722 lines
29 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
// Some math headers don't have PI defined.
static const float RC_PI = 3.14159265f;
enum rcLogCategory
{
RC_LOG_PROGRESS = 1,
RC_LOG_WARNING,
RC_LOG_ERROR,
};
enum rcTimerLabel
{
RC_TIMER_TOTAL,
RC_TIMER_TEMP,
RC_TIMER_RASTERIZE_TRIANGLES,
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
RC_TIMER_BUILD_CONTOURS,
RC_TIMER_BUILD_CONTOURS_TRACE,
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
RC_TIMER_FILTER_BORDER,
RC_TIMER_FILTER_WALKABLE,
RC_TIMER_MEDIAN_AREA,
RC_TIMER_FILTER_LOW_OBSTACLES,
RC_TIMER_BUILD_POLYMESH,
RC_TIMER_MERGE_POLYMESH,
RC_TIMER_ERODE_AREA,
RC_TIMER_MARK_BOX_AREA,
RC_TIMER_MARK_CYLINDER_AREA,
RC_TIMER_MARK_CONVEXPOLY_AREA,
RC_TIMER_BUILD_DISTANCEFIELD,
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
RC_TIMER_BUILD_REGIONS,
RC_TIMER_BUILD_REGIONS_WATERSHED,
RC_TIMER_BUILD_REGIONS_EXPAND,
RC_TIMER_BUILD_REGIONS_FLOOD,
RC_TIMER_BUILD_REGIONS_FILTER,
RC_TIMER_BUILD_LAYERS,
RC_TIMER_BUILD_POLYMESHDETAIL,
RC_TIMER_MERGE_POLYMESHDETAIL,
RC_MAX_TIMERS
};
/// Build context provides several optional utilities needed for the build process,
/// such as timing, logging, and build time collecting.
class rcContext
{
public:
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
/// Enables or disables logging.
inline void enableLog(bool state) { m_logEnabled = state; }
/// Resets log.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
/// Logs a message.
void log(const rcLogCategory category, const char* format, ...);
/// Enables or disables timer.
inline void enableTimer(bool state) { m_timerEnabled = state; }
/// Resets all timers.
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
/// Starts timer, used for performance timing.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
/// Stops timer, used for performance timing.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
/// Returns time accumulated between timer start/stop.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
protected:
/// @name Virtual functions to override for custom implementations.
///@{
virtual void doResetLog() {}
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
virtual void doResetTimers() {}
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
///@}
bool m_logEnabled;
bool m_timerEnabled;
};
/// The units of the parameters are specified in parenthesis as follows:
/// (vx) voxels, (wu) world units
struct rcConfig
{
int width, height; ///< Dimensions of the rasterized heightfield (vx)
int tileSize; ///< Width and Height of a tile (vx)
int borderSize; ///< Non-navigable Border around the heightfield (vx)
float cs, ch; ///< Grid cell size and height (wu)
float bmin[3], bmax[3]; ///< Grid bounds (wu)
float walkableSlopeAngle; ///< Maximum walkable slope angle in degrees.
int walkableHeight; ///< Minimum height where the agent can still walk (vx)
int walkableClimb; ///< Maximum height between grid cells the agent can climb (vx)
int walkableRadius; ///< Radius of the agent in cells (vx)
int maxEdgeLen; ///< Maximum contour edge length (vx)
float maxSimplificationError; ///< Maximum distance error from contour to cells (vx)
int minRegionArea; ///< Regions whose area is smaller than this threshold will be removed. (vx)
int mergeRegionArea; ///< Regions whose area is smaller than this threshold will be merged (vx)
int maxVertsPerPoly; ///< Max number of vertices per polygon
float detailSampleDist; ///< Detail mesh sample spacing.
float detailSampleMaxError; ///< Detail mesh simplification max sample error.
};
/// Define number of bits in the above structure for smin/smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// The max height is used for clamping rasterized values.
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
/// Heightfield span.
struct rcSpan
{
unsigned int smin : 13; ///< Span min height.
unsigned int smax : 13; ///< Span max height.
unsigned int area : 6; ///< Span area type.
rcSpan* next; ///< Next span in column.
};
/// Number of spans allocated per pool.
static const int RC_SPANS_PER_POOL = 2048;
/// Memory pool used for quick span allocation.
struct rcSpanPool
{
rcSpanPool* next; ///< Pointer to next pool.
rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans.
};
/// Dynamic span-heightfield.
struct rcHeightfield
{
int width, height; ///< Dimension of the heightfield.
float bmin[3], bmax[3]; ///< Bounding box of the heightfield
float cs, ch; ///< Cell size and height.
rcSpan** spans; ///< Heightfield of spans (width*height).
rcSpanPool* pools; ///< Linked list of span pools.
rcSpan* freelist; ///< Pointer to next free span.
};
rcHeightfield* rcAllocHeightfield();
void rcFreeHeightField(rcHeightfield* hf);
struct rcCompactCell
{
unsigned int index : 24; ///< Index to first span in column.
unsigned int count : 8; ///< Number of spans in this column.
};
struct rcCompactSpan
{
unsigned short y; ///< Bottom coordinate of the span.
unsigned short reg;
unsigned int con : 24; ///< Connections to neighbour cells.
unsigned int h : 8; ///< Height of the span.
};
/// Compact static heightfield.
struct rcCompactHeightfield
{
int width, height; ///< Width and height of the heightfield.
int spanCount; ///< Number of spans in the heightfield.
int walkableHeight, walkableClimb; ///< Agent properties.
int borderSize; ///< Border size of the heighfield.
unsigned short maxDistance; ///< Maximum distance value stored in heightfield.
unsigned short maxRegions; ///< Maximum Region Id stored in heightfield.
float bmin[3], bmax[3]; ///< Bounding box of the heightfield.
float cs, ch; ///< Cell size and height.
rcCompactCell* cells; ///< Pointer to width*height cells.
rcCompactSpan* spans; ///< Pointer to spans.
unsigned short* dist; ///< Pointer to per span distance to border.
unsigned char* areas; ///< Pointer to per span area ID.
};
rcCompactHeightfield* rcAllocCompactHeightfield();
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
struct rcHeightfieldLayer
{
float bmin[3], bmax[3]; ///< Bounding box of the heightfield.
float cs, ch; ///< Cell size and height.
int width, height; ///< Width and height of the layer.
int minx,maxx,miny,maxy; ///< Bounding box of usable data.
int hmin, hmax; ///< Height min/max
unsigned char* heights; ///< Heighfield.
unsigned char* areas; ///< Area types.
unsigned char* cons; ///< Connections.
};
struct rcHeightfieldLayerSet
{
rcHeightfieldLayer* layers; ///< Pointer to layers.
int nlayers; ///< Number of layers.
};
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
struct rcContour
{
int* verts; ///< Vertex coordinates, each vertex contains 4 components.
int nverts; ///< Number of vertices.
int* rverts; ///< Raw vertex coordinates, each vertex contains 4 components.
int nrverts; ///< Number of raw vertices.
unsigned short reg; ///< Region ID of the contour.
unsigned char area; ///< Area ID of the contour.
};
struct rcContourSet
{
rcContour* conts; ///< Pointer to all contours.
int nconts; ///< Number of contours.
float bmin[3], bmax[3]; ///< Bounding box of the heightfield.
float cs, ch; ///< Cell size and height.
int width, height; ///< Region where the contours were build.
int borderSize; ///< Border size of the heighfield where the contours were build from.
};
rcContourSet* rcAllocContourSet();
void rcFreeContourSet(rcContourSet* cset);
/// Polymesh store a connected mesh of polygons.
/// The polygons are store in an array where each polygons takes
/// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
/// and the second 'nvp' elements are indices to neighbour polygons.
/// If a polygon has less than 'bvp' vertices, the remaining indices
/// are set to RC_MESH_NULL_IDX. If an polygon edge does not have a neighbour
/// the neighbour index is set to RC_MESH_NULL_IDX.
/// Vertices can be transformed into world space as follows:
/// x = bmin[0] + verts[i*3+0]*cs;
/// y = bmin[1] + verts[i*3+1]*ch;
/// z = bmin[2] + verts[i*3+2]*cs;
struct rcPolyMesh
{
unsigned short* verts; ///< Vertices of the mesh, 3 elements per vertex.
unsigned short* polys; ///< Polygons of the mesh, nvp*2 elements per polygon.
unsigned short* regs; ///< Region ID of the polygons.
unsigned short* flags; ///< Per polygon flags.
unsigned char* areas; ///< Area ID of polygons.
int nverts; ///< Number of vertices.
int npolys; ///< Number of polygons.
int maxpolys; ///< Number of allocated polygons.
int nvp; ///< Max number of vertices per polygon.
float bmin[3], bmax[3]; ///< Bounding box of the mesh.
float cs, ch; ///< Cell size and height.
int borderSize; ///< Border size of the heighfield where the mesh was build from.
};
rcPolyMesh* rcAllocPolyMesh();
void rcFreePolyMesh(rcPolyMesh* pmesh);
/// Detail mesh generated from a rcPolyMesh.
/// Each submesh represents a polygon in the polymesh and they are stored in
/// exactly same order. Each submesh is described as 4 values:
/// base vertex, vertex count, base triangle, triangle count. That is,
/// const unsigned char* t = &dmesh.tris[(tbase+i)*4]; and
/// const float* v = &dmesh.verts[(vbase+t[j])*3];
/// If the input polygon has 'n' vertices, those vertices are first in the
/// submesh vertex list. This allows to compres the mesh by not storing the
/// first vertices and using the polymesh vertices instead.
/// Max number of vertices per submesh is 127 and
/// max number of triangles per submesh is 255.
struct rcPolyMeshDetail
{
unsigned int* meshes; ///< Pointer to all mesh data.
float* verts; ///< Pointer to all vertex data.
unsigned char* tris; ///< Pointer to all triangle data.
int nmeshes; ///< Number of meshes.
int nverts; ///< Number of total vertices.
int ntris; ///< Number of triangles.
};
rcPolyMeshDetail* rcAllocPolyMeshDetail();
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
/// If heightfield region ID has the following bit set, the region is on border area
/// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
/// If contour region ID has the following bit set, the vertex will be later
/// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
static const int RC_AREA_BORDER = 0x20000;
enum rcBuildContoursFlags
{
RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate wall edges
RC_CONTOUR_TESS_AREA_EDGES = 0x02, ///< Tessellate edges between areas.
};
/// Mask used with contours to extract region id.
static const int RC_CONTOUR_REG_MASK = 0xffff;
/// Null index which is used with meshes to mark unset or invalid indices.
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
/// Area ID that is considered empty.
static const unsigned char RC_NULL_AREA = 0;
/// Area ID that is considered generally walkable.
static const unsigned char RC_WALKABLE_AREA = 63;
/// Value returned by rcGetCon() if the direction is not connected.
static const int RC_NOT_CONNECTED = 0x3f;
/// Compact span neighbour helpers.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
unsigned int con = s.con;
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
return (s.con >> shift) & 0x3f;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
/// @name Common helper functions
///@{
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
float rcSqrt(float x);
inline int rcAlign4(int x) { return (x+3) & ~3; }
///@}
/// @name Common vector helper functions.
///@{
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return rcSqrt(dx*dx + dy*dy + dz*dz);
}
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool rcVequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = rcVdistSqr(p0, p1);
return d < thr;
}
///@}
/// Calculated bounding box of array of vertices.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param bmin,bmax [out] bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
/// Calculates grid size based on bounding box and grid cell size.
/// @param bmin,bmax [in] bounding box
/// @param cs [in] grid cell size
/// @param w [out] grid width
/// @param h [out] grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
/// Creates and initializes new heightfield.
/// @param hf [in,out] heightfield to initialize.
/// @param width [in] width of the heightfield.
/// @param height [in] height of the heightfield.
/// @param bmin,bmax [in] bounding box of the heightfield
/// @param cs [in] grid cell size
/// @param ch [in] grid cell height
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
/// Sets the RC_WALKABLE_AREA for every triangle whose slope is below
/// the maximum walkable slope angle.
/// @param walkableSlopeAngle [in] maximum slope angle in degrees.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param nt [in] triangle count
/// @param areas [out] array of triangle area types
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Sets the RC_NULL_AREA for every triangle whose slope is steeper than
/// the maximum walkable slope angle.
/// @param walkableSlopeAngle [in] maximum slope angle in degrees.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param nt [in] triangle count
/// @param areas [out] array of triangle are types
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Adds span to heightfield.
/// The span addition can set to favor flags. If the span is merged to
/// another span and the new smax is within 'flagMergeThr' units away
/// from the existing span the span flags are merged and stored.
/// @param x,y [in] location on the heightfield where the span is added
/// @param smin,smax [in] spans min/max height
/// @param area
/// @param flagMergeThr [in] merge threshold.
void rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr);
/// Rasterizes a triangle into heightfield spans.
/// @param v0,v1,v2 [in] the vertices of the triangle.
/// @param area [in] area type of the triangle.
/// @param solid [in] heightfield where the triangle is rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
/// Rasterizes indexed triangle mesh into heightfield spans.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes indexed triangle mesh into heightfield spans.
/// @param verts [in] array of vertices
/// @param nv [in] vertex count
/// @param tris [in] array of triangle vertex indices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
/// @param flagMergeThr [in] distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes the triangles into heightfield spans.
/// @param verts [in] array of vertices
/// @param areas [in] array of triangle area types.
/// @param nt [in] triangle count
/// @param solid [in] heightfield where the triangles are rasterized
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Marks non-walkable low obstacles as walkable if they are closer than walkableClimb
/// from a walkable surface. Applying this filter allows to step over low hanging
/// low obstacles.
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param solid [in,out] heightfield describing the solid space
/// @warning TODO: Misses ledge flag, must be called before rcFilterLedgeSpans!
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
/// Removes WALKABLE flag from all spans that are at ledges. This filtering
/// removes possible overestimation of the conservative voxelization so that
/// the resulting mesh will not have regions hanging in air over ledges.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param solid [in,out] heightfield describing the solid space
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
/// Removes WALKABLE flag from all spans which have smaller than
/// 'walkableHeight' clearance above them.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param solid [in,out] heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
/// Returns number of spans contained in a heightfield.
/// @param hf [in] heightfield to be compacted
/// @returns number of spans.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
/// Builds compact representation of the heightfield.
/// @param walkableHeight [in] minimum height where the agent can still walk
/// @param walkableClimb [in] maximum height between grid cells the agent can climb
/// @param hf [in] heightfield to be compacted
/// @param chf [out] compact heightfield representing the open space.
/// @returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
/// Erodes walkable area.
/// @param radius [in] radius of erosion (max 255).
/// @param chf [in,out] compact heightfield to erode.
/// @returns false if operation ran out of memory.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
/// Applies median filter to walkable area types, removing noise.
/// @param chf [in,out] compact heightfield to erode.
/// @returns false if operation ran out of memory.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
/// Marks the area of the convex polygon into the area type of the compact heightfield.
/// @param bmin,bmax [in] bounds of the axis aligned box.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Marks the area of the convex polygon into the area type of the compact heightfield.
/// @param verts [in] vertices of the convex polygon.
/// @param nverts [in] number of vertices in the polygon.
/// @param hmin,hmax [in] min and max height of the polygon.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Marks the area of the cylinder into the area type of the compact heightfield.
/// @param pos [in] center bottom location of hte cylinder.
/// @param r [in] radius of the cylinder.
/// @param h [in] height of the cylinder.
/// @param areaId [in] area ID to mark.
/// @param chf [in,out] compact heightfield to mark.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
const float r, const float h, unsigned char areaId,
rcCompactHeightfield& chf);
/// Builds distance field and stores it into the combat heightfield.
/// @param chf [in,out] compact heightfield representing the open space.
/// @returns false if operation ran out of memory.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
/// Divides the walkable heighfied into simple regions using watershed partitioning.
/// Each region has only one contour and no overlaps.
/// The regions are stored in the compact heightfield 'reg' field.
/// The process sometimes creates small regions. If the area of a regions is
/// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
/// region if possible. If multiple regions form an area which is smaller than
/// 'minRegionArea' all the regions belonging to that area will be removed.
/// Here area means the count of spans in an area.
/// @param chf [in,out] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param minRegionArea [in] the smallest allowed region area.
/// @param maxMergeRegionArea [in] the largest allowed region area which can be merged.
/// @returns false if operation ran out of memory.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Divides the walkable heighfied into simple regions using simple monotone partitioning.
/// Each region has only one contour and no overlaps.
/// The regions are stored in the compact heightfield 'reg' field.
/// The process sometimes creates small regions. If the area of a regions is
/// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
/// region if possible. If multiple regions form an area which is smaller than
/// 'minRegionArea' all the regions belonging to that area will be removed.
/// Here area means the count of spans in an area.
/// @param chf [in,out] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param minRegionArea [in] the smallest allowed regions size.
/// @param maxMergeRegionArea [in] the largest allowed regions size which can be merged.
/// @returns false if operation ran out of memory.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Builds 2D layer representation of a heighfield.
/// @param chf [in] compact heightfield representing the open space.
/// @param borderSize [in] Non-navigable Border around the heightfield.
/// @param walkableHeight [in] minimum height where the agent can still walk.
/// @param lset [out] set of 2D heighfield layers.
/// @returns false if operation ran out of memory.
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int walkableHeight,
rcHeightfieldLayerSet& lset);
/// Builds simplified contours from the regions outlines.
/// @param chf [in] compact heightfield which has regions set.
/// @param maxError [in] maximum allowed distance between simplified contour and cells.
/// @param maxEdgeLen [in] maximum allowed contour edge length in cells.
/// @param cset [out] Resulting contour set.
/// @param flags [in] build flags, see rcBuildContoursFlags.
/// @returns false if operation ran out of memory.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
/// Builds connected convex polygon mesh from contour polygons.
/// @param cset [in] contour set.
/// @param nvp [in] maximum number of vertices per polygon.
/// @param mesh [out] poly mesh.
/// @returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
/// Builds detail triangle mesh for each polygon in the poly mesh.
/// @param mesh [in] poly mesh to detail.
/// @param chf [in] compact height field, used to query height for new vertices.
/// @param sampleDist [in] spacing between height samples used to generate more detail into mesh.
/// @param sampleMaxError [in] maximum allowed distance between simplified detail mesh and height sample.
/// @param dmesh [out] detail mesh.
/// @returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H