2010-07-11 07:57:27 +00:00

285 lines
7.0 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <stdarg.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastDump.h"
duFileIO::~duFileIO()
{
// Empty
}
static void ioprintf(duFileIO* io, const char* format, ...)
{
char line[256];
va_list ap;
va_start(ap, format);
const int n = vsnprintf(line, sizeof(line), format, ap);
va_end(ap);
if (n > 0)
io->write(line, sizeof(char)*n);
}
bool duDumpPolyMeshToObj(rcPolyMesh& pmesh, duFileIO* io)
{
if (!io)
{
printf("duDumpPolyMeshToObj: input IO is null.\n");
return false;
}
if (!io->isWriting())
{
printf("duDumpPolyMeshToObj: input IO not writing.\n");
return false;
}
const int nvp = pmesh.nvp;
const float cs = pmesh.cs;
const float ch = pmesh.ch;
const float* orig = pmesh.bmin;
ioprintf(io, "# Recast Navmesh\n");
ioprintf(io, "o NavMesh\n");
ioprintf(io, "\n");
for (int i = 0; i < pmesh.nverts; ++i)
{
const unsigned short* v = &pmesh.verts[i*3];
const float x = orig[0] + v[0]*cs;
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
const float z = orig[2] + v[2]*cs;
ioprintf(io, "v %f %f %f\n", x,y,z);
}
ioprintf(io, "\n");
for (int i = 0; i < pmesh.npolys; ++i)
{
const unsigned short* p = &pmesh.polys[i*nvp*2];
for (int j = 2; j < nvp; ++j)
{
if (p[j] == RC_MESH_NULL_IDX) break;
ioprintf(io, "f %d %d %d\n", p[0]+1, p[j-1]+1, p[j]+1);
}
}
return true;
}
bool duDumpPolyMeshDetailToObj(rcPolyMeshDetail& dmesh, duFileIO* io)
{
if (!io)
{
printf("duDumpPolyMeshDetailToObj: input IO is null.\n");
return false;
}
if (!io->isWriting())
{
printf("duDumpPolyMeshDetailToObj: input IO not writing.\n");
return false;
}
ioprintf(io, "# Recast Navmesh\n");
ioprintf(io, "o NavMesh\n");
ioprintf(io, "\n");
for (int i = 0; i < dmesh.nverts; ++i)
{
const float* v = &dmesh.verts[i*3];
ioprintf(io, "v %f %f %f\n", v[0],v[1],v[2]);
}
ioprintf(io, "\n");
for (int i = 0; i < dmesh.nmeshes; ++i)
{
const unsigned short* m = &dmesh.meshes[i*4];
const unsigned short bverts = m[0];
const unsigned short btris = m[2];
const unsigned short ntris = m[3];
const unsigned char* tris = &dmesh.tris[btris*4];
for (int j = 0; j < ntris; ++j)
{
ioprintf(io, "f %d %d %d\n",
(int)(bverts+tris[j*4+0])+1,
(int)(bverts+tris[j*4+1])+1,
(int)(bverts+tris[j*4+2])+1);
}
}
return true;
}
static const int CHF_MAGIC = ('r' << 24) | ('c' << 16) | ('h' << 8) | 'f';
static const int CHF_VERSION = 2;
bool duDumpCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io)
{
if (!io)
{
printf("duDumpCompactHeightfield: input IO is null.\n");
return false;
}
if (!io->isWriting())
{
printf("duDumpCompactHeightfield: input IO not writing.\n");
return false;
}
io->write(&CHF_MAGIC, sizeof(CHF_MAGIC));
io->write(&CHF_VERSION, sizeof(CHF_VERSION));
io->write(&chf.width, sizeof(chf.width));
io->write(&chf.height, sizeof(chf.height));
io->write(&chf.spanCount, sizeof(chf.spanCount));
io->write(&chf.walkableHeight, sizeof(chf.walkableHeight));
io->write(&chf.walkableClimb, sizeof(chf.walkableClimb));
io->write(&chf.maxDistance, sizeof(chf.maxDistance));
io->write(&chf.maxRegions, sizeof(chf.maxRegions));
io->write(chf.bmin, sizeof(chf.bmin));
io->write(chf.bmax, sizeof(chf.bmax));
io->write(&chf.cs, sizeof(chf.cs));
io->write(&chf.ch, sizeof(chf.ch));
int tmp = 0;
if (chf.cells) tmp |= 1;
if (chf.spans) tmp |= 2;
if (chf.dist) tmp |= 4;
if (chf.areas) tmp |= 8;
io->write(&tmp, sizeof(tmp));
if (chf.cells)
io->write(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height);
if (chf.spans)
io->write(chf.spans, sizeof(rcCompactSpan)*chf.spanCount);
if (chf.dist)
io->write(chf.dist, sizeof(unsigned short)*chf.spanCount);
if (chf.areas)
io->write(chf.areas, sizeof(unsigned char)*chf.spanCount);
return true;
}
bool duReadCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io)
{
if (!io)
{
printf("duReadCompactHeightfield: input IO is null.\n");
return false;
}
if (!io->isReading())
{
printf("duReadCompactHeightfield: input IO not reading.\n");
return false;
}
int magic = 0;
int version = 0;
io->read(&magic, sizeof(magic));
io->read(&version, sizeof(version));
if (magic != CHF_MAGIC)
{
printf("duReadCompactHeightfield: Bad voodoo.\n");
return false;
}
if (version != CHF_VERSION)
{
printf("duReadCompactHeightfield: Bad version.\n");
return false;
}
io->read(&chf.width, sizeof(chf.width));
io->read(&chf.height, sizeof(chf.height));
io->read(&chf.spanCount, sizeof(chf.spanCount));
io->read(&chf.walkableHeight, sizeof(chf.walkableHeight));
io->read(&chf.walkableClimb, sizeof(chf.walkableClimb));
io->read(&chf.maxDistance, sizeof(chf.maxDistance));
io->read(&chf.maxRegions, sizeof(chf.maxRegions));
io->read(chf.bmin, sizeof(chf.bmin));
io->read(chf.bmax, sizeof(chf.bmax));
io->read(&chf.cs, sizeof(chf.cs));
io->read(&chf.ch, sizeof(chf.ch));
int tmp = 0;
io->read(&tmp, sizeof(tmp));
if (tmp & 1)
{
chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*chf.width*chf.height, RC_ALLOC_PERM);
if (!chf.cells)
{
printf("duReadCompactHeightfield: Could not alloc cells (%d)\n", chf.width*chf.height);
return false;
}
io->read(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height);
}
if (tmp & 2)
{
chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*chf.spanCount, RC_ALLOC_PERM);
if (!chf.spans)
{
printf("duReadCompactHeightfield: Could not alloc spans (%d)\n", chf.spanCount);
return false;
}
io->read(chf.spans, sizeof(rcCompactSpan)*chf.spanCount);
}
if (tmp & 4)
{
chf.dist = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_PERM);
if (!chf.dist)
{
printf("duReadCompactHeightfield: Could not alloc dist (%d)\n", chf.spanCount);
return false;
}
io->read(chf.dist, sizeof(unsigned short)*chf.spanCount);
}
if (tmp & 8)
{
chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_PERM);
if (!chf.areas)
{
printf("duReadCompactHeightfield: Could not alloc areas (%d)\n", chf.spanCount);
return false;
}
io->read(chf.areas, sizeof(unsigned char)*chf.spanCount);
}
return true;
}