recastnavigation_v1.6.0/Detour/Source/DetourTiledNavMesh.cpp
Mikko Mononen aa7357d897 Updated VC project to include new tiled navmesh.
Fixed warnings for VC.
2009-07-09 08:55:29 +00:00

1773 lines
41 KiB
C++

#include "DetourTiledNavMesh.h"
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
//////////////////////////////////////////////////////////////////////////////////////////
template<class T> inline void swap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T min(T a, T b) { return a < b ? a : b; }
template<class T> inline T max(T a, T b) { return a > b ? a : b; }
template<class T> inline T abs(T a) { return a < 0 ? -a : a; }
template<class T> inline T sqr(T a) { return a*a; }
template<class T> inline T clamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
// Some vector utils
inline void vcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float vdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void vsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void vmin(float* mn, const float* v)
{
mn[0] = min(mn[0], v[0]);
mn[1] = min(mn[1], v[1]);
mn[2] = min(mn[2], v[2]);
}
inline void vmax(float* mx, const float* v)
{
mx[0] = max(mx[0], v[0]);
mx[1] = max(mx[1], v[1]);
mx[2] = max(mx[2], v[2]);
}
inline void vcopy(float* dest, const float* a)
{
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
inline float vdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void vnormalize(float* v)
{
float d = 1.0f / sqrtf(sqr(v[0]) + sqr(v[1]) + sqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool vequal(const float* p0, const float* p1)
{
static const float thr = sqr(1.0f/16384.0f);
const float d = vdistSqr(p0, p1);
return d < thr;
}
inline float vdot2D(const float* u, const float* v)
{
return u[0]*v[0] + u[2]*v[2];
}
inline float vperp2D(const float* u, const float* v)
{
return u[2]*v[0] - u[0]*v[2];
}
inline float triArea2D(const float* a, const float* b, const float* c)
{
return ((b[0]*a[2] - a[0]*b[2]) + (c[0]*b[2] - b[0]*c[2]) + (a[0]*c[2] - c[0]*a[2])) * 0.5f;
}
static float distancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
static bool intersectSegmentPoly2D(const float* p0, const float* p1,
const float* verts, int nverts,
float& tmin, float& tmax,
int& segMin, int& segMax)
{
static const float EPS = 0.00000001f;
tmin = 0;
tmax = 1;
segMin = -1;
segMax = -1;
float dir[3];
vsub(dir, p1, p0);
for (int i = 0, j = nverts-1; i < nverts; j=i++)
{
float edge[3], diff[3];
vsub(edge, &verts[i*3], &verts[j*3]);
vsub(diff, p0, &verts[j*3]);
float n = vperp2D(edge, diff);
float d = -vperp2D(edge, dir);
if (fabs(d) < EPS)
{
// S is nearly parallel to this edge
if (n < 0)
return false;
else
continue;
}
float t = n / d;
if (d < 0)
{
// segment S is entering across this edge
if (t > tmin)
{
tmin = t;
segMin = j;
// S enters after leaving polygon
if (tmin > tmax)
return false;
}
}
else
{
// segment S is leaving across this edge
if (t < tmax)
{
tmax = t;
segMax = j;
// S leaves before entering polygon
if (tmax < tmin)
return false;
}
}
}
return true;
}
static void calcPolyCenter(float* tc, const dtTilePoly* p, const float* verts)
{
tc[0] = 0.0f;
tc[1] = 0.0f;
tc[2] = 0.0f;
for (int j = 0; j < (int)p->nv; ++j)
{
const float* v = &verts[p->v[j]*3];
tc[0] += v[0];
tc[1] += v[1];
tc[2] += v[2];
}
const float s = 1.0f / p->nv;
tc[0] *= s;
tc[1] *= s;
tc[2] *= s;
}
static void closestPtPointTriangle(float* closest, const float* p,
const float* a, const float* b, const float* c)
{
// Check if P in vertex region outside A
float ab[3], ac[3], ap[3];
vsub(ab, b, a);
vsub(ac, c, a);
vsub(ap, p, a);
float d1 = vdot(ab, ap);
float d2 = vdot(ac, ap);
if (d1 <= 0.0f && d2 <= 0.0f)
{
// barycentric coordinates (1,0,0)
vcopy(closest, a);
return;
}
// Check if P in vertex region outside B
float bp[3];
vsub(bp, p, b);
float d3 = vdot(ab, bp);
float d4 = vdot(ac, bp);
if (d3 >= 0.0f && d4 <= d3)
{
// barycentric coordinates (0,1,0)
vcopy(closest, b);
return;
}
// Check if P in edge region of AB, if so return projection of P onto AB
float vc = d1*d4 - d3*d2;
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
{
// barycentric coordinates (1-v,v,0)
float v = d1 / (d1 - d3);
closest[0] = a[0] + v * ab[0];
closest[1] = a[1] + v * ab[1];
closest[2] = a[2] + v * ab[2];
return;
}
// Check if P in vertex region outside C
float cp[3];
vsub(cp, p, c);
float d5 = vdot(ab, cp);
float d6 = vdot(ac, cp);
if (d6 >= 0.0f && d5 <= d6)
{
// barycentric coordinates (0,0,1)
vcopy(closest, c);
return;
}
// Check if P in edge region of AC, if so return projection of P onto AC
float vb = d5*d2 - d1*d6;
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
{
// barycentric coordinates (1-w,0,w)
float w = d2 / (d2 - d6);
closest[0] = a[0] + w * ac[0];
closest[1] = a[1] + w * ac[1];
closest[2] = a[2] + w * ac[2];
return;
}
// Check if P in edge region of BC, if so return projection of P onto BC
float va = d3*d6 - d5*d4;
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
{
// barycentric coordinates (0,1-w,w)
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
closest[0] = b[0] + w * (c[0] - b[0]);
closest[1] = b[1] + w * (c[1] - b[1]);
closest[2] = b[2] + w * (c[2] - b[2]);
return;
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
float denom = 1.0f / (va + vb + vc);
float v = vb * denom;
float w = vc * denom;
closest[0] = a[0] + ab[0] * v + ac[0] * w;
closest[1] = a[1] + ab[1] * v + ac[1] * w;
closest[2] = a[2] + ab[2] * v + ac[2] * w;
}
inline bool overlapRects(const float* amin, const float* amax,
const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
return overlap;
}
inline bool overlapBounds(const float* amin, const float* amax,
const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
inline int opposite(int side) { return (side+2) & 0x3; }
static void calcBounds(const float* va, const float* vb,
float* bmin, float* bmax,
int side, float padx, float pady)
{
if ((side&1) == 0)
{
bmin[0] = min(va[2],vb[2]) + padx;
bmin[1] = min(va[1],vb[1]) - pady;
bmax[0] = max(va[2],vb[2]) - padx;
bmax[1] = max(va[1],vb[1]) + pady;
}
else
{
bmin[0] = min(va[0],vb[0]) + padx;
bmin[1] = min(va[1],vb[1]) - pady;
bmax[0] = max(va[0],vb[0]) - padx;
bmax[1] = max(va[1],vb[1]) + pady;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
struct dtTileNode
{
enum dtTileNodeFlags
{
OPEN = 0x01,
CLOSED = 0x02,
};
dtTileNode* parent;
float cost;
float total;
unsigned int id;
unsigned char flags; // TODO: merge to id or parent?
};
class dtTileNodePool
{
public:
dtTileNodePool(int maxNodes, int hashSize);
~dtTileNodePool();
inline void operator=(const dtTileNodePool&) {}
void clear();
dtTileNode* getNode(unsigned short id);
const dtTileNode* findNode(unsigned short id) const;
inline int getMemUsed() const
{
return sizeof(*this) +
sizeof(dtTileNode)*m_maxNodes +
sizeof(unsigned short)*m_maxNodes +
sizeof(unsigned short)*m_hashSize;
}
private:
inline unsigned int hashint(unsigned int a) const
{
a += ~(a<<15);
a ^= (a>>10);
a += (a<<3);
a ^= (a>>6);
a += ~(a<<11);
a ^= (a>>16);
return a;
}
dtTileNode* m_nodes;
unsigned short* m_first;
unsigned short* m_next;
const int m_maxNodes;
const int m_hashSize;
int m_nodeCount;
};
dtTileNodePool::dtTileNodePool(int maxNodes, int hashSize) :
m_maxNodes(maxNodes),
m_hashSize(hashSize),
m_nodes(0),
m_first(0),
m_next(0)
{
m_nodes = new dtTileNode[m_maxNodes];
m_next = new unsigned short[m_maxNodes];
m_first = new unsigned short[hashSize];
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
memset(m_next, 0xff, sizeof(unsigned short)*m_maxNodes);
}
dtTileNodePool::~dtTileNodePool()
{
delete [] m_nodes;
delete [] m_next;
delete [] m_first;
}
void dtTileNodePool::clear()
{
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
m_nodeCount = 0;
}
const dtTileNode* dtTileNodePool::findNode(unsigned short id) const
{
unsigned int bucket = hashint((unsigned int)id) & (m_hashSize-1);
unsigned short i = m_first[bucket];
while (i != 0xffff)
{
if (m_nodes[i].id == id)
return &m_nodes[i];
i = m_next[i];
}
return 0;
}
dtTileNode* dtTileNodePool::getNode(unsigned short id)
{
unsigned int bucket = hashint((unsigned int)id) & (m_hashSize-1);
unsigned short i = m_first[bucket];
dtTileNode* node = 0;
while (i != 0xffff)
{
if (m_nodes[i].id == id)
return &m_nodes[i];
i = m_next[i];
}
if (m_nodeCount >= m_maxNodes)
return 0;
i = (unsigned short)m_nodeCount;
m_nodeCount++;
// Init node
node = &m_nodes[i];
node->parent = 0;
node->cost = 0;
node->total = 0;
node->id = id;
node->flags = 0;
m_next[i] = m_first[bucket];
m_first[bucket] = i;
return node;
}
//////////////////////////////////////////////////////////////////////////////////////////
class dtTileNodeQueue
{
public:
dtTileNodeQueue(int n);
~dtTileNodeQueue();
inline void operator=(dtTileNodeQueue&) {}
inline void clear()
{
m_size = 0;
}
inline dtTileNode* top()
{
return m_heap[0];
}
inline dtTileNode* pop()
{
dtTileNode* result = m_heap[0];
m_size--;
trickleDown(0, m_heap[m_size]);
return result;
}
inline void push(dtTileNode* node)
{
m_size++;
bubbleUp(m_size-1, node);
}
inline void modify(dtTileNode* node)
{
for (int i = 0; i < m_size; ++i)
{
if (m_heap[i] == node)
{
bubbleUp(i, node);
return;
}
}
}
inline bool empty() const { return m_size == 0; }
inline int getMemUsed() const
{
return sizeof(*this) +
sizeof(dtTileNode*)*(m_capacity+1);
}
private:
void bubbleUp(int i, dtTileNode* node);
void trickleDown(int i, dtTileNode* node);
dtTileNode** m_heap;
const int m_capacity;
int m_size;
};
dtTileNodeQueue::dtTileNodeQueue(int n) :
m_capacity(n),
m_size(0),
m_heap(0)
{
m_heap = new dtTileNode*[m_capacity+1];
}
dtTileNodeQueue::~dtTileNodeQueue()
{
delete [] m_heap;
}
void dtTileNodeQueue::bubbleUp(int i, dtTileNode* node)
{
int parent = (i-1)/2;
// note: (index > 0) means there is a parent
while ((i > 0) && (m_heap[parent]->total > node->total))
{
m_heap[i] = m_heap[parent];
i = parent;
parent = (i-1)/2;
}
m_heap[i] = node;
}
void dtTileNodeQueue::trickleDown(int i, dtTileNode* node)
{
int child = (i*2)+1;
while (child < m_size)
{
if (((child+1) < m_size) &&
(m_heap[child]->total > m_heap[child+1]->total))
{
child++;
}
m_heap[i] = m_heap[child];
i = child;
child = (i*2)+1;
}
bubbleUp(i, node);
}
//////////////////////////////////////////////////////////////////////////////////////////
dtTiledNavMesh::dtTiledNavMesh() :
m_tileSize(0),
m_portalHeight(0),
m_nextFree(0),
m_tmpLinks(0),
m_ntmpLinks(0),
m_nodePool(0),
m_openList(0)
{
}
dtTiledNavMesh::~dtTiledNavMesh()
{
// TODO! the mesh should not handle the tile memory!
for (int i = 0; i < DT_MAX_TILES; ++i)
{
if (m_tiles[i].header)
{
delete [] (unsigned char*)m_tiles[i].header;
m_tiles[i].header = 0;
}
}
delete [] m_tmpLinks;
delete m_nodePool;
delete m_openList;
}
bool dtTiledNavMesh::init(const float* orig, float tileSize, float portalHeight)
{
vcopy(m_orig, orig);
m_tileSize = tileSize;
m_portalHeight = portalHeight;
// Init tiles
memset(m_tiles, 0, sizeof(dtTile)*DT_MAX_TILES);
memset(m_posLookup, 0, sizeof(dtTile*)*DT_TILE_LOOKUP_SIZE);
m_nextFree = 0;
for (int i = DT_MAX_TILES-1; i >= 0; --i)
{
m_tiles[i].next = m_nextFree;
m_nextFree = &m_tiles[i];
}
m_nodePool = new dtTileNodePool(2048, 256);
if (!m_nodePool)
return false;
m_openList = new dtTileNodeQueue(2048);
if (!m_openList)
return false;
return true;
}
int dtTiledNavMesh::getPolyNeighbours(dtTilePolyRef ref, dtTilePolyRef* nei, int maxNei) const
{
int salt, it, ip;
decodeId(ref, salt, it, ip);
if (it >= DT_MAX_TILES) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
const dtTileHeader* h = m_tiles[it].header;
if (ip >= h->npolys) return 0;
const dtTilePoly* poly = &h->polys[ip];
int n = 0;
for (int i = 0; i < poly->nlinks; ++i)
if (n < maxNei) nei[n++] = h->links[poly->links+i].ref;
return n;
}
int dtTiledNavMesh::findConnectingPolys(const float* va, const float* vb,
dtTile* tile, int side,
dtTilePolyRef* con, float* conarea, int maxcon)
{
if (!tile) return 0;
dtTileHeader* h = tile->header;
float amin[2], amax[2];
calcBounds(va,vb, amin,amax, side, 0.01f, m_portalHeight);
// Remove links pointing to 'side' and compact the links array.
float bmin[2], bmax[2];
unsigned short m = 0x8000 | (unsigned short)side;
int n = 0;
dtTilePolyRef base = getTileId(tile);
for (int i = 0; i < h->npolys; ++i)
{
dtTilePoly* poly = &h->polys[i];
for (int j = 0; j < poly->nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->n[j] != m) continue;
// Check if the segments touch.
const float* vc = &h->verts[poly->v[j]*3];
const float* vd = &h->verts[poly->v[(j+1) % (int)poly->nv]*3];
calcBounds(vc,vd, bmin,bmax, side, 0.01f, m_portalHeight);
if (!overlapRects(amin,amax, bmin,bmax)) continue;
// Add return value.
if (n < maxcon)
{
conarea[n*2+0] = max(amin[0], bmin[0]);
conarea[n*2+1] = min(amax[0], bmax[0]);
con[n] = base | (unsigned int)i;
n++;
}
break;
}
}
return n;
}
void dtTiledNavMesh::removeExtLinks(dtTile* tile, int side)
{
if (!tile) return;
dtTileHeader* h = tile->header;
// Remove links pointing to 'side' and compact the links array.
dtTileLink* pool = m_tmpLinks;
int nlinks = 0;
for (int i = 0; i < h->npolys; ++i)
{
dtTilePoly* poly = &h->polys[i];
int plinks = nlinks;
int nplinks = 0;
for (int j = 0; j < poly->nlinks; ++j)
{
dtTileLink* link = &h->links[poly->links+j];
if ((int)link->side != side)
{
if (nlinks < h->maxlinks)
{
dtTileLink* dst = &pool[nlinks++];
memcpy(dst, link, sizeof(dtTileLink));
nplinks++;
}
}
}
poly->links = plinks;
poly->nlinks = nplinks;
}
h->nlinks = nlinks;
if (h->nlinks)
memcpy(h->links, m_tmpLinks, sizeof(dtTileLink)*nlinks);
}
void dtTiledNavMesh::buildExtLinks(dtTile* tile, dtTile* target, int side)
{
if (!tile) return;
dtTileHeader* h = tile->header;
// Remove links pointing to 'side' and compact the links array.
dtTileLink* pool = m_tmpLinks;
int nlinks = 0;
for (int i = 0; i < h->npolys; ++i)
{
dtTilePoly* poly = &h->polys[i];
int plinks = nlinks;
int nplinks = 0;
// Copy internal and other external links.
for (int j = 0; j < poly->nlinks; ++j)
{
dtTileLink* link = &h->links[poly->links+j];
if ((int)link->side != side)
{
if (nlinks < h->maxlinks)
{
dtTileLink* dst = &pool[nlinks++];
memcpy(dst, link, sizeof(dtTileLink));
nplinks++;
}
}
}
// Create new links.
unsigned short m = 0x8000 | (unsigned short)side;
for (int j = 0; j < poly->nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->n[j] != m) continue;
// Create new links
const float* va = &h->verts[poly->v[j]*3];
const float* vb = &h->verts[poly->v[(j+1)%(int)poly->nv]*3];
dtTilePolyRef nei[4];
float neia[4*2];
int nnei = findConnectingPolys(va,vb, target, opposite(side), nei,neia,4);
for (int k = 0; k < nnei; ++k)
{
if (nlinks < h->maxlinks)
{
dtTileLink* link = &pool[nlinks++];
link->ref = nei[k];
link->p = (unsigned short)i;
link->e = (unsigned char)j;
link->side = (unsigned char)side;
link->bmin = neia[k*2+0];
link->bmax = neia[k*2+1];
nplinks++;
}
}
}
poly->links = plinks;
poly->nlinks = nplinks;
}
h->nlinks = nlinks;
if (h->nlinks)
memcpy(h->links, m_tmpLinks, sizeof(dtTileLink)*nlinks);
}
void dtTiledNavMesh::buildIntLinks(dtTile* tile)
{
if (!tile) return;
dtTileHeader* h = tile->header;
dtTilePolyRef base = getTileId(tile);
dtTileLink* pool = h->links;
int nlinks = 0;
for (int i = 0; i < h->npolys; ++i)
{
dtTilePoly* poly = &h->polys[i];
poly->links = nlinks;
poly->nlinks = 0;
for (int j = 0; j < poly->nv; ++j)
{
// Skip hard and non-internal edges.
if (poly->n[j] == 0 || (poly->n[j] & 0x8000)) continue;
if (nlinks < h->maxlinks)
{
dtTileLink* link = &pool[nlinks++];
link->ref = base | (unsigned int)(poly->n[j]-1);
link->p = (unsigned short)i;
link->e = (unsigned char)j;
link->side = 0xff;
link->bmin = link->bmax = 0;
poly->nlinks++;
}
}
}
h->nlinks = nlinks;
}
inline int computeTileHash(int x, int y)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & (DT_TILE_LOOKUP_SIZE-1));
}
bool dtTiledNavMesh::addTile(int x, int y, unsigned char* data, int dataSize)
{
// Remove any old tile at this location.
removeTile(x,y);
// Make sure there is enough space for new tile.
if (!m_nextFree)
return false;
// Make sure the data is in right format.
dtTileHeader* header = (dtTileHeader*)data;
if (header->magic != DT_TILE_NAVMESH_MAGIC)
return false;
if (header->version != DT_TILE_NAVMESH_VERSION)
return false;
// Make sure the tmp link array is large enough.
if (header->maxlinks > m_ntmpLinks)
{
m_ntmpLinks = header->maxlinks;
delete [] m_tmpLinks;
m_tmpLinks = 0;
m_tmpLinks = new dtTileLink[m_ntmpLinks];
}
if (!m_tmpLinks)
return false;
// Allocate a tile.
dtTile* tile = m_nextFree;
m_nextFree = tile->next;
tile->next = 0;
// Insert tile into the position lut.
int h = computeTileHash(x,y);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Patch header pointers.
const int headerSize = sizeof(dtTileHeader);
const int vertsSize = sizeof(float)*3*header->nverts;
const int polysSize = sizeof(dtTilePoly)*header->npolys;
header->verts = (float*)(data + headerSize);
header->polys = (dtTilePoly*)(data + headerSize + vertsSize);
header->links = (dtTileLink*)(data + headerSize + vertsSize + polysSize);
// Init tile.
tile->header = header;
tile->x = x;
tile->y = y;
buildIntLinks(tile);
// Create connections connections.
for (int i = 0; i < 4; ++i)
{
dtTile* nei = getNeighbourTile(x,y,i);
tile->header->nei[i] = nei;
if (tile->header->nei[i])
{
nei->header->nei[opposite(i)] = tile;
buildExtLinks(tile, nei, i);
buildExtLinks(nei, tile, opposite(i));
}
}
return true;
}
dtTile* dtTiledNavMesh::getTile(int x, int y)
{
// Find tile based on hash.
int h = computeTileHash(x,y);
dtTile* tile = m_posLookup[h];
while (tile)
{
if (tile->x == x && tile->y == y)
return tile;
tile = tile->next;
}
return 0;
}
dtTile* dtTiledNavMesh::getNeighbourTile(int x, int y, int side)
{
switch (side)
{
case 0: x++; break;
case 1: y++; break;
case 2: x--; break;
case 3: y--; break;
};
return getTile(x,y);
}
bool dtTiledNavMesh::removeTile(int x, int y)
{
dtTile* tile = getTile(x, y);
if (!tile)
return false;
// Remove connections to neighbour tiles.
for (int i = 0; i < 4; ++i)
{
dtTile* nei = getNeighbourTile(x,y,i);
if (!nei) continue;
nei->header->nei[opposite(i)] = 0;
removeExtLinks(nei, opposite(i));
}
// Reset tile.
unsigned char* data = (unsigned char*)tile->header;
tile->header = 0;
tile->x = -1;
tile->y = -1;
tile->salt++;
// TODO! the mesh should not handle the tile memory!
delete [] data;
return true;
}
bool dtTiledNavMesh::closestPointToPoly(dtTilePolyRef ref, const float* pos, float* closest) const
{
int salt, it, ip;
decodeId(ref, salt, it, ip);
if (it >= DT_MAX_TILES) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtTileHeader* h = m_tiles[it].header;
if (ip >= h->npolys) return false;
const dtTilePoly* poly = &h->polys[ip];
float closestDistSqr = FLT_MAX;
for (int i = 2; i < (int)poly->nv; ++i)
{
const float* v0 = &h->verts[poly->v[0]*3];
const float* v1 = &h->verts[poly->v[i-1]*3];
const float* v2 = &h->verts[poly->v[i]*3];
float pt[3];
closestPtPointTriangle(pt, pos, v0, v1, v2);
float d = vdistSqr(pos, pt);
if (d < closestDistSqr)
{
vcopy(closest, pt);
closestDistSqr = d;
}
}
return true;
}
dtTilePolyRef dtTiledNavMesh::findNearestPoly(const float* center, const float* extents)
{
// Get nearby polygons from proximity grid.
dtTilePolyRef polys[128];
int npolys = queryPolygons(center, extents, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtTilePolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < npolys; ++i)
{
dtTilePolyRef ref = polys[i];
float closest[3];
if (!closestPointToPoly(ref, center, closest))
continue;
float d = vdistSqr(center, closest);
if (d < nearestDistanceSqr)
{
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
dtTilePolyRef dtTiledNavMesh::getTileId(dtTile* tile)
{
if (!tile) return 0;
const unsigned int it = tile - m_tiles;
return encodeId(tile->salt, it, 0);
}
int dtTiledNavMesh::queryTilePolygons(dtTile* tile,
const float* qmin, const float* qmax,
dtTilePolyRef* polys, const int maxPolys)
{
float bmin[3], bmax[3];
const dtTileHeader* header = tile->header;
int n = 0;
dtTilePolyRef base = getTileId(tile);
for (int i = 0; i < header->npolys; ++i)
{
// Calc polygon bounds.
dtTilePoly* p = &header->polys[i];
const float* v = &header->verts[p->v[0]*3];
vcopy(bmin, v);
vcopy(bmax, v);
for (int j = 1; j < p->nv; ++j)
{
v = &header->verts[p->v[j]*3];
vmin(bmin, v);
vmax(bmax, v);
}
if (overlapBounds(qmin,qmax, bmin,bmax))
{
if (n < maxPolys)
polys[n++] = base | (dtTilePolyRef)i;
}
}
return n;
}
int dtTiledNavMesh::queryPolygons(const float* center, const float* extents,
dtTilePolyRef* polys, const int maxPolys)
{
float bmin[3], bmax[3];
bmin[0] = center[0] - extents[0];
bmin[1] = center[1] - extents[1];
bmin[2] = center[2] - extents[2];
bmax[0] = center[0] + extents[0];
bmax[1] = center[1] + extents[1];
bmax[2] = center[2] + extents[2];
// Find tiles the query touches.
const int minx = (int)floorf((bmin[0]-m_orig[0]) / m_tileSize);
const int maxx = (int)ceilf((bmax[0]-m_orig[0]) / m_tileSize);
const int miny = (int)floorf((bmin[2]-m_orig[2]) / m_tileSize);
const int maxy = (int)ceilf((bmax[2]-m_orig[2]) / m_tileSize);
int n = 0;
for (int y = miny; y < maxy; ++y)
{
for (int x = minx; x < maxx; ++x)
{
dtTile* tile = getTile(x,y);
if (!tile) continue;
n += queryTilePolygons(tile, bmin, bmax, polys+n, maxPolys-n);
if (n >= maxPolys) return n;
}
}
return n;
}
float dtTiledNavMesh::getCost(dtTilePolyRef prev, dtTilePolyRef from, dtTilePolyRef to) const
{
int salt, it, ip;
if (prev) from = prev;
// The API input has been cheked already, skip checking internal data.
decodeId(from, salt, it, ip);
const dtTileHeader* fromHeader = m_tiles[it].header;
const dtTilePoly* fromPoly = &fromHeader->polys[ip];
decodeId(to, salt, it, ip);
const dtTileHeader* toHeader = m_tiles[it].header;
const dtTilePoly* toPoly = &toHeader->polys[ip];
float fromPc[3], toPc[3];
calcPolyCenter(fromPc, fromPoly, fromHeader->verts);
calcPolyCenter(toPc, toPoly, toHeader->verts);
float dx = fromPc[0]-toPc[0];
float dy = fromPc[1]-toPc[1];
float dz = fromPc[2]-toPc[2];
return sqrtf(dx*dx + dy*dy + dz*dz);
}
float dtTiledNavMesh::getHeuristic(dtTilePolyRef from, dtTilePolyRef to) const
{
int salt, it, ip;
// The API input has been cheked already, skip checking internal data.
decodeId(from, salt, it, ip);
const dtTileHeader* fromHeader = m_tiles[it].header;
const dtTilePoly* fromPoly = &fromHeader->polys[ip];
decodeId(to, salt, it, ip);
const dtTileHeader* toHeader = m_tiles[it].header;
const dtTilePoly* toPoly = &toHeader->polys[ip];
float fromPc[3], toPc[3];
calcPolyCenter(fromPc, fromPoly, fromHeader->verts);
calcPolyCenter(toPc, toPoly, toHeader->verts);
float dx = fromPc[0]-toPc[0];
float dy = fromPc[1]-toPc[1];
float dz = fromPc[2]-toPc[2];
return sqrtf(dx*dx + dy*dy + dz*dz) * 2.0f;
}
int dtTiledNavMesh::findPath(dtTilePolyRef startRef, dtTilePolyRef endRef,
dtTilePolyRef* path, const int maxPathSize)
{
if (!startRef || !endRef)
return 0;
if (!maxPathSize)
return 0;
if (!getPolyByRef(startRef) || !getPolyByRef(endRef))
return 0;
if (startRef == endRef)
{
path[0] = startRef;
return 1;
}
if (!m_nodePool || !m_openList)
return 0;
m_nodePool->clear();
m_openList->clear();
dtTileNode* startNode = m_nodePool->getNode(startRef);
startNode->parent = 0;
startNode->cost = 0;
startNode->total = getHeuristic(startRef, endRef);
startNode->id = startRef;
startNode->flags = dtTileNode::OPEN;
m_openList->push(startNode);
dtTileNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
while (!m_openList->empty())
{
dtTileNode* bestNode = m_openList->pop();
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
// Get poly and tile.
int salt, it, ip;
decodeId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtTileHeader* h = m_tiles[it].header;
const dtTilePoly* poly = &h->polys[ip];
for (int i = 0; i < poly->nlinks; ++i)
{
dtTilePolyRef neighbour = h->links[poly->links+i].ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->parent && bestNode->parent->id == neighbour)
continue;
dtTileNode newNode;
newNode.parent = bestNode;
newNode.id = neighbour;
newNode.cost = bestNode->cost + getCost(newNode.parent->parent ? newNode.parent->parent->id : 0, newNode.parent->id, newNode.id);
float h = getHeuristic(newNode.id, endRef);
newNode.total = newNode.cost + h;
dtTileNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & dtTileNode::OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & dtTileNode::CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= dtTileNode::CLOSED;
actualNode->parent = newNode.parent;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (h < lastBestNodeCost)
{
lastBestNodeCost = h;
lastBestNode = actualNode;
}
if (actualNode->flags & dtTileNode::OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags = dtTileNode::OPEN;
m_openList->push(actualNode);
}
}
}
}
}
// Reverse the path.
dtTileNode* prev = 0;
dtTileNode* node = lastBestNode;
do
{
dtTileNode* next = node->parent;
node->parent = prev;
prev = node;
node = next;
}
while (node);
// Store path
node = prev;
int n = 0;
do
{
path[n++] = node->id;
node = node->parent;
}
while (node && n < maxPathSize);
return n;
}
int dtTiledNavMesh::findStraightPath(const float* startPos, const float* endPos,
const dtTilePolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize)
{
if (!maxStraightPathSize)
return 0;
if (!path[0])
return 0;
int straightPathSize = 0;
float closestStartPos[3];
if (!closestPointToPoly(path[0], startPos, closestStartPos))
return 0;
// Add start point.
vcopy(&straightPath[straightPathSize*3], closestStartPos);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
float closestEndPos[3];
if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
return 0;
float portalApex[3], portalLeft[3], portalRight[3];
if (pathSize > 1)
{
vcopy(portalApex, closestStartPos);
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
if (i < pathSize-1)
{
// Next portal.
if (!getPortalPoints(path[i], path[i+1], left, right))
{
if (!closestPointToPoly(path[i], endPos, closestEndPos))
return 0;
vcopy(&straightPath[straightPathSize*3], closestEndPos);
straightPathSize++;
return straightPathSize;
}
}
else
{
// End of the path.
vcopy(left, closestEndPos);
vcopy(right, closestEndPos);
}
// Right vertex.
if (vequal(portalApex, portalRight))
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
vcopy(portalApex, portalLeft);
apexIndex = leftIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Left vertex.
if (vequal(portalApex, portalLeft))
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (triArea2D(portalApex, portalRight, left) < 0.0f)
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
vcopy(portalApex, portalRight);
apexIndex = rightIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
}
}
// Add end point.
vcopy(&straightPath[straightPathSize*3], closestEndPos);
straightPathSize++;
return straightPathSize;
}
// Returns portal points between two polygons.
bool dtTiledNavMesh::getPortalPoints(dtTilePolyRef from, dtTilePolyRef to, float* left, float* right) const
{
int salt, it, ip;
decodeId(from, salt, it, ip);
if (it >= DT_MAX_TILES) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= m_tiles[it].header->npolys) return false;
const dtTileHeader* fromHeader = m_tiles[it].header;
const dtTilePoly* fromPoly = &fromHeader->polys[ip];
for (int i = 0; i < fromPoly->nlinks; ++i)
{
const dtTileLink* link = &fromHeader->links[fromPoly->links+i];
if (link->ref == to)
{
// Find portal vertices.
const int v0 = fromPoly->v[link->e];
const int v1 = fromPoly->v[(link->e+1) % fromPoly->nv];
vcopy(left, &fromHeader->verts[v0*3]);
vcopy(right, &fromHeader->verts[v1*3]);
// If the link is at tile boundary, clamp the vertices to
// the link width.
if (link->side == 0 || link->side == 2)
{
left[2] = max(left[2],link->bmin);
left[2] = min(left[2],link->bmax);
right[2] = max(right[2],link->bmin);
right[2] = min(right[2],link->bmax);
}
else if (link->side == 1 || link->side == 3)
{
left[0] = max(left[0],link->bmin);
left[0] = min(left[0],link->bmax);
right[0] = max(right[0],link->bmin);
right[0] = min(right[0],link->bmax);
}
return true;
}
}
return false;
}
int dtTiledNavMesh::raycast(dtTilePolyRef centerRef, const float* startPos, const float* endPos,
float& t, dtTilePolyRef* path, const int pathSize)
{
t = 0;
if (!centerRef || !getPolyByRef(centerRef))
return 0;
dtTilePolyRef curRef = centerRef;
float verts[DT_TILE_VERTS_PER_POLYGON*3];
int n = 0;
while (curRef)
{
// Cast ray against current polygon.
// The API input has been cheked already, skip checking internal data.
int salt, it, ip;
decodeId(curRef, salt, it, ip);
const dtTileHeader* h = m_tiles[it].header;
const dtTilePoly* poly = &h->polys[ip];
// Collect vertices.
int nv = 0;
for (int i = 0; i < (int)poly->nv; ++i)
{
vcopy(&verts[nv*3], &h->verts[poly->v[i]*3]);
nv++;
}
if (nv < 3)
{
// Hit bad polygon, report hit.
return n;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not hit the polygon, keep the old t and report hit.
return n;
}
// Keep track of furthest t so far.
if (tmax > t)
t = tmax;
if (n < pathSize)
path[n++] = curRef;
// Follow neighbours.
dtTilePolyRef nextRef = 0;
for (int i = 0; i < poly->nlinks; ++i)
{
const dtTileLink* link = &h->links[poly->links+i];
if ((int)link->e == segMax)
{
// If the link is internal, just return the ref.
if (link->side == 0xff)
{
nextRef = link->ref;
break;
}
// If the link is at tile boundary,
// Check that the intersection lies inside the portal.
if (link->side == 0 || link->side == 2)
{
// Find Z intersection.
float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
if (z >= link->bmin && z <= link->bmax)
{
nextRef = link->ref;
break;
}
}
else if (link->side == 1 || link->side == 3)
{
// Find X intersection.
float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
if (x >= link->bmin && x <= link->bmax)
{
nextRef = link->ref;
break;
}
}
}
}
if (!nextRef)
{
// No neighbour, we hit a wall.
return n;
}
// No hit, advance to neighbour polygon.
curRef = nextRef;
}
return n;
}
int dtTiledNavMesh::findPolysAround(dtTilePolyRef centerRef, const float* centerPos, float radius,
dtTilePolyRef* resultRef, dtTilePolyRef* resultParent,
float* resultCost, unsigned short* resultDepth,
const int maxResult)
{
if (!centerRef) return 0;
if (!getPolyByRef(centerRef)) return 0;
if (!m_nodePool || !m_openList) return 0;
m_nodePool->clear();
m_openList->clear();
dtTileNode* startNode = m_nodePool->getNode(centerRef);
startNode->parent = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = dtTileNode::OPEN;
m_openList->push(startNode);
int n = 0;
if (n < maxResult)
{
if (resultRef)
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
if (resultCost)
resultCost[n] = 0;
if (resultDepth)
resultDepth[n] = 0;
++n;
}
const float radiusSqr = sqr(radius);
while (!m_openList->empty())
{
dtTileNode* bestNode = m_openList->pop();
// Get poly and tile.
int salt, it, ip;
decodeId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtTileHeader* h = m_tiles[it].header;
const dtTilePoly* poly = &h->polys[ip];
for (int i = 0; i < poly->nlinks; ++i)
{
const dtTileLink* link = &h->links[poly->links+i];
dtTilePolyRef neighbour = link->ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->parent && bestNode->parent->id == neighbour)
continue;
// Calc distance to the edge.
const float* va = &h->verts[poly->v[link->e]*3];
const float* vb = &h->verts[poly->v[(link->e+1)%poly->nv]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtTileNode newNode;
newNode.parent = bestNode;
newNode.id = neighbour;
newNode.cost = bestNode->cost + 1; // Depth
newNode.total = bestNode->total + getCost(newNode.parent->parent ? newNode.parent->parent->id : 0, newNode.parent->id, newNode.id);
dtTileNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & dtTileNode::OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & dtTileNode::CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~dtTileNode::CLOSED;
actualNode->parent = newNode.parent;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (actualNode->flags & dtTileNode::OPEN)
{
m_openList->modify(actualNode);
}
else
{
if (n < maxResult)
{
if (resultRef)
resultRef[n] = actualNode->id;
if (resultParent)
resultParent[n] = actualNode->parent->id;
if (resultCost)
resultCost[n] = actualNode->total;
if (resultDepth)
resultDepth[n] = (unsigned short)actualNode->cost;
++n;
}
actualNode->flags = dtTileNode::OPEN;
m_openList->push(actualNode);
}
}
}
}
}
return n;
}
float dtTiledNavMesh::findDistanceToWall(dtTilePolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal)
{
if (!centerRef) return 0;
if (!getPolyByRef(centerRef)) return 0;
if (!m_nodePool || !m_openList) return 0;
m_nodePool->clear();
m_openList->clear();
dtTileNode* startNode = m_nodePool->getNode(centerRef);
startNode->parent = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = dtTileNode::OPEN;
m_openList->push(startNode);
float radiusSqr = sqr(maxRadius);
while (!m_openList->empty())
{
dtTileNode* bestNode = m_openList->pop();
// Get poly and tile.
int salt, it, ip;
decodeId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtTileHeader* h = m_tiles[it].header;
const dtTilePoly* poly = &h->polys[ip];
// Hit test walls.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip non-solid edges.
if (poly->n[j] & 0x8000)
{
// Tile border.
bool solid = true;
for (int i = 0; i < poly->nlinks; ++i)
{
const dtTileLink* link = &h->links[poly->links+i];
if (link->e == j && link->ref != 0)
{
solid = false;
break;
}
}
if (!solid) continue;
}
else if (poly->n[j])
{
// Internal edge
continue;
}
// Calc distance to the edge.
const float* vj = &h->verts[poly->v[j]*3];
const float* vi = &h->verts[poly->v[i]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
for (int i = 0; i < poly->nlinks; ++i)
{
const dtTileLink* link = &h->links[poly->links+i];
dtTilePolyRef neighbour = link->ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->parent && bestNode->parent->id == neighbour)
continue;
// Calc distance to the edge.
const float* va = &h->verts[poly->v[link->e]*3];
const float* vb = &h->verts[poly->v[(link->e+1)%poly->nv]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtTileNode newNode;
newNode.parent = bestNode;
newNode.id = neighbour;
newNode.cost = bestNode->cost + 1; // Depth
newNode.total = bestNode->total + getCost(newNode.parent->parent ? newNode.parent->parent->id : 0, newNode.parent->id, newNode.id);
dtTileNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & dtTileNode::OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & dtTileNode::CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~dtTileNode::CLOSED;
actualNode->parent = newNode.parent;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (actualNode->flags & dtTileNode::OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags = dtTileNode::OPEN;
m_openList->push(actualNode);
}
}
}
}
}
// Calc hit normal.
vsub(hitNormal, centerPos, hitPos);
vnormalize(hitNormal);
return sqrtf(radiusSqr);
}