Jakob Botsch Nielsen a31da928ba Add settings storage to geometry sets
This adds the ability for geometry sets to store build settings that can
be automatically applied when they are loaded. This should allow sharing
of .gset files to demonstrate problems with certain settings on certain
files. It also allows people to diagnose problems more easily by being
able to dump their own triangle meshes and settings and load them in the
demo, with all of its visualization options. .gset files can be created
from the current mesh and settings by pressing the 9 key, which will
generate it in the same folder as the input mesh.

Also converts more of the demo to use STL.
2016-01-17 20:31:09 +01:00

451 lines
11 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include "TestCase.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshQuery.h"
#include "DetourCommon.h"
#include "SDL.h"
#include "SDL_opengl.h"
#ifdef __APPLE__
# include <OpenGL/glu.h>
#else
# include <GL/glu.h>
#endif
#include "imgui.h"
#include "PerfTimer.h"
#ifdef WIN32
#define snprintf _snprintf
#endif
TestCase::TestCase() :
m_tests(0)
{
}
TestCase::~TestCase()
{
Test* iter = m_tests;
while (iter)
{
Test* next = iter->next;
delete iter;
iter = next;
}
}
static char* parseRow(char* buf, char* bufEnd, char* row, int len)
{
bool start = true;
bool done = false;
int n = 0;
while (!done && buf < bufEnd)
{
char c = *buf;
buf++;
// multirow
switch (c)
{
case '\n':
if (start) break;
done = true;
break;
case '\r':
break;
case '\t':
case ' ':
if (start) break;
default:
start = false;
row[n++] = c;
if (n >= len-1)
done = true;
break;
}
}
row[n] = '\0';
return buf;
}
static void copyName(std::string& dst, const char* src)
{
// Skip white spaces
while (*src && isspace(*src))
src++;
dst = src;
}
bool TestCase::load(const std::string& filePath)
{
char* buf = 0;
FILE* fp = fopen(filePath.c_str(), "rb");
if (!fp)
return false;
fseek(fp, 0, SEEK_END);
int bufSize = ftell(fp);
fseek(fp, 0, SEEK_SET);
buf = new char[bufSize];
if (!buf)
{
fclose(fp);
return false;
}
size_t readLen = fread(buf, bufSize, 1, fp);
fclose(fp);
if (readLen != 1)
{
delete[] buf;
return false;
}
char* src = buf;
char* srcEnd = buf + bufSize;
char row[512];
while (src < srcEnd)
{
// Parse one row
row[0] = '\0';
src = parseRow(src, srcEnd, row, sizeof(row)/sizeof(char));
if (row[0] == 's')
{
// Sample name.
copyName(m_sampleName, row+1);
}
else if (row[0] == 'f')
{
// File name.
copyName(m_geomFileName, row+1);
}
else if (row[0] == 'p' && row[1] == 'f')
{
// Pathfind test.
Test* test = new Test;
memset(test, 0, sizeof(Test));
test->type = TEST_PATHFIND;
test->expand = false;
test->next = m_tests;
m_tests = test;
sscanf(row+2, "%f %f %f %f %f %f %hx %hx",
&test->spos[0], &test->spos[1], &test->spos[2],
&test->epos[0], &test->epos[1], &test->epos[2],
&test->includeFlags, &test->excludeFlags);
}
else if (row[0] == 'r' && row[1] == 'c')
{
// Pathfind test.
Test* test = new Test;
memset(test, 0, sizeof(Test));
test->type = TEST_RAYCAST;
test->expand = false;
test->next = m_tests;
m_tests = test;
sscanf(row+2, "%f %f %f %f %f %f %hx %hx",
&test->spos[0], &test->spos[1], &test->spos[2],
&test->epos[0], &test->epos[1], &test->epos[2],
&test->includeFlags, &test->excludeFlags);
}
}
delete [] buf;
return true;
}
void TestCase::resetTimes()
{
for (Test* iter = m_tests; iter; iter = iter->next)
{
iter->findNearestPolyTime = 0;
iter->findPathTime = 0;
iter->findStraightPathTime = 0;
}
}
void TestCase::doTests(dtNavMesh* navmesh, dtNavMeshQuery* navquery)
{
if (!navmesh || !navquery)
return;
resetTimes();
static const int MAX_POLYS = 256;
dtPolyRef polys[MAX_POLYS];
float straight[MAX_POLYS*3];
const float polyPickExt[3] = {2,4,2};
for (Test* iter = m_tests; iter; iter = iter->next)
{
delete [] iter->polys;
iter->polys = 0;
iter->npolys = 0;
delete [] iter->straight;
iter->straight = 0;
iter->nstraight = 0;
dtQueryFilter filter;
filter.setIncludeFlags(iter->includeFlags);
filter.setExcludeFlags(iter->excludeFlags);
// Find start points
TimeVal findNearestPolyStart = getPerfTime();
dtPolyRef startRef, endRef;
navquery->findNearestPoly(iter->spos, polyPickExt, &filter, &startRef, iter->nspos);
navquery->findNearestPoly(iter->epos, polyPickExt, &filter, &endRef, iter->nepos);
TimeVal findNearestPolyEnd = getPerfTime();
iter->findNearestPolyTime += getPerfTimeUsec(findNearestPolyEnd - findNearestPolyStart);
if (!startRef || ! endRef)
continue;
if (iter->type == TEST_PATHFIND)
{
// Find path
TimeVal findPathStart = getPerfTime();
navquery->findPath(startRef, endRef, iter->spos, iter->epos, &filter, polys, &iter->npolys, MAX_POLYS);
TimeVal findPathEnd = getPerfTime();
iter->findPathTime += getPerfTimeUsec(findPathEnd - findPathStart);
// Find straight path
if (iter->npolys)
{
TimeVal findStraightPathStart = getPerfTime();
navquery->findStraightPath(iter->spos, iter->epos, polys, iter->npolys,
straight, 0, 0, &iter->nstraight, MAX_POLYS);
TimeVal findStraightPathEnd = getPerfTime();
iter->findStraightPathTime += getPerfTimeUsec(findStraightPathEnd - findStraightPathStart);
}
// Copy results
if (iter->npolys)
{
iter->polys = new dtPolyRef[iter->npolys];
memcpy(iter->polys, polys, sizeof(dtPolyRef)*iter->npolys);
}
if (iter->nstraight)
{
iter->straight = new float[iter->nstraight*3];
memcpy(iter->straight, straight, sizeof(float)*3*iter->nstraight);
}
}
else if (iter->type == TEST_RAYCAST)
{
float t = 0;
float hitNormal[3], hitPos[3];
iter->straight = new float[2*3];
iter->nstraight = 2;
iter->straight[0] = iter->spos[0];
iter->straight[1] = iter->spos[1];
iter->straight[2] = iter->spos[2];
TimeVal findPathStart = getPerfTime();
navquery->raycast(startRef, iter->spos, iter->epos, &filter, &t, hitNormal, polys, &iter->npolys, MAX_POLYS);
TimeVal findPathEnd = getPerfTime();
iter->findPathTime += getPerfTimeUsec(findPathEnd - findPathStart);
if (t > 1)
{
// No hit
dtVcopy(hitPos, iter->epos);
}
else
{
// Hit
dtVlerp(hitPos, iter->spos, iter->epos, t);
}
// Adjust height.
if (iter->npolys > 0)
{
float h = 0;
navquery->getPolyHeight(polys[iter->npolys-1], hitPos, &h);
hitPos[1] = h;
}
dtVcopy(&iter->straight[3], hitPos);
if (iter->npolys)
{
iter->polys = new dtPolyRef[iter->npolys];
memcpy(iter->polys, polys, sizeof(dtPolyRef)*iter->npolys);
}
}
}
printf("Test Results:\n");
int n = 0;
for (Test* iter = m_tests; iter; iter = iter->next)
{
const int total = iter->findNearestPolyTime + iter->findPathTime + iter->findStraightPathTime;
printf(" - Path %02d: %.4f ms\n", n, (float)total/1000.0f);
printf(" - poly: %.4f ms\n", (float)iter->findNearestPolyTime/1000.0f);
printf(" - path: %.4f ms\n", (float)iter->findPathTime/1000.0f);
printf(" - straight: %.4f ms\n", (float)iter->findStraightPathTime/1000.0f);
n++;
}
}
void TestCase::handleRender()
{
glLineWidth(2.0f);
glBegin(GL_LINES);
for (Test* iter = m_tests; iter; iter = iter->next)
{
float dir[3];
dtVsub(dir, iter->epos, iter->spos);
dtVnormalize(dir);
glColor4ub(128,25,0,192);
glVertex3f(iter->spos[0],iter->spos[1]-0.3f,iter->spos[2]);
glVertex3f(iter->spos[0],iter->spos[1]+0.3f,iter->spos[2]);
glVertex3f(iter->spos[0],iter->spos[1]+0.3f,iter->spos[2]);
glVertex3f(iter->spos[0]+dir[0]*0.3f,iter->spos[1]+0.3f+dir[1]*0.3f,iter->spos[2]+dir[2]*0.3f);
glColor4ub(51,102,0,129);
glVertex3f(iter->epos[0],iter->epos[1]-0.3f,iter->epos[2]);
glVertex3f(iter->epos[0],iter->epos[1]+0.3f,iter->epos[2]);
if (iter->expand)
{
const float s = 0.1f;
glColor4ub(255,32,0,128);
glVertex3f(iter->spos[0]-s,iter->spos[1],iter->spos[2]);
glVertex3f(iter->spos[0]+s,iter->spos[1],iter->spos[2]);
glVertex3f(iter->spos[0],iter->spos[1],iter->spos[2]-s);
glVertex3f(iter->spos[0],iter->spos[1],iter->spos[2]+s);
glColor4ub(255,192,0,255);
glVertex3f(iter->nspos[0]-s,iter->nspos[1],iter->nspos[2]);
glVertex3f(iter->nspos[0]+s,iter->nspos[1],iter->nspos[2]);
glVertex3f(iter->nspos[0],iter->nspos[1],iter->nspos[2]-s);
glVertex3f(iter->nspos[0],iter->nspos[1],iter->nspos[2]+s);
glColor4ub(255,32,0,128);
glVertex3f(iter->epos[0]-s,iter->epos[1],iter->epos[2]);
glVertex3f(iter->epos[0]+s,iter->epos[1],iter->epos[2]);
glVertex3f(iter->epos[0],iter->epos[1],iter->epos[2]-s);
glVertex3f(iter->epos[0],iter->epos[1],iter->epos[2]+s);
glColor4ub(255,192,0,255);
glVertex3f(iter->nepos[0]-s,iter->nepos[1],iter->nepos[2]);
glVertex3f(iter->nepos[0]+s,iter->nepos[1],iter->nepos[2]);
glVertex3f(iter->nepos[0],iter->nepos[1],iter->nepos[2]-s);
glVertex3f(iter->nepos[0],iter->nepos[1],iter->nepos[2]+s);
}
if (iter->expand)
glColor4ub(255,192,0,255);
else
glColor4ub(0,0,0,64);
for (int i = 0; i < iter->nstraight-1; ++i)
{
glVertex3f(iter->straight[i*3+0],iter->straight[i*3+1]+0.3f,iter->straight[i*3+2]);
glVertex3f(iter->straight[(i+1)*3+0],iter->straight[(i+1)*3+1]+0.3f,iter->straight[(i+1)*3+2]);
}
}
glEnd();
glLineWidth(1.0f);
}
bool TestCase::handleRenderOverlay(double* proj, double* model, int* view)
{
GLdouble x, y, z;
char text[64], subtext[64];
int n = 0;
static const float LABEL_DIST = 1.0f;
for (Test* iter = m_tests; iter; iter = iter->next)
{
float pt[3], dir[3];
if (iter->nstraight)
{
dtVcopy(pt, &iter->straight[3]);
if (dtVdist(pt, iter->spos) > LABEL_DIST)
{
dtVsub(dir, pt, iter->spos);
dtVnormalize(dir);
dtVmad(pt, iter->spos, dir, LABEL_DIST);
}
pt[1]+=0.5f;
}
else
{
dtVsub(dir, iter->epos, iter->spos);
dtVnormalize(dir);
dtVmad(pt, iter->spos, dir, LABEL_DIST);
pt[1]+=0.5f;
}
if (gluProject((GLdouble)pt[0], (GLdouble)pt[1], (GLdouble)pt[2],
model, proj, view, &x, &y, &z))
{
snprintf(text, 64, "Path %d\n", n);
unsigned int col = imguiRGBA(0,0,0,128);
if (iter->expand)
col = imguiRGBA(255,192,0,220);
imguiDrawText((int)x, (int)(y-25), IMGUI_ALIGN_CENTER, text, col);
}
n++;
}
static int resScroll = 0;
bool mouseOverMenu = imguiBeginScrollArea("Test Results", 10, view[3] - 10 - 350, 200, 350, &resScroll);
// mouseOverMenu = true;
n = 0;
for (Test* iter = m_tests; iter; iter = iter->next)
{
const int total = iter->findNearestPolyTime + iter->findPathTime + iter->findStraightPathTime;
snprintf(subtext, 64, "%.4f ms", (float)total/1000.0f);
snprintf(text, 64, "Path %d", n);
if (imguiCollapse(text, subtext, iter->expand))
iter->expand = !iter->expand;
if (iter->expand)
{
snprintf(text, 64, "Poly: %.4f ms", (float)iter->findNearestPolyTime/1000.0f);
imguiValue(text);
snprintf(text, 64, "Path: %.4f ms", (float)iter->findPathTime/1000.0f);
imguiValue(text);
snprintf(text, 64, "Straight: %.4f ms", (float)iter->findStraightPathTime/1000.0f);
imguiValue(text);
imguiSeparator();
}
n++;
}
imguiEndScrollArea();
return mouseOverMenu;
}