
The new code assigns several (consecutive) dtNodes for polygons that lie on tile boundary. Each node gets its own point. since the nodes are packed together consecutively, it is easy to find the right node by reference even though there are several.
187 lines
4.2 KiB
C++
187 lines
4.2 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include "DetourNode.h"
|
|
#include "DetourAlloc.h"
|
|
#include "DetourAssert.h"
|
|
#include "DetourCommon.h"
|
|
#include <string.h>
|
|
|
|
#ifdef DT_POLYREF64
|
|
// From Thomas Wang, https://gist.github.com/badboy/6267743
|
|
inline unsigned int dtHashRef(dtPolyRef a)
|
|
{
|
|
a = (~a) + (a << 18); // a = (a << 18) - a - 1;
|
|
a = a ^ (a >> 31);
|
|
a = a * 21; // a = (a + (a << 2)) + (a << 4);
|
|
a = a ^ (a >> 11);
|
|
a = a + (a << 6);
|
|
a = a ^ (a >> 22);
|
|
return (unsigned int)a;
|
|
}
|
|
#else
|
|
inline unsigned int dtHashRef(dtPolyRef a)
|
|
{
|
|
a += ~(a<<15);
|
|
a ^= (a>>10);
|
|
a += (a<<3);
|
|
a ^= (a>>6);
|
|
a += ~(a<<11);
|
|
a ^= (a>>16);
|
|
return (unsigned int)a;
|
|
}
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
dtNodePool::dtNodePool(int maxNodes, int hashSize) :
|
|
m_nodes(0),
|
|
m_first(0),
|
|
m_next(0),
|
|
m_maxNodes(maxNodes),
|
|
m_hashSize(hashSize),
|
|
m_nodeCount(0)
|
|
{
|
|
dtAssert(dtNextPow2(m_hashSize) == (unsigned int)m_hashSize);
|
|
dtAssert(m_maxNodes > 0);
|
|
|
|
m_nodes = (dtNode*)dtAlloc(sizeof(dtNode)*m_maxNodes, DT_ALLOC_PERM);
|
|
m_next = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*m_maxNodes, DT_ALLOC_PERM);
|
|
m_first = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*hashSize, DT_ALLOC_PERM);
|
|
|
|
dtAssert(m_nodes);
|
|
dtAssert(m_next);
|
|
dtAssert(m_first);
|
|
|
|
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
|
memset(m_next, 0xff, sizeof(dtNodeIndex)*m_maxNodes);
|
|
}
|
|
|
|
dtNodePool::~dtNodePool()
|
|
{
|
|
dtFree(m_nodes);
|
|
dtFree(m_next);
|
|
dtFree(m_first);
|
|
}
|
|
|
|
void dtNodePool::clear()
|
|
{
|
|
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
|
m_nodeCount = 0;
|
|
}
|
|
|
|
dtNode* dtNodePool::findNode(dtPolyRef id)
|
|
{
|
|
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
|
dtNodeIndex i = m_first[bucket];
|
|
while (i != DT_NULL_IDX)
|
|
{
|
|
if (m_nodes[i].id == id)
|
|
return &m_nodes[i];
|
|
i = m_next[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
dtNode* dtNodePool::getNode(dtPolyRef id, int nExtra)
|
|
{
|
|
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
|
dtNodeIndex i = m_first[bucket];
|
|
dtNode* node = 0;
|
|
while (i != DT_NULL_IDX)
|
|
{
|
|
if (m_nodes[i].id == id)
|
|
return &m_nodes[i];
|
|
i = m_next[i];
|
|
}
|
|
|
|
if (m_nodeCount + nExtra >= m_maxNodes)
|
|
return 0;
|
|
|
|
// add to hash table
|
|
i = (dtNodeIndex)m_nodeCount;
|
|
m_next[i] = m_first[bucket];
|
|
m_first[bucket] = i;
|
|
|
|
dtNode* ret = &m_nodes[i];
|
|
|
|
for ( ; nExtra >= 0; --nExtra)
|
|
{
|
|
i = (dtNodeIndex)m_nodeCount;
|
|
m_nodeCount++;
|
|
|
|
// Init node
|
|
node = &m_nodes[i];
|
|
node->pidx = 0;
|
|
node->cost = 0;
|
|
node->total = 0;
|
|
node->id = id;
|
|
node->flags = 0;
|
|
}
|
|
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
dtNodeQueue::dtNodeQueue(int n) :
|
|
m_heap(0),
|
|
m_capacity(n),
|
|
m_size(0)
|
|
{
|
|
dtAssert(m_capacity > 0);
|
|
|
|
m_heap = (dtNode**)dtAlloc(sizeof(dtNode*)*(m_capacity+1), DT_ALLOC_PERM);
|
|
dtAssert(m_heap);
|
|
}
|
|
|
|
dtNodeQueue::~dtNodeQueue()
|
|
{
|
|
dtFree(m_heap);
|
|
}
|
|
|
|
void dtNodeQueue::bubbleUp(int i, dtNode* node)
|
|
{
|
|
int parent = (i-1)/2;
|
|
// note: (index > 0) means there is a parent
|
|
while ((i > 0) && (m_heap[parent]->total > node->total))
|
|
{
|
|
m_heap[i] = m_heap[parent];
|
|
i = parent;
|
|
parent = (i-1)/2;
|
|
}
|
|
m_heap[i] = node;
|
|
}
|
|
|
|
void dtNodeQueue::trickleDown(int i, dtNode* node)
|
|
{
|
|
int child = (i*2)+1;
|
|
while (child < m_size)
|
|
{
|
|
if (((child+1) < m_size) &&
|
|
(m_heap[child]->total > m_heap[child+1]->total))
|
|
{
|
|
child++;
|
|
}
|
|
m_heap[i] = m_heap[child];
|
|
i = child;
|
|
child = (i*2)+1;
|
|
}
|
|
bubbleUp(i, node);
|
|
}
|