1315 lines
29 KiB
C++
Executable File
1315 lines
29 KiB
C++
Executable File
//
|
|
// Copyright (c) 2009 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include "DetourStatNavMesh.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<class T> inline void swap(T& a, T& b) { T t = a; a = b; b = t; }
|
|
template<class T> inline T min(T a, T b) { return a < b ? a : b; }
|
|
template<class T> inline T max(T a, T b) { return a > b ? a : b; }
|
|
template<class T> inline T abs(T a) { return a < 0 ? -a : a; }
|
|
template<class T> inline T sqr(T a) { return a*a; }
|
|
template<class T> inline T clamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
|
|
|
// Some vector utils
|
|
inline void vcross(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
inline float vdot(const float* v1, const float* v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
inline void vsub(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]-v2[0];
|
|
dest[1] = v1[1]-v2[1];
|
|
dest[2] = v1[2]-v2[2];
|
|
}
|
|
|
|
inline void vmin(float* mn, const float* v)
|
|
{
|
|
mn[0] = min(mn[0], v[0]);
|
|
mn[1] = min(mn[1], v[1]);
|
|
mn[2] = min(mn[2], v[2]);
|
|
}
|
|
|
|
inline void vmax(float* mx, const float* v)
|
|
{
|
|
mx[0] = max(mx[0], v[0]);
|
|
mx[1] = max(mx[1], v[1]);
|
|
mx[2] = max(mx[2], v[2]);
|
|
}
|
|
|
|
inline void vcopy(float* dest, const float* a)
|
|
{
|
|
dest[0] = a[0];
|
|
dest[1] = a[1];
|
|
dest[2] = a[2];
|
|
}
|
|
|
|
inline float vdistSqr(const float* v1, const float* v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return dx*dx + dy*dy + dz*dz;
|
|
}
|
|
|
|
inline void vnormalize(float* v)
|
|
{
|
|
float d = 1.0f / sqrtf(sqr(v[0]) + sqr(v[1]) + sqr(v[2]));
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
|
|
inline bool vequal(const float* p0, const float* p1)
|
|
{
|
|
static const float thr = sqr(1.0f/16384.0f);
|
|
const float d = vdistSqr(p0, p1);
|
|
return d < thr;
|
|
}
|
|
|
|
inline int nextPow2(int v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
inline float vdot2D(const float* u, const float* v)
|
|
{
|
|
return u[0]*v[0] + u[2]*v[2];
|
|
}
|
|
inline float vperp2D(const float* u, const float* v)
|
|
{
|
|
return u[2]*v[0] - u[0]*v[2];
|
|
}
|
|
|
|
inline float triArea2D(const float* a, const float* b, const float* c)
|
|
{
|
|
return ((b[0]*a[2] - a[0]*b[2]) + (c[0]*b[2] - b[0]*c[2]) + (a[0]*c[2] - c[0]*a[2])) * 0.5f;
|
|
}
|
|
|
|
static void closestPtPointTriangle(float* closest, const float* p,
|
|
const float* a, const float* b, const float* c)
|
|
{
|
|
// Check if P in vertex region outside A
|
|
float ab[3], ac[3], ap[3];
|
|
vsub(ab, b, a);
|
|
vsub(ac, c, a);
|
|
vsub(ap, p, a);
|
|
float d1 = vdot(ab, ap);
|
|
float d2 = vdot(ac, ap);
|
|
if (d1 <= 0.0f && d2 <= 0.0f)
|
|
{
|
|
// barycentric coordinates (1,0,0)
|
|
vcopy(closest, a);
|
|
return;
|
|
}
|
|
|
|
// Check if P in vertex region outside B
|
|
float bp[3];
|
|
vsub(bp, p, b);
|
|
float d3 = vdot(ab, bp);
|
|
float d4 = vdot(ac, bp);
|
|
if (d3 >= 0.0f && d4 <= d3)
|
|
{
|
|
// barycentric coordinates (0,1,0)
|
|
vcopy(closest, b);
|
|
return;
|
|
}
|
|
|
|
// Check if P in edge region of AB, if so return projection of P onto AB
|
|
float vc = d1*d4 - d3*d2;
|
|
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
|
|
{
|
|
// barycentric coordinates (1-v,v,0)
|
|
float v = d1 / (d1 - d3);
|
|
closest[0] = a[0] + v * ab[0];
|
|
closest[1] = a[1] + v * ab[1];
|
|
closest[2] = a[2] + v * ab[2];
|
|
return;
|
|
}
|
|
|
|
// Check if P in vertex region outside C
|
|
float cp[3];
|
|
vsub(cp, p, c);
|
|
float d5 = vdot(ab, cp);
|
|
float d6 = vdot(ac, cp);
|
|
if (d6 >= 0.0f && d5 <= d6)
|
|
{
|
|
// barycentric coordinates (0,0,1)
|
|
vcopy(closest, c);
|
|
return;
|
|
}
|
|
|
|
// Check if P in edge region of AC, if so return projection of P onto AC
|
|
float vb = d5*d2 - d1*d6;
|
|
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
|
|
{
|
|
// barycentric coordinates (1-w,0,w)
|
|
float w = d2 / (d2 - d6);
|
|
closest[0] = a[0] + w * ac[0];
|
|
closest[1] = a[1] + w * ac[1];
|
|
closest[2] = a[2] + w * ac[2];
|
|
return;
|
|
}
|
|
|
|
// Check if P in edge region of BC, if so return projection of P onto BC
|
|
float va = d3*d6 - d5*d4;
|
|
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
|
|
{
|
|
// barycentric coordinates (0,1-w,w)
|
|
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
|
closest[0] = b[0] + w * (c[0] - b[0]);
|
|
closest[1] = b[1] + w * (c[1] - b[1]);
|
|
closest[2] = b[2] + w * (c[2] - b[2]);
|
|
return;
|
|
}
|
|
|
|
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
|
float denom = 1.0f / (va + vb + vc);
|
|
float v = vb * denom;
|
|
float w = vc * denom;
|
|
closest[0] = a[0] + ab[0] * v + ac[0] * w;
|
|
closest[1] = a[1] + ab[1] * v + ac[1] * w;
|
|
closest[2] = a[2] + ab[2] * v + ac[2] * w;
|
|
}
|
|
|
|
static bool intersectSegmentPoly2D(const float* p0, const float* p1,
|
|
const float* verts, int nverts,
|
|
float& tmin, float& tmax,
|
|
int& segMin, int& segMax)
|
|
{
|
|
static const float EPS = 0.00000001f;
|
|
|
|
tmin = 0;
|
|
tmax = 1;
|
|
segMin = -1;
|
|
segMax = -1;
|
|
|
|
float dir[3];
|
|
vsub(dir, p1, p0);
|
|
|
|
for (int i = 0, j = nverts-1; i < nverts; j=i++)
|
|
{
|
|
float edge[3], diff[3];
|
|
vsub(edge, &verts[i*3], &verts[j*3]);
|
|
vsub(diff, p0, &verts[j*3]);
|
|
float n = vperp2D(edge, diff);
|
|
float d = -vperp2D(edge, dir);
|
|
if (fabs(d) < EPS)
|
|
{
|
|
// S is nearly parallel to this edge
|
|
if (n < 0)
|
|
return false;
|
|
else
|
|
continue;
|
|
}
|
|
float t = n / d;
|
|
if (d < 0)
|
|
{
|
|
// segment S is entering across this edge
|
|
if (t > tmin)
|
|
{
|
|
tmin = t;
|
|
segMin = j;
|
|
// S enters after leaving polygon
|
|
if (tmin > tmax)
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// segment S is leaving across this edge
|
|
if (t < tmax)
|
|
{
|
|
tmax = t;
|
|
segMax = j;
|
|
// S leaves before entering polygon
|
|
if (tmax < tmin)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static float distancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
|
|
{
|
|
float pqx = q[0] - p[0];
|
|
float pqz = q[2] - p[2];
|
|
float dx = pt[0] - p[0];
|
|
float dz = pt[2] - p[2];
|
|
float d = pqx*pqx + pqz*pqz;
|
|
t = pqx*dx + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = p[0] + t*pqx - pt[0];
|
|
dz = p[2] + t*pqz - pt[2];
|
|
|
|
return dx*dx + dz*dz;
|
|
}
|
|
|
|
static void calcPolyCenter(float* tc, const dtPoly* p, const float* verts)
|
|
{
|
|
tc[0] = 0.0f;
|
|
tc[1] = 0.0f;
|
|
tc[2] = 0.0f;
|
|
for (int j = 0; j < (int)p->nv; ++j)
|
|
{
|
|
const float* v = &verts[p->v[j]*3];
|
|
tc[0] += v[0];
|
|
tc[1] += v[1];
|
|
tc[2] += v[2];
|
|
}
|
|
const float s = 1.0f / p->nv;
|
|
tc[0] *= s;
|
|
tc[1] *= s;
|
|
tc[2] *= s;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
struct dtNode
|
|
{
|
|
enum dtNodeFlags
|
|
{
|
|
OPEN = 0x01,
|
|
CLOSED = 0x02,
|
|
};
|
|
dtNode* parent;
|
|
unsigned short cost;
|
|
unsigned short total;
|
|
unsigned short id;
|
|
unsigned short flags;
|
|
};
|
|
|
|
class dtNodePool
|
|
{
|
|
public:
|
|
dtNodePool(int maxNodes, int hashSize);
|
|
~dtNodePool();
|
|
inline void operator=(const dtNodePool&) {}
|
|
void clear();
|
|
dtNode* getNode(unsigned short id);
|
|
const dtNode* findNode(unsigned short id) const;
|
|
|
|
inline int getMemUsed() const
|
|
{
|
|
return sizeof(*this) +
|
|
sizeof(dtNode)*m_maxNodes +
|
|
sizeof(unsigned short)*m_maxNodes +
|
|
sizeof(unsigned short)*m_hashSize;
|
|
}
|
|
|
|
private:
|
|
inline unsigned int hashint(unsigned int a) const
|
|
{
|
|
a += ~(a<<15);
|
|
a ^= (a>>10);
|
|
a += (a<<3);
|
|
a ^= (a>>6);
|
|
a += ~(a<<11);
|
|
a ^= (a>>16);
|
|
return a;
|
|
}
|
|
|
|
dtNode* m_nodes;
|
|
unsigned short* m_first;
|
|
unsigned short* m_next;
|
|
const int m_maxNodes;
|
|
const int m_hashSize;
|
|
int m_nodeCount;
|
|
};
|
|
|
|
dtNodePool::dtNodePool(int maxNodes, int hashSize) :
|
|
m_maxNodes(maxNodes),
|
|
m_hashSize(hashSize),
|
|
m_nodes(0),
|
|
m_first(0),
|
|
m_next(0)
|
|
{
|
|
m_nodes = new dtNode[m_maxNodes];
|
|
m_next = new unsigned short[m_maxNodes];
|
|
m_first = new unsigned short[hashSize];
|
|
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
|
|
memset(m_next, 0xff, sizeof(unsigned short)*m_maxNodes);
|
|
}
|
|
|
|
dtNodePool::~dtNodePool()
|
|
{
|
|
delete [] m_nodes;
|
|
delete [] m_next;
|
|
delete [] m_first;
|
|
}
|
|
|
|
void dtNodePool::clear()
|
|
{
|
|
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
|
|
m_nodeCount = 0;
|
|
}
|
|
|
|
const dtNode* dtNodePool::findNode(unsigned short id) const
|
|
{
|
|
unsigned int bucket = hashint((unsigned int)id) & (m_hashSize-1);
|
|
unsigned short i = m_first[bucket];
|
|
while (i != 0xffff)
|
|
{
|
|
if (m_nodes[i].id == id)
|
|
return &m_nodes[i];
|
|
i = m_next[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
dtNode* dtNodePool::getNode(unsigned short id)
|
|
{
|
|
unsigned int bucket = hashint((unsigned int)id) & (m_hashSize-1);
|
|
unsigned short i = m_first[bucket];
|
|
dtNode* node = 0;
|
|
while (i != 0xffff)
|
|
{
|
|
if (m_nodes[i].id == id)
|
|
return &m_nodes[i];
|
|
i = m_next[i];
|
|
}
|
|
|
|
if (m_nodeCount >= m_maxNodes)
|
|
return 0;
|
|
|
|
i = (unsigned short)m_nodeCount;
|
|
m_nodeCount++;
|
|
|
|
// Init node
|
|
node = &m_nodes[i];
|
|
node->parent = 0;
|
|
node->cost = 0;
|
|
node->total = 0;
|
|
node->id = id;
|
|
node->flags = 0;
|
|
|
|
m_next[i] = m_first[bucket];
|
|
m_first[bucket] = i;
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
class dtNodeQueue
|
|
{
|
|
public:
|
|
dtNodeQueue(int n);
|
|
~dtNodeQueue();
|
|
inline void operator=(dtNodeQueue&) {}
|
|
|
|
inline void clear()
|
|
{
|
|
m_size = 0;
|
|
}
|
|
|
|
inline dtNode* top()
|
|
{
|
|
return m_heap[0];
|
|
}
|
|
|
|
inline dtNode* pop()
|
|
{
|
|
dtNode* result = m_heap[0];
|
|
m_size--;
|
|
trickleDown(0, m_heap[m_size]);
|
|
return result;
|
|
}
|
|
|
|
inline void push(dtNode* node)
|
|
{
|
|
m_size++;
|
|
bubbleUp(m_size-1, node);
|
|
}
|
|
|
|
inline void modify(dtNode* node)
|
|
{
|
|
for (int i = 0; i < m_size; ++i)
|
|
{
|
|
if (m_heap[i] == node)
|
|
{
|
|
bubbleUp(i, node);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool empty() const { return m_size == 0; }
|
|
|
|
inline int getMemUsed() const
|
|
{
|
|
return sizeof(*this) +
|
|
sizeof(dtNode*)*(m_capacity+1);
|
|
}
|
|
|
|
|
|
private:
|
|
void bubbleUp(int i, dtNode* node);
|
|
void trickleDown(int i, dtNode* node);
|
|
|
|
dtNode** m_heap;
|
|
const int m_capacity;
|
|
int m_size;
|
|
};
|
|
|
|
dtNodeQueue::dtNodeQueue(int n) :
|
|
m_capacity(n),
|
|
m_size(0),
|
|
m_heap(0)
|
|
{
|
|
m_heap = new dtNode*[m_capacity+1];
|
|
}
|
|
|
|
dtNodeQueue::~dtNodeQueue()
|
|
{
|
|
delete [] m_heap;
|
|
}
|
|
|
|
void dtNodeQueue::bubbleUp(int i, dtNode* node)
|
|
{
|
|
int parent = (i-1)/2;
|
|
// note: (index > 0) means there is a parent
|
|
while ((i > 0) && (m_heap[parent]->total > node->total))
|
|
{
|
|
m_heap[i] = m_heap[parent];
|
|
i = parent;
|
|
parent = (i-1)/2;
|
|
}
|
|
m_heap[i] = node;
|
|
}
|
|
|
|
void dtNodeQueue::trickleDown(int i, dtNode* node)
|
|
{
|
|
int child = (i*2)+1;
|
|
while (child < m_size)
|
|
{
|
|
if (((child+1) < m_size) &&
|
|
(m_heap[child]->total > m_heap[child+1]->total))
|
|
{
|
|
child++;
|
|
}
|
|
m_heap[i] = m_heap[child];
|
|
i = child;
|
|
child = (i*2)+1;
|
|
}
|
|
bubbleUp(i, node);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
dtStatNavMesh::dtStatNavMesh() :
|
|
m_header(0),
|
|
m_polys(0),
|
|
m_verts(0),
|
|
m_bvtree(0),
|
|
m_nodePool(0),
|
|
m_openList(0),
|
|
m_data(0),
|
|
m_dataSize(0)
|
|
{
|
|
}
|
|
|
|
dtStatNavMesh::~dtStatNavMesh()
|
|
{
|
|
delete m_nodePool;
|
|
delete m_openList;
|
|
if (m_data)
|
|
delete [] m_data;
|
|
}
|
|
|
|
bool dtStatNavMesh::init(unsigned char* data, int dataSize, bool ownsData)
|
|
{
|
|
m_header = (dtStatNavMeshHeader*)data;
|
|
if (m_header->magic != DT_NAVMESH_MAGIC)
|
|
{
|
|
return false;
|
|
}
|
|
if (m_header->version != DT_NAVMESH_VERSION)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const int headerSize = sizeof(dtStatNavMeshHeader);
|
|
const int vertsSize = sizeof(float)*3*m_header->nverts;
|
|
const int polysSize = sizeof(dtPoly)*m_header->npolys;
|
|
|
|
m_verts = (float*)(data + headerSize);
|
|
m_polys = (dtPoly*)(data + headerSize + vertsSize);
|
|
m_bvtree = (dtBVNode*)(data + headerSize + vertsSize + polysSize);
|
|
|
|
m_nodePool = new dtNodePool(2048, 256);
|
|
if (!m_nodePool)
|
|
return false;
|
|
|
|
m_openList = new dtNodeQueue(2048);
|
|
if (!m_openList)
|
|
return false;
|
|
|
|
if (ownsData)
|
|
{
|
|
m_data = data;
|
|
m_dataSize = dataSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned short dtStatNavMesh::getCost(dtPolyRef from, dtPolyRef to) const
|
|
{
|
|
const dtPoly* fromPoly = getPoly(from-1);
|
|
const dtPoly* toPoly = getPoly(to-1);
|
|
float fromPc[3], toPc[3];
|
|
calcPolyCenter(fromPc, fromPoly, m_verts);
|
|
calcPolyCenter(toPc, toPoly, m_verts);
|
|
int cost = (int)sqrtf(sqr(fromPc[0]-toPc[0]) + sqr(fromPc[2]-toPc[2]));
|
|
if (cost < 1) cost = 1;
|
|
if (cost > 0xffff) cost = 0xffff;
|
|
return cost;
|
|
}
|
|
|
|
const dtPoly* dtStatNavMesh::getPolyByRef(dtPolyRef ref) const
|
|
{
|
|
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return 0;
|
|
return &m_polys[ref-1];
|
|
}
|
|
|
|
int dtStatNavMesh::findPath(dtPolyRef startRef, dtPolyRef endRef,
|
|
dtPolyRef* path, const int maxPathSize)
|
|
{
|
|
if (!startRef || !endRef)
|
|
return 0;
|
|
|
|
if (!maxPathSize)
|
|
return 0;
|
|
|
|
if (startRef == endRef)
|
|
{
|
|
path[0] = startRef;
|
|
return 1;
|
|
}
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
startNode->parent = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = getCost(startRef, endRef);
|
|
startNode->id = startRef;
|
|
startNode->flags = dtNode::OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtNode* lastBestNode = startNode;
|
|
unsigned short lastBestNodeCost = startNode->total;
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
|
|
if (bestNode->id == endRef)
|
|
{
|
|
lastBestNode = bestNode;
|
|
break;
|
|
}
|
|
|
|
const dtPoly* poly = getPoly(bestNode->id-1);
|
|
for (int i = 0; i < (int)poly->nv; ++i)
|
|
{
|
|
dtPolyRef neighbour = poly->n[i];
|
|
if (neighbour)
|
|
{
|
|
// Skip parent node.
|
|
if (bestNode->parent && bestNode->parent->id == neighbour)
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.parent = bestNode;
|
|
newNode.id = neighbour;
|
|
newNode.cost = bestNode->cost + getCost(newNode.parent->id, newNode.id);
|
|
unsigned short costToGoal = getCost(newNode.id, endRef);
|
|
newNode.total = newNode.cost + costToGoal;
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
if (!((actualNode->flags & dtNode::OPEN) && newNode.total > actualNode->total) &&
|
|
!((actualNode->flags & dtNode::CLOSED) && newNode.total > actualNode->total))
|
|
{
|
|
actualNode->flags &= ~dtNode::CLOSED;
|
|
actualNode->parent = newNode.parent;
|
|
actualNode->cost = newNode.cost;
|
|
actualNode->total = newNode.total;
|
|
|
|
if (costToGoal < lastBestNodeCost)
|
|
{
|
|
lastBestNodeCost = costToGoal;
|
|
lastBestNode = actualNode;
|
|
}
|
|
|
|
if (actualNode->flags & dtNode::OPEN)
|
|
{
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
actualNode->flags = dtNode::OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reverse the path.
|
|
dtNode* prev = 0;
|
|
dtNode* node = lastBestNode;
|
|
do
|
|
{
|
|
dtNode* next = node->parent;
|
|
node->parent = prev;
|
|
prev = node;
|
|
node = next;
|
|
}
|
|
while (node);
|
|
|
|
// Store path
|
|
node = prev;
|
|
int n = 0;
|
|
do
|
|
{
|
|
path[n++] = node->id;
|
|
node = node->parent;
|
|
}
|
|
while (node && n < maxPathSize);
|
|
|
|
return n;
|
|
}
|
|
|
|
bool dtStatNavMesh::closestPointToPoly(dtPolyRef ref, const float* pos, float* closest) const
|
|
{
|
|
const dtPoly* poly = getPolyByRef(ref);
|
|
if (!poly)
|
|
return false;
|
|
|
|
float closestDistSqr = FLT_MAX;
|
|
|
|
for (int i = 2; i < (int)poly->nv; ++i)
|
|
{
|
|
const float* v0 = getVertex(poly->v[0]);
|
|
const float* v1 = getVertex(poly->v[i-1]);
|
|
const float* v2 = getVertex(poly->v[i]);
|
|
|
|
float pt[3];
|
|
closestPtPointTriangle(pt, pos, v0, v1, v2);
|
|
float d = vdistSqr(pos, pt);
|
|
if (d < closestDistSqr)
|
|
{
|
|
vcopy(closest, pt);
|
|
closestDistSqr = d;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int dtStatNavMesh::findStraightPath(const float* startPos, const float* endPos,
|
|
const dtPolyRef* path, const int pathSize,
|
|
float* straightPath, const int maxStraightPathSize)
|
|
{
|
|
if (!maxStraightPathSize)
|
|
return 0;
|
|
|
|
if (!path[0])
|
|
return 0;
|
|
|
|
int straightPathSize = 0;
|
|
|
|
float closestStartPos[3];
|
|
if (!closestPointToPoly(path[0], startPos, closestStartPos))
|
|
return 0;
|
|
|
|
// Add start point.
|
|
vcopy(&straightPath[straightPathSize*3], closestStartPos);
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
|
|
float closestEndPos[3];
|
|
if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
|
|
return 0;
|
|
|
|
float portalApex[3], portalLeft[3], portalRight[3];
|
|
|
|
if (pathSize > 1)
|
|
{
|
|
vcopy(portalApex, closestStartPos);
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
int apexIndex = 0;
|
|
int leftIndex = 0;
|
|
int rightIndex = 0;
|
|
|
|
for (int i = 0; i < pathSize; ++i)
|
|
{
|
|
float left[3], right[3];
|
|
if (i < pathSize-1)
|
|
{
|
|
// Next portal.
|
|
getPortalPoints(path[i], path[i+1], left, right);
|
|
}
|
|
else
|
|
{
|
|
// End of the path.
|
|
vcopy(left, closestEndPos);
|
|
vcopy(right, closestEndPos);
|
|
}
|
|
|
|
// Right vertex.
|
|
if (vequal(portalApex, portalRight))
|
|
{
|
|
vcopy(portalRight, right);
|
|
rightIndex = i;
|
|
}
|
|
else
|
|
{
|
|
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
|
|
{
|
|
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
|
|
{
|
|
vcopy(portalRight, right);
|
|
rightIndex = i;
|
|
}
|
|
else
|
|
{
|
|
vcopy(portalApex, portalLeft);
|
|
apexIndex = leftIndex;
|
|
|
|
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
|
|
{
|
|
vcopy(&straightPath[straightPathSize*3], portalApex);
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
}
|
|
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Left vertex.
|
|
if (vequal(portalApex, portalLeft))
|
|
{
|
|
vcopy(portalLeft, left);
|
|
leftIndex = i;
|
|
}
|
|
else
|
|
{
|
|
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
|
|
{
|
|
if (triArea2D(portalApex, portalRight, left) < 0.0f)
|
|
{
|
|
vcopy(portalLeft, left);
|
|
leftIndex = i;
|
|
}
|
|
else
|
|
{
|
|
vcopy(portalApex, portalRight);
|
|
apexIndex = rightIndex;
|
|
|
|
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
|
|
{
|
|
vcopy(&straightPath[straightPathSize*3], portalApex);
|
|
straightPathSize++;
|
|
if (straightPathSize >= maxStraightPathSize)
|
|
return straightPathSize;
|
|
}
|
|
|
|
vcopy(portalLeft, portalApex);
|
|
vcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add end point.
|
|
vcopy(&straightPath[straightPathSize*3], closestEndPos);
|
|
straightPathSize++;
|
|
|
|
return straightPathSize;
|
|
}
|
|
|
|
int dtStatNavMesh::getPolyVerts(dtPolyRef ref, float* verts)
|
|
{
|
|
const dtPoly* poly = getPolyByRef(ref);
|
|
if (!poly)
|
|
return 0;
|
|
float* v = verts;
|
|
for (int i = 0; i < (int)poly->nv; ++i)
|
|
{
|
|
const float* cv = &m_verts[poly->v[i]*3];
|
|
*v++ = cv[0];
|
|
*v++ = cv[1];
|
|
*v++ = cv[2];
|
|
}
|
|
return (int)poly->nv;
|
|
}
|
|
|
|
bool dtStatNavMesh::raycast(dtPolyRef centerRef, const float* startPos, const float* endPos,
|
|
float& t, dtPolyRef& endRef)
|
|
{
|
|
endRef = centerRef;
|
|
|
|
if (!centerRef)
|
|
return 0;
|
|
|
|
dtPolyRef prevRef = centerRef;
|
|
dtPolyRef curRef = centerRef;
|
|
t = 0;
|
|
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
|
|
while (curRef)
|
|
{
|
|
// Cast ray against current polygon.
|
|
int nv = getPolyVerts(curRef, verts);
|
|
if (nv < 3)
|
|
{
|
|
// Hit bad polygon, report hit.
|
|
return true;
|
|
}
|
|
|
|
float tmin, tmax;
|
|
int segMin, segMax;
|
|
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
|
|
{
|
|
// Could not a polygon, keep the old t and report hit.
|
|
return true;
|
|
}
|
|
// Keep track of furthest t so far.
|
|
if (tmax > t)
|
|
t = tmax;
|
|
|
|
endRef = curRef;
|
|
|
|
// Check the neighbour of this polygon.
|
|
const dtPoly* poly = getPolyByRef(curRef);
|
|
dtPolyRef nextRef = poly->n[segMax];
|
|
if (!nextRef)
|
|
{
|
|
// No neighbour, we hit a wall.
|
|
return true;
|
|
}
|
|
|
|
// No hit, advance to neighbour polygon.
|
|
prevRef = curRef;
|
|
curRef = nextRef;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
float dtStatNavMesh::findDistanceToWall(dtPolyRef centerRef, const float* centerPos, float maxRadius,
|
|
float* hitPos, float* hitNormal)
|
|
{
|
|
if (!centerRef)
|
|
return 0;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(centerRef);
|
|
startNode->parent = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = centerRef;
|
|
startNode->flags = dtNode::OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
float radiusSqr = sqr(maxRadius);
|
|
|
|
hitNormal[0] = 1;
|
|
hitNormal[1] = 0;
|
|
hitNormal[2] = 0;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
const dtPoly* poly = getPoly(bestNode->id-1);
|
|
|
|
// Hit test walls.
|
|
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
|
|
{
|
|
// Skip non-solid edges.
|
|
if (poly->n[j]) continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* vj = getVertex(poly->v[j]);
|
|
const float* vi = getVertex(poly->v[i]);
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
|
|
|
|
// Edge is too far, skip.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Hit wall, update radius.
|
|
radiusSqr = distSqr;
|
|
// Calculate hit pos.
|
|
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
|
|
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
|
|
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
|
|
}
|
|
|
|
// Check to see if teh circle expands to one of the neighbours and expand.
|
|
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
|
|
{
|
|
// Skip solid edges.
|
|
if (!poly->n[j]) continue;
|
|
|
|
// Expand to neighbour if not visited yet.
|
|
dtPolyRef neighbour = poly->n[j];
|
|
|
|
// Skip parent node.
|
|
if (bestNode->parent && bestNode->parent->id == neighbour)
|
|
continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* vj = getVertex(poly->v[j]);
|
|
const float* vi = getVertex(poly->v[i]);
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
|
|
|
|
// Edge is too far, skip.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.parent = bestNode;
|
|
newNode.id = neighbour;
|
|
newNode.cost = bestNode->cost + 1; // Depth
|
|
newNode.total = bestNode->total + getCost(newNode.parent->id, newNode.id);
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
if (!((actualNode->flags & dtNode::OPEN) && newNode.total > actualNode->total) &&
|
|
!((actualNode->flags & dtNode::CLOSED) && newNode.total > actualNode->total))
|
|
{
|
|
actualNode->flags &= ~dtNode::CLOSED;
|
|
actualNode->parent = newNode.parent;
|
|
actualNode->cost = newNode.cost;
|
|
actualNode->total = newNode.total;
|
|
|
|
if (actualNode->flags & dtNode::OPEN)
|
|
{
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
actualNode->flags = dtNode::OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calc hit normal.
|
|
vsub(hitNormal, centerPos, hitPos);
|
|
vnormalize(hitNormal);
|
|
|
|
return sqrtf(radiusSqr);
|
|
}
|
|
|
|
int dtStatNavMesh::findPolysAround(dtPolyRef centerRef, const float* centerPos, float radius,
|
|
dtPolyRef* resultRef, dtPolyRef* resultParent,
|
|
unsigned short* resultCost, unsigned short* resultDepth,
|
|
const int maxResult)
|
|
{
|
|
if (!centerRef)
|
|
return 0;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(centerRef);
|
|
startNode->parent = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = centerRef;
|
|
startNode->flags = dtNode::OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
int n = 0;
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = startNode->id;
|
|
if (resultParent)
|
|
resultParent[n] = 0;
|
|
if (resultCost)
|
|
resultCost[n] = 0;
|
|
if (resultDepth)
|
|
resultDepth[n] = 0;
|
|
++n;
|
|
}
|
|
|
|
const float radiusSqr = sqr(radius);
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
const dtPoly* poly = getPoly(bestNode->id-1);
|
|
for (unsigned i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j=i++)
|
|
{
|
|
dtPolyRef neighbour = poly->n[j];
|
|
|
|
if (neighbour)
|
|
{
|
|
// Skip parent node.
|
|
if (bestNode->parent && bestNode->parent->id == neighbour)
|
|
continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* vj = getVertex(poly->v[j]);
|
|
const float* vi = getVertex(poly->v[i]);
|
|
float tseg;
|
|
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
dtNode newNode;
|
|
newNode.parent = bestNode;
|
|
newNode.id = neighbour;
|
|
newNode.cost = bestNode->cost + 1; // Depth
|
|
newNode.total = bestNode->total + getCost(newNode.parent->id, newNode.id);
|
|
|
|
dtNode* actualNode = m_nodePool->getNode(newNode.id);
|
|
if (!actualNode)
|
|
continue;
|
|
|
|
if (!((actualNode->flags & dtNode::OPEN) && newNode.total > actualNode->total) &&
|
|
!((actualNode->flags & dtNode::CLOSED) && newNode.total > actualNode->total))
|
|
{
|
|
actualNode->flags &= ~dtNode::CLOSED;
|
|
actualNode->parent = newNode.parent;
|
|
actualNode->cost = newNode.cost;
|
|
actualNode->total = newNode.total;
|
|
|
|
if (actualNode->flags & dtNode::OPEN)
|
|
{
|
|
m_openList->modify(actualNode);
|
|
}
|
|
else
|
|
{
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = actualNode->id;
|
|
if (resultParent)
|
|
resultParent[n] = actualNode->parent->id;
|
|
if (resultCost)
|
|
resultCost[n] = actualNode->total;
|
|
if (resultDepth)
|
|
resultDepth[n] = actualNode->cost;
|
|
++n;
|
|
}
|
|
actualNode->flags = dtNode::OPEN;
|
|
m_openList->push(actualNode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
inline bool checkOverlapBox(const unsigned short amin[3], const unsigned short amax[3],
|
|
const unsigned short bmin[3], const unsigned short bmax[3])
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
// Returns polygons which are withing certain radius from the query location.
|
|
int dtStatNavMesh::queryPolygons(const float* center, const float* extents,
|
|
unsigned short* ids, const int maxIds)
|
|
{
|
|
const dtBVNode* node = &m_bvtree[0];
|
|
const dtBVNode* end = &m_bvtree[m_header->nnodes];
|
|
|
|
// Calculate quantized box
|
|
const float ics = 1.0f / m_header->cs;
|
|
unsigned short bmin[3], bmax[3];
|
|
// Clamp query box to world box.
|
|
float minx = clamp(center[0] - extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
|
|
float miny = clamp(center[1] - extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
|
|
float minz = clamp(center[2] - extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
|
|
float maxx = clamp(center[0] + extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
|
|
float maxy = clamp(center[1] + extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
|
|
float maxz = clamp(center[2] + extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
|
|
// Quantize
|
|
bmin[0] = (unsigned short)(ics * minx) & 0xfffe;
|
|
bmin[1] = (unsigned short)(ics * miny) & 0xfffe;
|
|
bmin[2] = (unsigned short)(ics * minz) & 0xfffe;
|
|
bmax[0] = (unsigned short)(ics * maxx + 1) | 1;
|
|
bmax[1] = (unsigned short)(ics * maxy + 1) | 1;
|
|
bmax[2] = (unsigned short)(ics * maxz + 1) | 1;
|
|
|
|
// Traverse tree
|
|
int n = 0;
|
|
while (node < end)
|
|
{
|
|
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
|
|
bool isLeafNode = node->i >= 0;
|
|
|
|
if (isLeafNode && overlap)
|
|
{
|
|
if (n < maxIds)
|
|
{
|
|
ids[n] = (unsigned short)node->i;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
if (overlap || isLeafNode)
|
|
node++;
|
|
else
|
|
{
|
|
const int escapeIndex = -node->i;
|
|
node += escapeIndex;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
dtPolyRef dtStatNavMesh::findNearestPoly(const float* center, const float* extents)
|
|
{
|
|
// Get nearby polygons from proximity grid.
|
|
unsigned short polys[128];
|
|
int npolys = queryPolygons(center, extents, polys, 128);
|
|
|
|
// Find nearest polygon amongst the nearby polygons.
|
|
dtPolyRef nearest = 0;
|
|
float nearestDistanceSqr = FLT_MAX;
|
|
for (int i = 0; i < npolys; ++i)
|
|
{
|
|
dtPolyRef ref = (dtPolyRef)polys[i];
|
|
float closest[3];
|
|
if (!closestPointToPoly(ref, center, closest))
|
|
continue;
|
|
float d = vdistSqr(center, closest);
|
|
if (d < nearestDistanceSqr)
|
|
{
|
|
nearestDistanceSqr = d;
|
|
nearest = ref;
|
|
}
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
bool dtStatNavMesh::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right)
|
|
{
|
|
const dtPoly* fromPoly = getPolyByRef(from);
|
|
if (!fromPoly)
|
|
return false;
|
|
|
|
// Find common edge between the polygons and returns the segment end points.
|
|
for (unsigned i = 0, j = (int)fromPoly->nv - 1; i < (int)fromPoly->nv; j = i++)
|
|
{
|
|
unsigned short neighbour = fromPoly->n[j];
|
|
if (neighbour == to)
|
|
{
|
|
vcopy(left, getVertex(fromPoly->v[j]));
|
|
vcopy(right, getVertex(fromPoly->v[i]));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool dtStatNavMesh::isInOpenList(dtPolyRef ref) const
|
|
{
|
|
if (!m_nodePool) return false;
|
|
return m_nodePool->findNode(ref) != 0;
|
|
}
|
|
|
|
int dtStatNavMesh::getMemUsed() const
|
|
{
|
|
if (!m_nodePool || ! m_openList)
|
|
return 0;
|
|
return sizeof(*this) + m_dataSize +
|
|
m_nodePool->getMemUsed() +
|
|
m_openList->getMemUsed();
|
|
}
|