);
}
}
else
{
dtVcopy(ag->nvel, ag->dvel);
}
}
TimeVal rvoEndTime = getPerfTime();
// Integrate.
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
// Fake dynamic constraint.
const float maxDelta = MAX_ACC * dt;
float dv[3];
dtVsub(dv, ag->nvel, ag->vel);
float ds = dtVlen(dv);
if (ds > maxDelta)
dtVscale(dv, dv, maxDelta/ds);
dtVadd(ag->vel, ag->vel, dv);
// Integrate
if (dtVlen(ag->vel) > 0.0001f)
dtVmad(ag->npos, ag->pos, ag->vel, dt);
else
dtVcopy(ag->npos, ag->pos);
}
// Handle collisions.
for (int iter = 0; iter < 4; ++iter)
{
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
dtVset(ag->disp, 0,0,0);
float w = 0;
for (int j = 0; j < nagents; ++j)
{
if (i == j) continue;
Agent* nei = agents[j];
float diff[3];
dtVsub(diff, ag->npos, nei->npos);
if (fabsf(diff[1]) >= (ag->height+nei->height)/2.0f)
continue;
diff[1] = 0;
float dist = dtVlenSqr(diff);
if (dist > dtSqr(ag->radius+nei->radius))
continue;
dist = sqrtf(dist);
float pen = (ag->radius+nei->radius) - dist;
if (dist > 0.0001f)
pen = (1.0f/dist) * (pen*0.5f) * 0.7f;
dtVmad(ag->disp, ag->disp, diff, pen);
w += 1.0f;
}
if (w > 0.0001f)
{
const float iw = 1.0f / w;
dtVscale(ag->disp, ag->disp, iw);
}
}
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
dtVadd(ag->npos, ag->npos, ag->disp);
}
}
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
// Move along navmesh and update new position.
float result[3];
dtPolyRef visited[16];
int nvisited = navquery->moveAlongSurface(ag->path[0], ag->pos, ag->npos, &filter,
result, visited, 16);
ag->npath = fixupCorridor(ag->path, ag->npath, AGENT_MAX_PATH, visited, nvisited);
// Adjust agent height to stay on top of the navmesh.
float h = 0;
navquery->getPolyHeight(ag->path[0], result, &h);
result[1] = h;
dtVcopy(ag->pos, result);
}
TimeVal endTime = getPerfTime();
int ns = 0;
for (int i = 0; i < nagents; ++i)
{
Agent* ag = agents[i];
if (flags & CROWDMAN_USE_VO)
{
// Normalize samples for debug draw
m_vodebug[i]->normalizeSamples();
ns += m_vodebug[i]->getSampleCount();
}
// Update agent movement trail.
ag->htrail = (ag->htrail + 1) % AGENT_MAX_TRAIL;
dtVcopy(&ag->trail[ag->htrail*3], ag->pos);
}
m_sampleCount = ns;
m_rvoTime = getPerfDeltaTimeUsec(rvoStartTime, rvoEndTime);
m_totalTime = getPerfDeltaTimeUsec(startTime, endTime);
}