recastnavigation_v1.6.0/RecastDemo/Source/BuilderStatMeshSimple.cpp

509 lines
17 KiB
C++

#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "SDL.h"
#include "SDL_Opengl.h"
#include "imgui.h"
#include "glfont.h"
#include "Builder.h"
#include "BuilderStatMeshSimple.h"
#include "Recast.h"
#include "RecastTimer.h"
#include "RecastDebugDraw.h"
#include "DetourStatNavMesh.h"
#include "DetourStatNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
BuilderStatMeshSimple::BuilderStatMeshSimple() :
m_keepInterResults(false),
m_triflags(0),
m_solid(0),
m_chf(0),
m_cset(0),
m_polyMesh(0),
m_drawMode(DRAWMODE_NAVMESH)
{
}
BuilderStatMeshSimple::~BuilderStatMeshSimple()
{
cleanup();
}
void BuilderStatMeshSimple::cleanup()
{
delete [] m_triflags;
m_triflags = 0;
delete m_solid;
m_solid = 0;
delete m_chf;
m_chf = 0;
delete m_cset;
m_cset = 0;
delete m_polyMesh;
m_polyMesh = 0;
toolCleanup();
}
void BuilderStatMeshSimple::handleSettings()
{
Builder::handleCommonSettings();
if (imguiCheck(GENID, "Keep Itermediate Results", m_keepInterResults))
m_keepInterResults = !m_keepInterResults;
imguiSeparator();
}
void BuilderStatMeshSimple::handleDebugMode()
{
// Check which modes are valid.
bool valid[MAX_DRAWMODE];
for (int i = 0; i < MAX_DRAWMODE; ++i)
valid[i] = false;
if (m_verts && m_tris)
{
valid[DRAWMODE_NAVMESH] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0;
valid[DRAWMODE_MESH] = true;
valid[DRAWMODE_VOXELS] = m_solid != 0;
valid[DRAWMODE_VOXELS_WALKABLE] = m_solid != 0;
valid[DRAWMODE_COMPACT] = m_chf != 0;
valid[DRAWMODE_COMPACT_DISTANCE] = m_chf != 0;
valid[DRAWMODE_COMPACT_REGIONS] = m_chf != 0;
valid[DRAWMODE_REGION_CONNECTIONS] = m_cset != 0;
valid[DRAWMODE_RAW_CONTOURS] = m_cset != 0;
valid[DRAWMODE_BOTH_CONTOURS] = m_cset != 0;
valid[DRAWMODE_CONTOURS] = m_cset != 0;
valid[DRAWMODE_POLYMESH] = m_polyMesh != 0;
}
if (!valid[m_drawMode])
m_drawMode = DRAWMODE_MESH;
int unavail = 0;
for (int i = 0; i < MAX_DRAWMODE; ++i)
if (!valid[i]) unavail++;
if (unavail == MAX_DRAWMODE)
return;
imguiLabel(GENID, "Draw");
if (valid[DRAWMODE_MESH] && imguiCheck(GENID, "Input Mesh", m_drawMode == DRAWMODE_MESH))
m_drawMode = DRAWMODE_MESH;
if (valid[DRAWMODE_NAVMESH] && imguiCheck(GENID, "Navmesh", m_drawMode == DRAWMODE_NAVMESH))
m_drawMode = DRAWMODE_NAVMESH;
if (valid[DRAWMODE_NAVMESH_INVIS] && imguiCheck(GENID, "Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS))
m_drawMode = DRAWMODE_NAVMESH_INVIS;
if (valid[DRAWMODE_NAVMESH_TRANS] && imguiCheck(GENID, "Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS))
m_drawMode = DRAWMODE_NAVMESH_TRANS;
if (valid[DRAWMODE_NAVMESH_BVTREE] && imguiCheck(GENID, "Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE))
m_drawMode = DRAWMODE_NAVMESH_BVTREE;
if (valid[DRAWMODE_VOXELS] && imguiCheck(GENID, "Voxels", m_drawMode == DRAWMODE_VOXELS))
m_drawMode = DRAWMODE_VOXELS;
if (valid[DRAWMODE_VOXELS_WALKABLE] && imguiCheck(GENID, "Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE))
m_drawMode = DRAWMODE_VOXELS_WALKABLE;
if (valid[DRAWMODE_COMPACT] && imguiCheck(GENID, "Compact", m_drawMode == DRAWMODE_COMPACT))
m_drawMode = DRAWMODE_COMPACT;
if (valid[DRAWMODE_COMPACT_DISTANCE] && imguiCheck(GENID, "Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE))
m_drawMode = DRAWMODE_COMPACT_DISTANCE;
if (valid[DRAWMODE_COMPACT_REGIONS] && imguiCheck(GENID, "Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS))
m_drawMode = DRAWMODE_COMPACT_REGIONS;
if (valid[DRAWMODE_REGION_CONNECTIONS] && imguiCheck(GENID, "Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS))
m_drawMode = DRAWMODE_REGION_CONNECTIONS;
if (valid[DRAWMODE_RAW_CONTOURS] && imguiCheck(GENID, "Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS))
m_drawMode = DRAWMODE_RAW_CONTOURS;
if (valid[DRAWMODE_BOTH_CONTOURS] && imguiCheck(GENID, "Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS))
m_drawMode = DRAWMODE_BOTH_CONTOURS;
if (valid[DRAWMODE_CONTOURS] && imguiCheck(GENID, "Contours", m_drawMode == DRAWMODE_CONTOURS))
m_drawMode = DRAWMODE_CONTOURS;
if (valid[DRAWMODE_POLYMESH] && imguiCheck(GENID, "Poly Mesh", m_drawMode == DRAWMODE_POLYMESH))
m_drawMode = DRAWMODE_POLYMESH;
if (unavail)
{
imguiValue(GENID, "Tick 'Keep Itermediate Results'");
imguiValue(GENID, "to see more debug mode options.");
}
}
void BuilderStatMeshSimple::handleRender()
{
if (!m_verts || !m_tris || !m_trinorms)
return;
float col[4];
glEnable(GL_FOG);
glDepthMask(GL_TRUE);
if (m_drawMode == DRAWMODE_MESH)
{
// Draw mesh
rcDebugDrawMeshSlope(m_verts, m_nverts, m_tris, m_trinorms, m_ntris, m_agentMaxSlope);
}
else if (m_drawMode != DRAWMODE_NAVMESH_TRANS)
{
// Draw mesh
rcDebugDrawMesh(m_verts, m_nverts, m_tris, m_trinorms, m_ntris, 0);
}
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
// Draw bounds
col[0] = 1; col[1] = 1; col[2] = 1; col[3] = 0.5f;
rcDebugDrawBoxWire(m_bmin[0],m_bmin[1],m_bmin[2], m_bmax[0],m_bmax[1],m_bmax[2], col);
if (m_navMesh &&
(m_drawMode == DRAWMODE_NAVMESH ||
m_drawMode == DRAWMODE_NAVMESH_TRANS ||
m_drawMode == DRAWMODE_NAVMESH_BVTREE ||
m_drawMode == DRAWMODE_NAVMESH_INVIS))
{
int flags = NAVMESH_TOOLS;
if (m_drawMode != DRAWMODE_NAVMESH_INVIS)
flags |= NAVMESH_POLYS;
if (m_drawMode == DRAWMODE_NAVMESH_BVTREE)
flags |= NAVMESH_BVTREE;
toolRender(flags);
}
glDepthMask(GL_TRUE);
if (m_chf && m_drawMode == DRAWMODE_COMPACT)
rcDebugDrawCompactHeightfieldSolid(*m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_DISTANCE)
rcDebugDrawCompactHeightfieldDistance(*m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_REGIONS)
rcDebugDrawCompactHeightfieldRegions(*m_chf);
if (m_solid && m_drawMode == DRAWMODE_VOXELS)
{
glEnable(GL_FOG);
rcDebugDrawHeightfieldSolid(*m_solid);
glDisable(GL_FOG);
}
if (m_solid && m_drawMode == DRAWMODE_VOXELS_WALKABLE)
{
glEnable(GL_FOG);
rcDebugDrawHeightfieldWalkable(*m_solid);
glDisable(GL_FOG);
}
if (m_cset && m_drawMode == DRAWMODE_RAW_CONTOURS)
{
glDepthMask(GL_FALSE);
rcDebugDrawRawContours(*m_cset, m_cfg.bmin, m_cfg.cs, m_cfg.ch);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_BOTH_CONTOURS)
{
glDepthMask(GL_FALSE);
rcDebugDrawRawContours(*m_cset, m_cfg.bmin, m_cfg.cs, m_cfg.ch, 0.5f);
rcDebugDrawContours(*m_cset, m_cfg.bmin, m_cfg.cs, m_cfg.ch);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_CONTOURS)
{
glDepthMask(GL_FALSE);
rcDebugDrawContours(*m_cset, m_cfg.bmin, m_cfg.cs, m_cfg.ch);
glDepthMask(GL_TRUE);
}
if (m_chf && m_cset && m_drawMode == DRAWMODE_REGION_CONNECTIONS)
{
rcDebugDrawCompactHeightfieldRegions(*m_chf);
glDepthMask(GL_FALSE);
rcDebugDrawRegionConnections(*m_cset, m_cfg.bmin, m_cfg.cs, m_cfg.ch);
glDepthMask(GL_TRUE);
}
if (m_polyMesh && m_drawMode == DRAWMODE_POLYMESH)
{
glDepthMask(GL_FALSE);
rcDebugDrawPolyMesh(*m_polyMesh);
glDepthMask(GL_TRUE);
}
static const float startCol[4] = { 0.5f, 0.1f, 0.0f, 0.75f };
static const float endCol[4] = { 0.2f, 0.4f, 0.0f, 0.75f };
if (m_sposSet)
drawAgent(m_spos, m_agentRadius, m_agentHeight, m_agentMaxClimb, startCol);
if (m_eposSet)
drawAgent(m_epos, m_agentRadius, m_agentHeight, m_agentMaxClimb, endCol);
}
void BuilderStatMeshSimple::handleRenderOverlay(class GLFont* font, double* proj, double* model, int* view)
{
toolRenderOverlay(font, proj, model, view);
}
void BuilderStatMeshSimple::handleMeshChanged(const float* verts, int nverts,
const int* tris, const float* trinorms, int ntris,
const float* bmin, const float* bmax)
{
Builder::handleMeshChanged(verts, nverts, tris, trinorms, ntris, bmin, bmax);
toolCleanup();
toolReset();
}
bool BuilderStatMeshSimple::handleBuild()
{
if (!m_verts || ! m_tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return false;
}
cleanup();
toolCleanup();
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)ceilf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionSize = (int)rcSqr(m_regionMinSize);
m_cfg.mergeRegionSize = (int)rcSqr(m_regionMergeSize);
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
if (m_cfg.maxVertsPerPoly == DT_VERTS_PER_POLYGON)
m_drawMode = DRAWMODE_NAVMESH;
else
m_drawMode = DRAWMODE_POLYMESH;
// Set the area where the navigation will be build.
// Here the bounds of the input mesh are used, but the
// area could be specified by an user defined box, etc.
vcopy(m_cfg.bmin, m_bmin);
vcopy(m_cfg.bmax, m_bmax);
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
// Reset build times gathering.
memset(&m_buildTimes, 0, sizeof(m_buildTimes));
rcSetBuildTimes(&m_buildTimes);
// Start the build process.
rcTimeVal totStartTime = rcGetPerformanceTimer();
if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Building navigation:");
rcGetLog()->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
rcGetLog()->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", m_nverts/1000.0f, m_ntris/1000.0f);
}
// Allocate voxel heighfield where we rasterize our input data to.
m_solid = new rcHeightfield;
if (!m_solid)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
return false;
}
if (!rcCreateHeightfield(*m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
return false;
}
// Allocate array that can hold triangle flags.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triflags = new unsigned char[m_ntris];
if (!m_triflags)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'triangleFlags' (%d).", m_ntris);
return false;
}
// Find triangles which are walkable based on their slope and rasterize them.
// If your input data is multiple meshes, you can transform them here, calculate
// the flags for each of the meshes and rasterize them.
memset(m_triflags, 0, m_ntris*sizeof(unsigned char));
rcMarkWalkableTriangles(m_cfg.walkableSlopeAngle, m_verts, m_nverts, m_tris, m_ntris, m_triflags);
rcRasterizeTriangles(m_verts, m_nverts, m_tris, m_triflags, m_ntris, *m_solid);
if (!m_keepInterResults)
{
delete [] m_triflags;
m_triflags = 0;
}
// Once all geoemtry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
rcFilterLedgeSpans(m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
rcFilterWalkableLowHeightSpans(m_cfg.walkableHeight, *m_solid);
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = new rcCompactHeightfield;
if (!m_chf)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return false;
}
if (!rcBuildCompactHeightfield(m_cfg.walkableHeight, m_cfg.walkableClimb, RC_WALKABLE, *m_solid, *m_chf))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return false;
}
if (!m_keepInterResults)
{
delete m_solid;
m_solid = 0;
}
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(*m_chf))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return false;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(*m_chf, m_cfg.walkableRadius, m_cfg.borderSize, m_cfg.minRegionSize, m_cfg.mergeRegionSize))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build regions.");
}
// Create contours.
m_cset = new rcContourSet;
if (!m_cset)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return false;
}
if (!rcBuildContours(*m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return false;
}
if (!m_keepInterResults)
{
delete m_chf;
m_chf = 0;
}
// Build polygon navmesh from the contours.
m_polyMesh = new rcPolyMesh;
if (!m_polyMesh)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'polyMesh'.");
return false;
}
if (!rcBuildPolyMesh(*m_cset, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch, m_cfg.maxVertsPerPoly, *m_polyMesh))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return false;
}
if (!m_keepInterResults)
{
delete m_cset;
m_cset = 0;
}
if (m_cfg.maxVertsPerPoly == DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;
if (!dtCreateNavMeshData(m_polyMesh->verts, m_polyMesh->nverts,
m_polyMesh->polys, m_polyMesh->npolys, m_polyMesh->nvp,
m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch, &navData, &navDataSize))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return false;
}
m_navMesh = new dtStatNavMesh;
if (!m_navMesh)
{
delete [] navData;
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Could not create Detour navmesh");
return false;
}
if (!m_navMesh->init(navData, navDataSize, true))
{
delete [] navData;
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Could not init Detour navmesh");
return false;
}
}
rcTimeVal totEndTime = rcGetPerformanceTimer();
// Show performance stats.
if (rcGetLog())
{
const float pc = 100.0f / rcGetDeltaTimeUsec(totStartTime, totEndTime);
rcGetLog()->log(RC_LOG_PROGRESS, "Rasterize: %.1fms (%.1f%%)", m_buildTimes.rasterizeTriangles/1000.0f, m_buildTimes.rasterizeTriangles*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Compact: %.1fms (%.1f%%)", m_buildTimes.buildCompact/1000.0f, m_buildTimes.buildCompact*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Border: %.1fms (%.1f%%)", m_buildTimes.filterBorder/1000.0f, m_buildTimes.filterBorder*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Walkable: %.1fms (%.1f%%)", m_buildTimes.filterWalkable/1000.0f, m_buildTimes.filterWalkable*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Reachable: %.1fms (%.1f%%)", m_buildTimes.filterMarkReachable/1000.0f, m_buildTimes.filterMarkReachable*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Distancefield: %.1fms (%.1f%%)", m_buildTimes.buildDistanceField/1000.0f, m_buildTimes.buildDistanceField*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - distance: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldDist/1000.0f, m_buildTimes.buildDistanceFieldDist*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldBlur/1000.0f, m_buildTimes.buildDistanceFieldBlur*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Regions: %.1fms (%.1f%%)", m_buildTimes.buildRegions/1000.0f, m_buildTimes.buildRegions*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - watershed: %.1fms (%.1f%%)", m_buildTimes.buildRegionsReg/1000.0f, m_buildTimes.buildRegionsReg*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - expand: %.1fms (%.1f%%)", m_buildTimes.buildRegionsExp/1000.0f, m_buildTimes.buildRegionsExp*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - find catchment basins: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFlood/1000.0f, m_buildTimes.buildRegionsFlood*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFilter/1000.0f, m_buildTimes.buildRegionsFilter*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Contours: %.1fms (%.1f%%)", m_buildTimes.buildContours/1000.0f, m_buildTimes.buildContours*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - trace: %.1fms (%.1f%%)", m_buildTimes.buildContoursTrace/1000.0f, m_buildTimes.buildContoursTrace*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - simplify: %.1fms (%.1f%%)", m_buildTimes.buildContoursSimplify/1000.0f, m_buildTimes.buildContoursSimplify*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Fixup contours: %.1fms (%.1f%%)", m_buildTimes.fixupContours/1000.0f, m_buildTimes.fixupContours*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh: %.1fms (%.1f%%)", m_buildTimes.buildPolymesh/1000.0f, m_buildTimes.buildPolymesh*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Polymesh: Verts:%d Polys:%d", m_polyMesh->nverts, m_polyMesh->npolys);
rcGetLog()->log(RC_LOG_PROGRESS, "TOTAL: %.1fms", rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f);
}
toolRecalc();
return true;
}