845 lines
32 KiB
C++
845 lines
32 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#ifndef RECAST_H
|
|
#define RECAST_H
|
|
|
|
// Some math headers don't have PI defined.
|
|
static const float RC_PI = 3.14159265f;
|
|
|
|
enum rcLogCategory
|
|
{
|
|
RC_LOG_PROGRESS = 1,
|
|
RC_LOG_WARNING,
|
|
RC_LOG_ERROR,
|
|
};
|
|
|
|
enum rcTimerLabel
|
|
{
|
|
RC_TIMER_TOTAL,
|
|
RC_TIMER_TEMP,
|
|
RC_TIMER_RASTERIZE_TRIANGLES,
|
|
RC_TIMER_BUILD_LEANHEIGHTFIELD,
|
|
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
|
|
RC_TIMER_BUILD_CONTOURS,
|
|
RC_TIMER_BUILD_CONTOURS_TRACE,
|
|
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
|
|
RC_TIMER_FILTER_BORDER,
|
|
RC_TIMER_FILTER_WALKABLE,
|
|
RC_TIMER_MEDIAN_AREA,
|
|
RC_TIMER_FILTER_LOW_OBSTACLES,
|
|
RC_TIMER_BUILD_POLYMESH,
|
|
RC_TIMER_MERGE_POLYMESH,
|
|
RC_TIMER_ERODE_AREA,
|
|
RC_TIMER_MARK_BOX_AREA,
|
|
RC_TIMER_MARK_CYLINDER_AREA,
|
|
RC_TIMER_MARK_CONVEXPOLY_AREA,
|
|
RC_TIMER_BUILD_DISTANCEFIELD,
|
|
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
|
|
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
|
|
RC_TIMER_BUILD_REGIONS,
|
|
RC_TIMER_BUILD_REGIONS_WATERSHED,
|
|
RC_TIMER_BUILD_REGIONS_EXPAND,
|
|
RC_TIMER_BUILD_REGIONS_FLOOD,
|
|
RC_TIMER_BUILD_REGIONS_FILTER,
|
|
RC_TIMER_BUILD_LAYERS,
|
|
RC_TIMER_BUILD_POLYMESHDETAIL,
|
|
RC_TIMER_MERGE_POLYMESHDETAIL,
|
|
RC_MAX_TIMERS
|
|
};
|
|
|
|
// Build context provides several optional utilities needed for the build process,
|
|
// such as timing, logging, and build time collecting.
|
|
class rcContext
|
|
{
|
|
public:
|
|
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
|
|
virtual ~rcContext() {}
|
|
|
|
// Enables or disables logging.
|
|
inline void enableLog(bool state) { m_logEnabled = state; }
|
|
// Resets log.
|
|
inline void resetLog() { if (m_logEnabled) doResetLog(); }
|
|
// Logs a message.
|
|
void log(const rcLogCategory category, const char* format, ...);
|
|
|
|
// Enables or disables timer.
|
|
inline void enableTimer(bool state) { m_timerEnabled = state; }
|
|
// Resets all timers.
|
|
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
|
|
// Starts timer, used for performance timing.
|
|
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
|
|
// Stops timer, used for performance timing.
|
|
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
|
|
// Returns time accumulated between timer start/stop.
|
|
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
|
|
|
|
protected:
|
|
// Virtual functions to override for custom implementations.
|
|
virtual void doResetLog() {}
|
|
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
|
|
virtual void doResetTimers() {}
|
|
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
|
|
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
|
|
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
|
|
|
|
bool m_logEnabled;
|
|
bool m_timerEnabled;
|
|
};
|
|
|
|
|
|
// The units of the parameters are specified in parenthesis as follows:
|
|
// (vx) voxels, (wu) world units
|
|
struct rcConfig
|
|
{
|
|
int width, height; // Dimensions of the rasterized heightfield (vx)
|
|
int tileSize; // Width and Height of a tile (vx)
|
|
int borderSize; // Non-navigable Border around the heightfield (vx)
|
|
float cs, ch; // Grid cell size and height (wu)
|
|
float bmin[3], bmax[3]; // Grid bounds (wu)
|
|
float walkableSlopeAngle; // Maximum walkable slope angle in degrees.
|
|
int walkableHeight; // Minimum height where the agent can still walk (vx)
|
|
int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
|
|
int walkableRadius; // Radius of the agent in cells (vx)
|
|
int maxEdgeLen; // Maximum contour edge length (vx)
|
|
float maxSimplificationError; // Maximum distance error from contour to cells (vx)
|
|
int minRegionArea; // Regions whose area is smaller than this threshold will be removed. (vx)
|
|
int mergeRegionArea; // Regions whose area is smaller than this threshold will be merged (vx)
|
|
int maxVertsPerPoly; // Max number of vertices per polygon
|
|
float detailSampleDist; // Detail mesh sample spacing.
|
|
float detailSampleMaxError; // Detail mesh simplification max sample error.
|
|
};
|
|
|
|
// Define number of bits in the above structure for smin/smax.
|
|
// The max height is used for clamping rasterized values.
|
|
static const int RC_SPAN_HEIGHT_BITS = 13;
|
|
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
|
|
|
|
// Heightfield span.
|
|
struct rcSpan
|
|
{
|
|
unsigned int smin : 13; // Span min height.
|
|
unsigned int smax : 13; // Span max height.
|
|
unsigned int area : 6; // Span area type.
|
|
rcSpan* next; // Next span in column.
|
|
};
|
|
|
|
// Number of spans allocated per pool.
|
|
static const int RC_SPANS_PER_POOL = 2048;
|
|
|
|
// Memory pool used for quick span allocation.
|
|
struct rcSpanPool
|
|
{
|
|
rcSpanPool* next; // Pointer to next pool.
|
|
rcSpan items[RC_SPANS_PER_POOL]; // Array of spans.
|
|
};
|
|
|
|
// Dynamic span-heightfield.
|
|
struct rcHeightfield
|
|
{
|
|
int width, height; // Dimension of the heightfield.
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield
|
|
float cs, ch; // Cell size and height.
|
|
rcSpan** spans; // Heightfield of spans (width*height).
|
|
rcSpanPool* pools; // Linked list of span pools.
|
|
rcSpan* freelist; // Pointer to next free span.
|
|
};
|
|
|
|
rcHeightfield* rcAllocHeightfield();
|
|
void rcFreeHeightField(rcHeightfield* hf);
|
|
|
|
|
|
struct rcCompactCell
|
|
{
|
|
unsigned int index : 24; // Index to first span in column.
|
|
unsigned int count : 8; // Number of spans in this column.
|
|
};
|
|
|
|
struct rcCompactSpan
|
|
{
|
|
unsigned short y; // Bottom coordinate of the span.
|
|
unsigned short reg;
|
|
unsigned int con : 24; // Connections to neighbour cells.
|
|
unsigned int h : 8; // Height of the span.
|
|
};
|
|
|
|
// Compact static heightfield.
|
|
struct rcCompactHeightfield
|
|
{
|
|
int width, height; // Width and height of the heightfield.
|
|
int spanCount; // Number of spans in the heightfield.
|
|
int walkableHeight, walkableClimb; // Agent properties.
|
|
unsigned short maxDistance; // Maximum distance value stored in heightfield.
|
|
unsigned short maxRegions; // Maximum Region Id stored in heightfield.
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield.
|
|
float cs, ch; // Cell size and height.
|
|
rcCompactCell* cells; // Pointer to width*height cells.
|
|
rcCompactSpan* spans; // Pointer to spans.
|
|
unsigned short* dist; // Pointer to per span distance to border.
|
|
unsigned char* areas; // Pointer to per span area ID.
|
|
};
|
|
|
|
rcCompactHeightfield* rcAllocCompactHeightfield();
|
|
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
|
|
|
|
|
|
// Lean heightfield stores minimal information to create rcCompactNeighfield
|
|
// in one continuous chunk of memory. The header and data are both laid out
|
|
// in the memory one after each other. The data is accessed as follows:
|
|
// const int headerSize = rcAlign4(sizeof(rcLeanHeightfield));
|
|
// const int countsSize = rcAlign4(sizeof(unsigned char)*lhf.width*lhf.height);
|
|
// const int floorsSize = rcAlign4(sizeof(unsigned short)*lhf.spanCount);
|
|
// const unsigned char* data = (const unsigned char*)&lhf;
|
|
// const unsigned char* counts = (const unsigned char*)&data[headerSize];
|
|
// const unsigned short* floors = (const unsigned short*)&data[headerSize+countsSize];
|
|
// const unsigned char* areas = (const unsigned char*)&data[headerSize+countsSize+floorsSize];
|
|
// This allows the heighfield to be read and written or compressed as one chunk, i.e.:
|
|
// fwrite(lhf, lhf->size, 1, fp);
|
|
// Use rcFree() to free the memory occupied by rcLeanHeightfield.
|
|
struct rcLeanHeightfield
|
|
{
|
|
int width, height; // Width and height of the heightfield.
|
|
int spanCount; // Number of spans in the heightfield.
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield.
|
|
float cs, ch; // Cell size and height.
|
|
int size; // Memory required by the heighfield.
|
|
};
|
|
|
|
|
|
|
|
struct rcHeightfieldLayerPortal
|
|
{
|
|
unsigned char pos; // Position of the portal.
|
|
unsigned char dir; // Direction of the portal (same as used by rcGetCon()).
|
|
unsigned char smin, smax; // Span min/max of the portal.
|
|
unsigned short hmin, hmax; // Span min/max of the portal.
|
|
};
|
|
|
|
struct rcHeightfieldLayer
|
|
{
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield.
|
|
float cs, ch; // Cell size and height.
|
|
int width, height; // Width and height of the layer.
|
|
int nportals; // Number of portals.
|
|
unsigned char regCount;
|
|
unsigned short ymin, ymax; // Height min/max range.
|
|
unsigned short* heights; // Heighfield.
|
|
unsigned char* areas; // Area types.
|
|
unsigned char* regs; // Regions.
|
|
rcHeightfieldLayerPortal* portals; // Portals.
|
|
};
|
|
|
|
struct rcHeightfieldLayerSet
|
|
{
|
|
rcHeightfieldLayer* layers; // Pointer to layers.
|
|
int nlayers; // Number of layers.
|
|
};
|
|
|
|
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
|
|
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
|
|
|
|
|
|
|
|
struct rcContour
|
|
{
|
|
int* verts; // Vertex coordinates, each vertex contains 4 components.
|
|
int nverts; // Number of vertices.
|
|
int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
|
|
int nrverts; // Number of raw vertices.
|
|
unsigned short reg; // Region ID of the contour.
|
|
unsigned char area; // Area ID of the contour.
|
|
};
|
|
|
|
struct rcContourSet
|
|
{
|
|
rcContour* conts; // Pointer to all contours.
|
|
int nconts; // Number of contours.
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield.
|
|
float cs, ch; // Cell size and height.
|
|
};
|
|
|
|
rcContourSet* rcAllocContourSet();
|
|
void rcFreeContourSet(rcContourSet* cset);
|
|
|
|
|
|
// Polymesh store a connected mesh of polygons.
|
|
// The polygons are store in an array where each polygons takes
|
|
// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
|
|
// and the second 'nvp' elements are indices to neighbour polygons.
|
|
// If a polygon has less than 'bvp' vertices, the remaining indices
|
|
// are set to RC_MESH_NULL_IDX. If an polygon edge does not have a neighbour
|
|
// the neighbour index is set to RC_MESH_NULL_IDX.
|
|
// Vertices can be transformed into world space as follows:
|
|
// x = bmin[0] + verts[i*3+0]*cs;
|
|
// y = bmin[1] + verts[i*3+1]*ch;
|
|
// z = bmin[2] + verts[i*3+2]*cs;
|
|
struct rcPolyMesh
|
|
{
|
|
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
|
|
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
|
|
unsigned short* regs; // Region ID of the polygons.
|
|
unsigned short* flags; // Per polygon flags.
|
|
unsigned char* areas; // Area ID of polygons.
|
|
int nverts; // Number of vertices.
|
|
int npolys; // Number of polygons.
|
|
int maxpolys; // Number of allocated polygons.
|
|
int nvp; // Max number of vertices per polygon.
|
|
float bmin[3], bmax[3]; // Bounding box of the mesh.
|
|
float cs, ch; // Cell size and height.
|
|
};
|
|
|
|
rcPolyMesh* rcAllocPolyMesh();
|
|
void rcFreePolyMesh(rcPolyMesh* pmesh);
|
|
|
|
|
|
// Detail mesh generated from a rcPolyMesh.
|
|
// Each submesh represents a polygon in the polymesh and they are stored in
|
|
// exactly same order. Each submesh is described as 4 values:
|
|
// base vertex, vertex count, base triangle, triangle count. That is,
|
|
// const unsigned char* t = &dmesh.tris[(tbase+i)*4]; and
|
|
// const float* v = &dmesh.verts[(vbase+t[j])*3];
|
|
// If the input polygon has 'n' vertices, those vertices are first in the
|
|
// submesh vertex list. This allows to compres the mesh by not storing the
|
|
// first vertices and using the polymesh vertices instead.
|
|
// Max number of vertices per submesh is 127 and
|
|
// max number of triangles per submesh is 255.
|
|
|
|
struct rcPolyMeshDetail
|
|
{
|
|
unsigned int* meshes; // Pointer to all mesh data.
|
|
float* verts; // Pointer to all vertex data.
|
|
unsigned char* tris; // Pointer to all triangle data.
|
|
int nmeshes; // Number of meshes.
|
|
int nverts; // Number of total vertices.
|
|
int ntris; // Number of triangles.
|
|
};
|
|
|
|
rcPolyMeshDetail* rcAllocPolyMeshDetail();
|
|
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
|
|
|
|
|
|
// If heightfield region ID has the following bit set, the region is on border area
|
|
// and excluded from many calculations.
|
|
static const unsigned short RC_BORDER_REG = 0x8000;
|
|
|
|
// If contour region ID has the following bit set, the vertex will be later
|
|
// removed in order to match the segments and vertices at tile boundaries.
|
|
static const int RC_BORDER_VERTEX = 0x10000;
|
|
|
|
static const int RC_AREA_BORDER = 0x20000;
|
|
|
|
enum rcBuildContoursFlags
|
|
{
|
|
RC_CONTOUR_TESS_WALL_EDGES = 0x01, // Tessellate wall edges
|
|
RC_CONTOUR_TESS_AREA_EDGES = 0x02, // Tessellate edges between areas.
|
|
};
|
|
|
|
// Mask used with contours to extract region id.
|
|
static const int RC_CONTOUR_REG_MASK = 0xffff;
|
|
|
|
// Null index which is used with meshes to mark unset or invalid indices.
|
|
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
|
|
|
|
// Area ID that is considered empty.
|
|
static const unsigned char RC_NULL_AREA = 0;
|
|
|
|
// Area ID that is considered generally walkable.
|
|
static const unsigned char RC_WALKABLE_AREA = 63;
|
|
|
|
// Value returned by rcGetCon() if the direction is not connected.
|
|
static const int RC_NOT_CONNECTED = 0x3f;
|
|
|
|
// Compact span neighbour helpers.
|
|
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
|
|
{
|
|
const unsigned int shift = (unsigned int)dir*6;
|
|
unsigned int con = s.con;
|
|
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
|
|
}
|
|
|
|
inline int rcGetCon(const rcCompactSpan& s, int dir)
|
|
{
|
|
const unsigned int shift = (unsigned int)dir*6;
|
|
return (s.con >> shift) & 0x3f;
|
|
}
|
|
|
|
inline int rcGetDirOffsetX(int dir)
|
|
{
|
|
const int offset[4] = { -1, 0, 1, 0, };
|
|
return offset[dir&0x03];
|
|
}
|
|
|
|
inline int rcGetDirOffsetY(int dir)
|
|
{
|
|
const int offset[4] = { 0, 1, 0, -1 };
|
|
return offset[dir&0x03];
|
|
}
|
|
|
|
// Common helper functions
|
|
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
|
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
|
|
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
|
|
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
|
|
template<class T> inline T rcSqr(T a) { return a*a; }
|
|
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
|
float rcSqrt(float x);
|
|
inline int rcAlign4(int x) { return (x+3) & ~3; }
|
|
|
|
// Common vector helper functions.
|
|
inline void rcVcross(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
inline float rcVdot(const float* v1, const float* v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
|
|
{
|
|
dest[0] = v1[0]+v2[0]*s;
|
|
dest[1] = v1[1]+v2[1]*s;
|
|
dest[2] = v1[2]+v2[2]*s;
|
|
}
|
|
|
|
inline void rcVadd(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]+v2[0];
|
|
dest[1] = v1[1]+v2[1];
|
|
dest[2] = v1[2]+v2[2];
|
|
}
|
|
|
|
inline void rcVsub(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]-v2[0];
|
|
dest[1] = v1[1]-v2[1];
|
|
dest[2] = v1[2]-v2[2];
|
|
}
|
|
|
|
inline void rcVmin(float* mn, const float* v)
|
|
{
|
|
mn[0] = rcMin(mn[0], v[0]);
|
|
mn[1] = rcMin(mn[1], v[1]);
|
|
mn[2] = rcMin(mn[2], v[2]);
|
|
}
|
|
|
|
inline void rcVmax(float* mx, const float* v)
|
|
{
|
|
mx[0] = rcMax(mx[0], v[0]);
|
|
mx[1] = rcMax(mx[1], v[1]);
|
|
mx[2] = rcMax(mx[2], v[2]);
|
|
}
|
|
|
|
inline void rcVcopy(float* dest, const float* v)
|
|
{
|
|
dest[0] = v[0];
|
|
dest[1] = v[1];
|
|
dest[2] = v[2];
|
|
}
|
|
|
|
inline float rcVdist(const float* v1, const float* v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return rcSqrt(dx*dx + dy*dy + dz*dz);
|
|
}
|
|
|
|
inline float rcVdistSqr(const float* v1, const float* v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return dx*dx + dy*dy + dz*dz;
|
|
}
|
|
|
|
inline void rcVnormalize(float* v)
|
|
{
|
|
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
|
|
inline bool rcVequal(const float* p0, const float* p1)
|
|
{
|
|
static const float thr = rcSqr(1.0f/16384.0f);
|
|
const float d = rcVdistSqr(p0, p1);
|
|
return d < thr;
|
|
}
|
|
|
|
// Calculated bounding box of array of vertices.
|
|
// Params:
|
|
// verts - (in) array of vertices
|
|
// nv - (in) vertex count
|
|
// bmin, bmax - (out) bounding box
|
|
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
|
|
|
|
// Calculates grid size based on bounding box and grid cell size.
|
|
// Params:
|
|
// bmin, bmax - (in) bounding box
|
|
// cs - (in) grid cell size
|
|
// w - (out) grid width
|
|
// h - (out) grid height
|
|
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
|
|
|
|
// Creates and initializes new heightfield.
|
|
// Params:
|
|
// hf - (in/out) heightfield to initialize.
|
|
// width - (in) width of the heightfield.
|
|
// height - (in) height of the heightfield.
|
|
// bmin, bmax - (in) bounding box of the heightfield
|
|
// cs - (in) grid cell size
|
|
// ch - (in) grid cell height
|
|
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
|
|
const float* bmin, const float* bmax,
|
|
float cs, float ch);
|
|
|
|
// Sets the RC_WALKABLE_AREA for every triangle whose slope is below
|
|
// the maximum walkable slope angle.
|
|
// Params:
|
|
// walkableSlopeAngle - (in) maximum slope angle in degrees.
|
|
// verts - (in) array of vertices
|
|
// nv - (in) vertex count
|
|
// tris - (in) array of triangle vertex indices
|
|
// nt - (in) triangle count
|
|
// areas - (out) array of triangle area types
|
|
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
|
|
const int* tris, int nt, unsigned char* areas);
|
|
|
|
// Sets the RC_NULL_AREA for every triangle whose slope is steeper than
|
|
// the maximum walkable slope angle.
|
|
// Params:
|
|
// walkableSlopeAngle - (in) maximum slope angle in degrees.
|
|
// verts - (in) array of vertices
|
|
// nv - (in) vertex count
|
|
// tris - (in) array of triangle vertex indices
|
|
// nt - (in) triangle count
|
|
// areas - (out) array of triangle are types
|
|
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
|
|
const int* tris, int nt, unsigned char* areas);
|
|
|
|
// Adds span to heightfield.
|
|
// The span addition can set to favor flags. If the span is merged to
|
|
// another span and the new smax is within 'flagMergeThr' units away
|
|
// from the existing span the span flags are merged and stored.
|
|
// Params:
|
|
// solid - (in) heightfield where the spans is added to
|
|
// x,y - (in) location on the heightfield where the span is added
|
|
// smin,smax - (in) spans min/max height
|
|
// flags - (in) span flags (zero or WALKABLE)
|
|
// flagMergeThr - (in) merge threshold.
|
|
void rcAddSpan(rcContext* ctx, rcHeightfield& solid, const int x, const int y,
|
|
const unsigned short smin, const unsigned short smax,
|
|
const unsigned short area, const int flagMergeThr);
|
|
|
|
// Rasterizes a triangle into heightfield spans.
|
|
// Params:
|
|
// v0,v1,v2 - (in) the vertices of the triangle.
|
|
// area - (in) area type of the triangle.
|
|
// solid - (in) heightfield where the triangle is rasterized
|
|
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
|
|
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
|
|
const unsigned char area, rcHeightfield& solid,
|
|
const int flagMergeThr = 1);
|
|
|
|
// Rasterizes indexed triangle mesh into heightfield spans.
|
|
// Params:
|
|
// verts - (in) array of vertices
|
|
// nv - (in) vertex count
|
|
// tris - (in) array of triangle vertex indices
|
|
// area - (in) array of triangle area types.
|
|
// nt - (in) triangle count
|
|
// solid - (in) heightfield where the triangles are rasterized
|
|
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
|
|
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
|
|
const int* tris, const unsigned char* areas, const int nt,
|
|
rcHeightfield& solid, const int flagMergeThr = 1);
|
|
|
|
// Rasterizes indexed triangle mesh into heightfield spans.
|
|
// Params:
|
|
// verts - (in) array of vertices
|
|
// nv - (in) vertex count
|
|
// tris - (in) array of triangle vertex indices
|
|
// area - (in) array of triangle area types.
|
|
// nt - (in) triangle count
|
|
// solid - (in) heightfield where the triangles are rasterized
|
|
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
|
|
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
|
|
const unsigned short* tris, const unsigned char* areas, const int nt,
|
|
rcHeightfield& solid, const int flagMergeThr = 1);
|
|
|
|
// Rasterizes the triangles into heightfield spans.
|
|
// Params:
|
|
// verts - (in) array of vertices
|
|
// area - (in) array of triangle area types.
|
|
// nt - (in) triangle count
|
|
// solid - (in) heightfield where the triangles are rasterized
|
|
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
|
|
rcHeightfield& solid, const int flagMergeThr = 1);
|
|
|
|
// Marks non-walkable low obstacles as walkable if they are closer than walkableClimb
|
|
// from a walkable surface. Applying this filter allows to step over low hanging
|
|
// low obstacles.
|
|
// Params:
|
|
// walkableHeight - (in) minimum height where the agent can still walk
|
|
// solid - (in/out) heightfield describing the solid space
|
|
// TODO: Missuses ledge flag, must be called before rcFilterLedgeSpans!
|
|
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
|
|
|
|
// Removes WALKABLE flag from all spans that are at ledges. This filtering
|
|
// removes possible overestimation of the conservative voxelization so that
|
|
// the resulting mesh will not have regions hanging in air over ledges.
|
|
// Params:
|
|
// walkableHeight - (in) minimum height where the agent can still walk
|
|
// walkableClimb - (in) maximum height between grid cells the agent can climb
|
|
// solid - (in/out) heightfield describing the solid space
|
|
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
|
|
const int walkableClimb, rcHeightfield& solid);
|
|
|
|
// Removes WALKABLE flag from all spans which have smaller than
|
|
// 'walkableHeight' clearance above them.
|
|
// Params:
|
|
// walkableHeight - (in) minimum height where the agent can still walk
|
|
// solid - (in/out) heightfield describing the solid space
|
|
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
|
|
|
|
// Returns number of spans contained in a heightfield.
|
|
// Params:
|
|
// hf - (in) heightfield to be compacted
|
|
// Returns number of spans.
|
|
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
|
|
|
|
// Builds minimal representation of the heighfield.
|
|
// Params:
|
|
// hf - (in) heightfield to be compacted
|
|
// chf - (out) lean heightfield representing the open space.
|
|
// Returns pointer to the created lean heighfield.
|
|
rcLeanHeightfield* rcBuildLeanHeightfield(rcContext* ctx, rcHeightfield& hf, const int walkableHeight);
|
|
|
|
// Builds compact representation of the heightfield.
|
|
// Params:
|
|
// walkableHeight - (in) minimum height where the agent can still walk
|
|
// walkableClimb - (in) maximum height between grid cells the agent can climb
|
|
// hf - (in) heightfield to be compacted
|
|
// chf - (out) compact heightfield representing the open space.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
|
rcHeightfield& hf, rcCompactHeightfield& chf);
|
|
|
|
// Builds compact representation of the heightfield from lean data.
|
|
// Params:
|
|
// walkableHeight - (in) minimum height where the agent can still walk
|
|
// walkableClimb - (in) maximum height between grid cells the agent can climb
|
|
// lhf - (in) lean heightfield to be used as input
|
|
// chf - (out) compact heightfield representing the open space.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
|
rcLeanHeightfield& lhf, rcCompactHeightfield& chf);
|
|
|
|
// Erodes walkable area.
|
|
// Params:
|
|
// radius - (in) radius of erosion (max 255).
|
|
// chf - (in/out) compact heightfield to erode.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
|
|
|
|
// Applies median filter to walkable area types, removing noise.
|
|
// Params:
|
|
// chf - (in/out) compact heightfield to erode.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
|
|
|
|
// Marks the area of the convex polygon into the area type of the compact heightfield.
|
|
// Params:
|
|
// bmin/bmax - (in) bounds of the axis aligned box.
|
|
// areaId - (in) area ID to mark.
|
|
// chf - (in/out) compact heightfield to mark.
|
|
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
// Marks the area of the convex polygon into the area type of the compact heightfield.
|
|
// Params:
|
|
// verts - (in) vertices of the convex polygon.
|
|
// nverts - (in) number of vertices in the polygon.
|
|
// hmin/hmax - (in) min and max height of the polygon.
|
|
// areaId - (in) area ID to mark.
|
|
// chf - (in/out) compact heightfield to mark.
|
|
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
|
const float hmin, const float hmax, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
// Marks the area of the cylinder into the area type of the compact heightfield.
|
|
// Params:
|
|
// pos - (in) center bottom location of hte cylinder.
|
|
// r - (in) radius of the cylinder.
|
|
// h - (in) height of the cylinder.
|
|
// areaId - (in) area ID to mark.
|
|
// chf - (in/out) compact heightfield to mark.
|
|
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
|
|
const float r, const float h, unsigned char areaId,
|
|
rcCompactHeightfield& chf);
|
|
|
|
// Builds distance field and stores it into the combat heightfield.
|
|
// Params:
|
|
// chf - (in/out) compact heightfield representing the open space.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
|
|
|
|
// Divides the walkable heighfied into simple regions using watershed partitioning.
|
|
// Each region has only one contour and no overlaps.
|
|
// The regions are stored in the compact heightfield 'reg' field.
|
|
// The process sometimes creates small regions. If the area of a regions is
|
|
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
|
|
// region if possible. If multiple regions form an area which is smaller than
|
|
// 'minRegionArea' all the regions belonging to that area will be removed.
|
|
// Here area means the count of spans in an area.
|
|
// Params:
|
|
// chf - (in/out) compact heightfield representing the open space.
|
|
// borderSize - (in) Non-navigable Border around the heightfield.
|
|
// minRegionArea - (in) the smallest allowed region area.
|
|
// maxMergeRegionArea - (in) the largest allowed region area which can be merged.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
|
const int borderSize, const int minRegionArea, const int mergeRegionArea);
|
|
|
|
// Divides the walkable heighfied into simple regions using simple monotone partitioning.
|
|
// Each region has only one contour and no overlaps.
|
|
// The regions are stored in the compact heightfield 'reg' field.
|
|
// The process sometimes creates small regions. If the area of a regions is
|
|
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
|
|
// region if possible. If multiple regions form an area which is smaller than
|
|
// 'minRegionArea' all the regions belonging to that area will be removed.
|
|
// Here area means the count of spans in an area.
|
|
// Params:
|
|
// chf - (in/out) compact heightfield representing the open space.
|
|
// borderSize - (in) Non-navigable Border around the heightfield.
|
|
// minRegionArea - (in) the smallest allowed regions size.
|
|
// maxMergeRegionArea - (in) the largest allowed regions size which can be merged.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
|
const int borderSize, const int minRegionArea, const int mergeRegionArea);
|
|
|
|
// Builds 2D layer representation of a heighfield.
|
|
// Params:
|
|
// chf - (in) compact heightfield representing the open space.
|
|
// borderSize - (in) Non-navigable Border around the heightfield.
|
|
// walkableHeight - (in) minimum height where the agent can still walk.
|
|
// lset - (out) set of 2D heighfield layers.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
|
|
const int borderSize, const int walkableHeight,
|
|
rcHeightfieldLayerSet& lset);
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
bool rcBuildLayerRegions(rcContext* ctx, rcHeightfieldLayer& layer, const int walkableClimb);
|
|
|
|
|
|
|
|
struct rcLayerContour
|
|
{
|
|
int nverts;
|
|
unsigned char* verts;
|
|
unsigned char reg, area;
|
|
};
|
|
|
|
struct rcLayerContourSet
|
|
{
|
|
float bmin[3], bmax[3]; // Bounding box of the heightfield.
|
|
float cs, ch; // Cell size and height.
|
|
int nconts;
|
|
rcLayerContour* conts;
|
|
};
|
|
|
|
rcLayerContourSet* rcAllocLayerContourSet();
|
|
void rcFreeLayerContourSet(rcLayerContourSet* lset);
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
bool rcBuildLayerContours(rcContext* ctx,
|
|
rcHeightfieldLayer& layer,
|
|
const int walkableClimb, const float maxError,
|
|
rcLayerContourSet& lcset);
|
|
|
|
|
|
struct rcLayerPolyMesh
|
|
{
|
|
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
|
|
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
|
|
unsigned short* flags; // Per polygon flags.
|
|
unsigned char* areas; // Area ID of polygons.
|
|
int nverts; // Number of vertices.
|
|
int npolys; // Number of polygons.
|
|
int maxpolys; // Number of allocated polygons.
|
|
int nvp; // Max number of vertices per polygon.
|
|
float bmin[3], bmax[3]; // Bounding box of the mesh.
|
|
float cs, ch; // Cell size and height.
|
|
};
|
|
|
|
rcLayerPolyMesh* rcAllocLayerPolyMesh();
|
|
void rcFreeLayerPolyMesh(rcLayerPolyMesh* lmesh);
|
|
|
|
bool rcBuildLayerPolyMesh(rcContext* ctx,
|
|
rcLayerContourSet& lcset,
|
|
const int maxVertsPerPoly,
|
|
rcLayerPolyMesh& lmesh);
|
|
|
|
|
|
|
|
// Builds simplified contours from the regions outlines.
|
|
// Params:
|
|
// chf - (in) compact heightfield which has regions set.
|
|
// maxError - (in) maximum allowed distance between simplified contour and cells.
|
|
// maxEdgeLen - (in) maximum allowed contour edge length in cells.
|
|
// cset - (out) Resulting contour set.
|
|
// flags - (in) build flags, see rcBuildContoursFlags.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|
const float maxError, const int maxEdgeLen,
|
|
rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
|
|
|
|
// Builds connected convex polygon mesh from contour polygons.
|
|
// Params:
|
|
// cset - (in) contour set.
|
|
// nvp - (in) maximum number of vertices per polygon.
|
|
// mesh - (out) poly mesh.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh);
|
|
|
|
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
|
|
|
|
// Builds detail triangle mesh for each polygon in the poly mesh.
|
|
// Params:
|
|
// mesh - (in) poly mesh to detail.
|
|
// chf - (in) compact height field, used to query height for new vertices.
|
|
// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
|
|
// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
|
|
// dmesh - (out) detail mesh.
|
|
// Returns false if operation ran out of memory.
|
|
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
|
|
const float sampleDist, const float sampleMaxError,
|
|
rcPolyMeshDetail& dmesh);
|
|
|
|
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
|
|
|
|
|
|
|
|
#endif // RECAST_H
|