1959 lines
52 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
inline int opposite(int side) { return (side+2) & 0x3; }
inline bool overlapBoxes(const float* amin, const float* amax,
const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
inline bool overlapRects(const float* amin, const float* amax,
const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
return overlap;
}
static void calcRect(const float* va, const float* vb,
float* bmin, float* bmax,
int side, float padx, float pady)
{
if ((side&1) == 0)
{
bmin[0] = min(va[2],vb[2]) + padx;
bmin[1] = min(va[1],vb[1]) - pady;
bmax[0] = max(va[2],vb[2]) - padx;
bmax[1] = max(va[1],vb[1]) + pady;
}
else
{
bmin[0] = min(va[0],vb[0]) + padx;
bmin[1] = min(va[1],vb[1]) - pady;
bmax[0] = max(va[0],vb[0]) - padx;
bmax[1] = max(va[1],vb[1]) + pady;
}
}
inline int computeTileHash(int x, int y, const int mask)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & mask);
}
//////////////////////////////////////////////////////////////////////////////////////////
dtNavMesh::dtNavMesh() :
m_tileWidth(0),
m_tileHeight(0),
m_maxTiles(0),
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFree(0),
m_tiles(0),
m_tmpLinks(0),
m_ntmpLinks(0),
m_saltBits(0),
m_tileBits(0),
m_polyBits(0),
m_nodePool(0),
m_openList(0)
{
m_orig[0] = 0;
m_orig[1] = 0;
m_orig[2] = 0;
}
dtNavMesh::~dtNavMesh()
{
for (int i = 0; i < m_maxTiles; ++i)
{
if (m_tiles[i].data && m_tiles[i].ownsData)
{
delete [] m_tiles[i].data;
m_tiles[i].data = 0;
m_tiles[i].dataSize = 0;
}
}
delete [] m_tmpLinks;
delete m_nodePool;
delete m_openList;
delete [] m_posLookup;
delete [] m_tiles;
}
bool dtNavMesh::init(const float* orig, float tileWidth, float tileHeight,
int maxTiles, int maxPolys, int maxNodes)
{
vcopy(m_orig, orig);
m_tileWidth = tileWidth;
m_tileHeight = tileHeight;
// Init tiles
m_maxTiles = maxTiles;
m_tileLutSize = nextPow2(maxTiles/4);
if (!m_tileLutSize) m_tileLutSize = 1;
m_tileLutMask = m_tileLutSize-1;
m_tiles = new dtMeshTile[m_maxTiles];
if (!m_tiles)
return false;
m_posLookup = new dtMeshTile*[m_tileLutSize];
if (!m_posLookup)
return false;
memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
m_nextFree = 0;
for (int i = m_maxTiles-1; i >= 0; --i)
{
m_tiles[i].next = m_nextFree;
m_nextFree = &m_tiles[i];
}
if (!m_nodePool)
{
m_nodePool = new dtNodePool(maxNodes, nextPow2(maxNodes/4));
if (!m_nodePool)
return false;
}
if (!m_openList)
{
m_openList = new dtNodeQueue(maxNodes);
if (!m_openList)
return false;
}
// Init ID generator values.
m_tileBits = max((unsigned int)1,ilog2(nextPow2((unsigned int)maxTiles)));
m_polyBits = max((unsigned int)1,ilog2(nextPow2((unsigned int)maxPolys)));
m_saltBits = 32 - m_tileBits - m_polyBits;
if (m_saltBits < 10)
return false;
return true;
}
bool dtNavMesh::init(unsigned char* data, int dataSize, bool ownsData, int maxNodes)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return false;
if (header->version != DT_NAVMESH_VERSION)
return false;
const float w = header->bmax[0] - header->bmin[0];
const float h = header->bmax[2] - header->bmin[2];
if (!init(header->bmin, w, h, 1, header->polyCount, maxNodes))
return false;
return addTileAt(0,0, data, dataSize, ownsData);
}
//////////////////////////////////////////////////////////////////////////////////////////
int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
dtMeshTile* tile, int side,
dtPolyRef* con, float* conarea, int maxcon)
{
if (!tile) return 0;
dtMeshHeader* h = tile->header;
float amin[2], amax[2];
calcRect(va,vb, amin,amax, side, 0.01f, h->walkableClimb);
// Remove links pointing to 'side' and compact the links array.
float bmin[2], bmax[2];
unsigned short m = DT_EXT_LINK | (unsigned short)side;
int n = 0;
dtPolyRef base = getTileId(tile);
for (int i = 0; i < h->polyCount; ++i)
{
dtPoly* poly = &h->polys[i];
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->neis[j] != m) continue;
// Check if the segments touch.
const float* vc = &h->verts[poly->verts[j]*3];
const float* vd = &h->verts[poly->verts[(j+1) % nv]*3];
calcRect(vc,vd, bmin,bmax, side, 0.01f, h->walkableClimb);
if (!overlapRects(amin,amax, bmin,bmax)) continue;
// Add return value.
if (n < maxcon)
{
conarea[n*2+0] = max(amin[0], bmin[0]);
conarea[n*2+1] = min(amax[0], bmax[0]);
con[n] = base | (unsigned int)i;
n++;
}
break;
}
}
return n;
}
void dtNavMesh::removeExtLinks(dtMeshTile* tile, int side)
{
if (!tile) return;
dtMeshHeader* h = tile->header;
// Remove links pointing to 'side' and compact the links array.
dtLink* pool = m_tmpLinks;
int nlinks = 0;
for (int i = 0; i < h->polyCount; ++i)
{
dtPoly* poly = &h->polys[i];
int plinks = nlinks;
int nplinks = 0;
for (int j = 0; j < poly->linkCount; ++j)
{
dtLink* link = &h->links[poly->linkBase+j];
if ((int)link->side != side)
{
if (nlinks < h->maxLinkCount)
{
dtLink* dst = &pool[nlinks++];
memcpy(dst, link, sizeof(dtLink));
nplinks++;
}
}
}
poly->linkBase = plinks;
poly->linkCount = nplinks;
}
h->linkCount = nlinks;
if (h->linkCount)
memcpy(h->links, m_tmpLinks, sizeof(dtLink)*nlinks);
}
void dtNavMesh::buildExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
if (!tile) return;
dtMeshHeader* h = tile->header;
// Remove links pointing to 'side' and compact the links array.
dtLink* pool = m_tmpLinks;
int nlinks = 0;
for (int i = 0; i < h->polyCount; ++i)
{
dtPoly* poly = &h->polys[i];
int plinks = nlinks;
int nplinks = 0;
// Copy internal and other external links.
for (int j = 0; j < poly->linkCount; ++j)
{
dtLink* link = &h->links[poly->linkBase+j];
if ((int)link->side != side)
{
if (nlinks < h->maxLinkCount)
{
dtLink* dst = &pool[nlinks++];
memcpy(dst, link, sizeof(dtLink));
nplinks++;
}
}
}
// Create new links.
unsigned short m = DT_EXT_LINK | (unsigned short)side;
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->neis[j] != m) continue;
// Create new links
const float* va = &h->verts[poly->verts[j]*3];
const float* vb = &h->verts[poly->verts[(j+1) % nv]*3];
dtPolyRef nei[4];
float neia[4*2];
int nnei = findConnectingPolys(va,vb, target, opposite(side), nei,neia,4);
for (int k = 0; k < nnei; ++k)
{
if (nlinks < h->maxLinkCount)
{
dtLink* link = &pool[nlinks++];
link->ref = nei[k];
link->poly = (unsigned short)i;
link->edge = (unsigned char)j;
link->side = (unsigned char)side;
// Compress portal limits to a byte value.
if (side == 0 || side == 2)
{
const float lmin = min(va[2], vb[2]);
const float lmax = max(va[2], vb[2]);
link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
}
else
{
const float lmin = min(va[0], vb[0]);
const float lmax = max(va[0], vb[0]);
link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
}
nplinks++;
}
}
}
poly->linkBase = plinks;
poly->linkCount = nplinks;
}
h->linkCount = nlinks;
if (h->linkCount)
memcpy(h->links, m_tmpLinks, sizeof(dtLink)*nlinks);
}
void dtNavMesh::buildIntLinks(dtMeshTile* tile)
{
if (!tile) return;
dtMeshHeader* h = tile->header;
dtPolyRef base = getTileId(tile);
dtLink* pool = h->links;
int nlinks = 0;
unsigned int salt, it, ip, tileIdx;
dtDecodePolyId(base, salt, tileIdx, ip);
// Find Off-mesh connection end points.
for (int i = 0; i < h->offMeshConCount; ++i)
{
dtOffMeshConnection* con = &h->offMeshCons[i];
dtPoly* poly = &h->polys[con->poly];
con->ref[0] = 0;
con->ref[1] = 0;
const float ext[3] = { con->rad, h->walkableClimb, con->rad };
for (int j = 0; j < 2; ++j)
{
// Find polygon to connect to.
const float* p = &con->pos[j*3];
float nearestPt[3];
dtPolyRef ref = findNearestPoly(p, ext, nearestPt);
// findNearestPoly may return too optimistic results, further check to make sure.
if (sqr(nearestPt[0]-p[0])+sqr(nearestPt[2]-p[2]) > sqr(con->rad))
continue;
// TODO: Handle cross tile links.
dtDecodePolyId(ref, salt, it, ip);
if (it != tileIdx)
continue;
// Make sure the location is on current mesh.
float* v = &h->verts[poly->verts[j]*3];
vcopy(v, nearestPt);
con->ref[j] = ref;
}
}
for (int i = 0; i < h->polyCount; ++i)
{
dtPoly* poly = &h->polys[i];
poly->linkBase = nlinks;
poly->linkCount = 0;
if (poly->flags & DT_POLY_OFFMESH_CONNECTION)
{
// Find Off-Mesh link and fill in information.
dtOffMeshConnection* con = &h->offMeshCons[i - h->offMeshBase];
// Connect both ends.
for (int j = 0; j < 2; ++j)
{
if (nlinks < h->maxLinkCount)
{
dtLink* link = &pool[nlinks++];
link->ref = con->ref[j];
link->poly = (unsigned short)i;
link->edge = (unsigned char)j;
link->side = 0xff;
link->bmin = link->bmax = 0;
poly->linkCount++;
}
}
}
else
{
// Polygon edges.
for (int j = 0; j < poly->vertCount; ++j)
{
// Skip hard and non-internal edges.
if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
if (nlinks < h->maxLinkCount)
{
dtLink* link = &pool[nlinks++];
link->ref = base | (unsigned int)(poly->neis[j]-1);
link->poly = (unsigned short)i;
link->edge = (unsigned char)j;
link->side = 0xff;
link->bmin = link->bmax = 0;
poly->linkCount++;
}
}
// Check this polygon is Off-Mesh link target and connect.
// TODO: Speed this up.
dtPolyRef curRef = base | (unsigned int)i;
for (int j = 0; j < h->offMeshConCount; ++j)
{
const dtOffMeshConnection* con = &h->offMeshCons[j];
// Test both end points.
for (int k = 0; k < 2; ++k)
{
if (con->ref[k] == curRef)
{
if (nlinks < h->maxLinkCount)
{
dtLink* link = &pool[nlinks++];
link->ref = base | (dtPolyRef)con->poly;
link->poly = (unsigned short)i;
link->edge = 0;
link->side = 0xff;
link->bmin = link->bmax = 0;
poly->linkCount++;
}
}
}
}
}
}
h->linkCount = nlinks;
}
bool dtNavMesh::addTileAt(int x, int y, unsigned char* data, int dataSize, bool ownsData)
{
if (getTileAt(x,y))
return false;
// Make sure there is enough space for new tile.
if (!m_nextFree)
return false;
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return false;
if (header->version != DT_NAVMESH_VERSION)
return false;
// Make sure the tmp link array is large enough.
if (header->maxLinkCount > m_ntmpLinks)
{
m_ntmpLinks = header->maxLinkCount;
delete [] m_tmpLinks;
m_tmpLinks = 0;
m_tmpLinks = new dtLink[m_ntmpLinks];
}
if (!m_tmpLinks)
return false;
// Allocate a tile.
dtMeshTile* tile = m_nextFree;
m_nextFree = tile->next;
tile->next = 0;
// Insert tile into the position lut.
int h = computeTileHash(x,y,m_tileLutMask);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Patch header pointers.
const int headerSize = align4(sizeof(dtMeshHeader));
const int vertsSize = align4(sizeof(float)*3*header->vertCount);
const int polysSize = align4(sizeof(dtPoly)*header->polyCount);
const int linksSize = align4(sizeof(dtLink)*(header->maxLinkCount));
const int detailMeshesSize = align4(sizeof(dtPolyDetail)*header->detailMeshCount);
const int detailVertsSize = align4(sizeof(float)*3*header->detailVertCount);
const int detailTrisSize = align4(sizeof(unsigned char)*4*header->detailTriCount);
const int bvtreeSize = align4(sizeof(dtBVNode)*header->bvNodeCount);
const int offMeshLinksSize = align4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
unsigned char* d = data + headerSize;
header->verts = (float*)d; d += vertsSize;
header->polys = (dtPoly*)d; d += polysSize;
header->links = (dtLink*)d; d += linksSize;
header->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize;
header->detailVerts = (float*)d; d += detailVertsSize;
header->detailTris = (unsigned char*)d; d += detailTrisSize;
header->bvTree = (dtBVNode*)d; d += bvtreeSize;
header->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize;
// Init tile.
tile->header = header;
tile->x = x;
tile->y = y;
tile->data = data;
tile->dataSize = dataSize;
tile->ownsData = ownsData;
buildIntLinks(tile);
// Create connections connections.
for (int i = 0; i < 4; ++i)
{
dtMeshTile* nei = getNeighbourTileAt(x,y,i);
if (nei)
{
buildExtLinks(tile, nei, i);
buildExtLinks(nei, tile, opposite(i));
}
}
return true;
}
dtMeshTile* dtNavMesh::getTileAt(int x, int y)
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->x == x && tile->y == y)
return tile;
tile = tile->next;
}
return 0;
}
int dtNavMesh::getMaxTiles() const
{
return m_maxTiles;
}
dtMeshTile* dtNavMesh::getTile(int i)
{
return &m_tiles[i];
}
const dtMeshTile* dtNavMesh::getTile(int i) const
{
return &m_tiles[i];
}
const dtMeshTile* dtNavMesh::getTileByRef(dtPolyRef ref, int* polyIndex) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
if (polyIndex) *polyIndex = (int)ip;
return &m_tiles[it];
}
dtMeshTile* dtNavMesh::getNeighbourTileAt(int x, int y, int side)
{
switch (side)
{
case 0: x++; break;
case 1: y++; break;
case 2: x--; break;
case 3: y--; break;
};
return getTileAt(x,y);
}
bool dtNavMesh::removeTileAt(int x, int y, unsigned char** data, int* dataSize)
{
// Remove tile from hash lookup.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* prev = 0;
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->x == x && tile->y == y)
{
if (prev)
prev->next = tile->next;
else
m_posLookup[h] = tile->next;
break;
}
prev = tile;
tile = tile->next;
}
if (!tile)
return false;
// Remove connections to neighbour tiles.
for (int i = 0; i < 4; ++i)
{
dtMeshTile* nei = getNeighbourTileAt(x,y,i);
if (!nei) continue;
removeExtLinks(nei, opposite(i));
}
// Reset tile.
if (tile->ownsData)
{
// Owns data
delete [] tile->data;
tile->data = 0;
tile->dataSize = 0;
if (data) *data = 0;
if (dataSize) *dataSize = 0;
}
else
{
if (data) *data = tile->data;
if (dataSize) *dataSize = tile->dataSize;
}
tile->header = 0;
tile->x = tile->y = 0;
tile->salt++;
// Add to free list.
tile->next = m_nextFree;
m_nextFree = tile;
return true;
}
dtPolyRef dtNavMesh::getTileId(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = tile - m_tiles;
return dtEncodePolyId(tile->salt, it, 0);
}
//////////////////////////////////////////////////////////////////////////////////////////
bool dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtMeshHeader* header = m_tiles[it].header;
if (ip >= (unsigned int)header->polyCount) return false;
const dtPoly* poly = &header->polys[ip];
float closestDistSqr = FLT_MAX;
const dtPolyDetail* pd = &header->detailMeshes[ip];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &header->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &header->verts[poly->verts[t[k]]*3];
else
v[k] = &header->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float pt[3];
closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
float d = vdistSqr(pos, pt);
if (d < closestDistSqr)
{
vcopy(closest, pt);
closestDistSqr = d;
}
}
return true;
}
bool dtNavMesh::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtMeshHeader* header = m_tiles[it].header;
if (ip >= (unsigned int)header->polyCount) return false;
const dtPoly* poly = &header->polys[ip];
// Collect vertices.
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
int nv = 0;
for (int i = 0; i < (int)poly->vertCount; ++i)
{
vcopy(&verts[nv*3], &header->verts[poly->verts[i]*3]);
nv++;
}
bool inside = distancePtPolyEdgesSqr(pos, verts, nv, edged, edget);
if (inside)
{
// Point is inside the polygon, return the point.
vcopy(closest, pos);
}
else
{
// Point is outside the polygon, clamp to nearest edge.
float dmin = FLT_MAX;
int imin = -1;
for (int i = 0; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
vlerp(closest, va, vb, edget[imin]);
}
return true;
}
// Returns start and end location of an off-mesh link polygon.
bool dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
{
unsigned int salt, it, ip;
// Get previous poly
dtDecodePolyId(prevRef, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtMeshHeader* prevHeader = m_tiles[it].header;
if (ip >= (unsigned int)prevHeader->polyCount) return false;
const dtPoly* prevPoly = &prevHeader->polys[ip];
// Get current polygon
dtDecodePolyId(polyRef, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtMeshHeader* header = m_tiles[it].header;
if (ip >= (unsigned int)header->polyCount) return false;
const dtPoly* poly = &header->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if ((poly->flags & DT_POLY_OFFMESH_CONNECTION) == 0)
return false;
// Figure out which way to hand out the vertices.
int idx0 = 0, idx1 = 1;
for (int i = 0; i < prevPoly->linkCount; ++i)
{
const dtLink* link = &prevHeader->links[prevPoly->linkBase+i];
if (link->ref != polyRef)
continue;
// If first link does not point to the prev, then we need to reverse the order.
if (header->links[poly->linkBase+0].ref != prevRef)
{
idx0 = 1;
idx1 = 0;
break;
}
}
vcopy(startPos, &header->verts[poly->verts[idx0]*3]);
vcopy(endPos, &header->verts[poly->verts[idx1]*3]);
return true;
}
bool dtNavMesh::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
const dtMeshHeader* header = m_tiles[it].header;
if (ip >= (unsigned int)header->polyCount) return false;
const dtPoly* poly = &header->polys[ip];
if (poly->flags & DT_POLY_OFFMESH_CONNECTION)
{
const float* v0 = &header->verts[poly->verts[0]*3];
const float* v1 = &header->verts[poly->verts[1]*3];
const float d0 = vdist(pos, v0);
const float d1 = vdist(pos, v1);
const float u = d0 / (d0+d1);
if (height)
*height = v0[1] + (v1[1] - v0[1]) * u;
return true;
}
else
{
const dtPolyDetail* pd = &header->detailMeshes[ip];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &header->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &header->verts[poly->verts[t[k]]*3];
else
v[k] = &header->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height)
*height = h;
return true;
}
}
}
return false;
}
dtPolyRef dtNavMesh::findNearestPoly(const float* center, const float* extents, float* nearestPt)
{
// Get nearby polygons from proximity grid.
dtPolyRef polys[128];
int polyCount = queryPolygons(center, extents, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < polyCount; ++i)
{
dtPolyRef ref = polys[i];
float closestPtPoly[3];
if (!closestPointOnPoly(ref, center, closestPtPoly))
continue;
float d = vdistSqr(center, closestPtPoly);
if (d < nearestDistanceSqr)
{
if (nearestPt)
vcopy(nearestPt, closestPtPoly);
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
int dtNavMesh::queryTilePolygons(dtMeshTile* tile,
const float* qmin, const float* qmax,
dtPolyRef* polys, const int maxPolys)
{
const dtMeshHeader* header = tile->header;
if (header->bvTree)
{
const dtBVNode* node = &header->bvTree[0];
const dtBVNode* end = &header->bvTree[header->bvNodeCount];
// Calculate quantized box
unsigned short bmin[3], bmax[3];
// Clamp query box to world box.
float minx = clamp(qmin[0], header->bmin[0], header->bmax[0]) - header->bmin[0];
float miny = clamp(qmin[1], header->bmin[1], header->bmax[1]) - header->bmin[1];
float minz = clamp(qmin[2], header->bmin[2], header->bmax[2]) - header->bmin[2];
float maxx = clamp(qmax[0], header->bmin[0], header->bmax[0]) - header->bmin[0];
float maxy = clamp(qmax[1], header->bmin[1], header->bmax[1]) - header->bmin[1];
float maxz = clamp(qmax[2], header->bmin[2], header->bmax[2]) - header->bmin[2];
// Quantize
bmin[0] = (unsigned short)(header->bvQuantFactor * minx) & 0xfffe;
bmin[1] = (unsigned short)(header->bvQuantFactor * miny) & 0xfffe;
bmin[2] = (unsigned short)(header->bvQuantFactor * minz) & 0xfffe;
bmax[0] = (unsigned short)(header->bvQuantFactor * maxx + 1) | 1;
bmax[1] = (unsigned short)(header->bvQuantFactor * maxy + 1) | 1;
bmax[2] = (unsigned short)(header->bvQuantFactor * maxz + 1) | 1;
// Traverse tree
dtPolyRef base = getTileId(tile);
int n = 0;
while (node < end)
{
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)node->i;
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
else
{
float bmin[3], bmax[3];
const dtMeshHeader* header = tile->header;
int n = 0;
dtPolyRef base = getTileId(tile);
for (int i = 0; i < header->polyCount; ++i)
{
// Calc polygon bounds.
dtPoly* p = &header->polys[i];
const float* v = &header->verts[p->verts[0]*3];
vcopy(bmin, v);
vcopy(bmax, v);
for (int j = 1; j < p->vertCount; ++j)
{
v = &header->verts[p->verts[j]*3];
vmin(bmin, v);
vmax(bmax, v);
}
if (overlapBoxes(qmin,qmax, bmin,bmax))
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)i;
}
}
return n;
}
}
int dtNavMesh::queryPolygons(const float* center, const float* extents,
dtPolyRef* polys, const int maxPolys)
{
float bmin[3], bmax[3];
bmin[0] = center[0] - extents[0];
bmin[1] = center[1] - extents[1];
bmin[2] = center[2] - extents[2];
bmax[0] = center[0] + extents[0];
bmax[1] = center[1] + extents[1];
bmax[2] = center[2] + extents[2];
// Find tiles the query touches.
const int minx = (int)floorf((bmin[0]-m_orig[0]) / m_tileWidth);
const int maxx = (int)ceilf((bmax[0]-m_orig[0]) / m_tileWidth);
const int miny = (int)floorf((bmin[2]-m_orig[2]) / m_tileHeight);
const int maxy = (int)ceilf((bmax[2]-m_orig[2]) / m_tileHeight);
int n = 0;
for (int y = miny; y < maxy; ++y)
{
for (int x = minx; x < maxx; ++x)
{
dtMeshTile* tile = getTileAt(x,y);
if (!tile) continue;
n += queryTilePolygons(tile, bmin, bmax, polys+n, maxPolys-n);
if (n >= maxPolys) return n;
}
}
return n;
}
int dtNavMesh::findPath(dtPolyRef startRef, dtPolyRef endRef,
const float* startPos, const float* endPos,
dtPolyRef* path, const int maxPathSize)
{
if (!startRef || !endRef)
return 0;
if (!maxPathSize)
return 0;
if (!getPolyByRef(startRef) || !getPolyByRef(endRef))
return 0;
if (startRef == endRef)
{
path[0] = startRef;
return 1;
}
if (!m_nodePool || !m_openList)
return 0;
m_nodePool->clear();
m_openList->clear();
static const float H_SCALE = 1.1f; // Heuristic scale.
dtNode* startNode = m_nodePool->getNode(startRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = vdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
// Get poly and tile.
unsigned int salt, it, ip;
dtDecodePolyId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtMeshHeader* header = m_tiles[it].header;
const dtPoly* poly = &header->polys[ip];
for (int i = 0; i < poly->linkCount; ++i)
{
dtPolyRef neighbour = header->links[poly->linkBase+i].ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Calculate cost.
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, startPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.cost = parent->cost + vdist(p0,p1);
// Special case for last node.
if (newNode.id == endRef)
newNode.cost += vdist(p1, endPos);
// Heuristic
const float h = vdist(p1,endPos)*H_SCALE;
newNode.total = newNode.cost + h;
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (h < lastBestNodeCost)
{
lastBestNodeCost = h;
lastBestNode = actualNode;
}
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Reverse the path.
dtNode* prev = 0;
dtNode* node = lastBestNode;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
node = next;
}
while (node);
// Store path
node = prev;
int n = 0;
do
{
path[n++] = node->id;
node = m_nodePool->getNodeAtIdx(node->pidx);
}
while (node && n < maxPathSize);
return n;
}
int dtNavMesh::findStraightPath(const float* startPos, const float* endPos,
const dtPolyRef* path, const int pathSize,
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
const int maxStraightPathSize)
{
if (!maxStraightPathSize)
return 0;
if (!path[0])
return 0;
int straightPathSize = 0;
// TODO: Should this be callers responsibility?
float closestStartPos[3];
if (!closestPointOnPolyBoundary(path[0], startPos, closestStartPos))
return 0;
// Add start point.
vcopy(&straightPath[straightPathSize*3], closestStartPos);
if (straightPathFlags)
straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_START;
if (straightPathRefs)
straightPathRefs[straightPathSize] = path[0];
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
float closestEndPos[3];
if (!closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos))
return 0;
if (pathSize > 1)
{
float portalApex[3], portalLeft[3], portalRight[3];
vcopy(portalApex, closestStartPos);
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
unsigned char leftPolyFlags = 0;
unsigned char rightPolyFlags = 0;
dtPolyRef leftPolyRef = path[0];
dtPolyRef rightPolyRef = path[0];
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
unsigned char fromFlags, toFlags;
if (i+1 < pathSize)
{
// Next portal.
if (!getPortalPoints(path[i], path[i+1], left, right, fromFlags, toFlags))
{
if (!closestPointOnPolyBoundary(path[i], endPos, closestEndPos))
return 0;
vcopy(&straightPath[straightPathSize*3], closestEndPos);
if (straightPathFlags)
straightPathFlags[straightPathSize] = 0;
if (straightPathRefs)
straightPathRefs[straightPathSize] = path[i];
straightPathSize++;
return straightPathSize;
}
}
else
{
// End of the path.
vcopy(left, closestEndPos);
vcopy(right, closestEndPos);
fromFlags = toFlags = 0;
}
// Right vertex.
if (vequal(portalApex, portalRight))
{
vcopy(portalRight, right);
rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
rightPolyFlags = toFlags;
rightIndex = i;
}
else
{
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
{
vcopy(portalRight, right);
rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
rightPolyFlags = toFlags;
rightIndex = i;
}
else
{
vcopy(portalApex, portalLeft);
apexIndex = leftIndex;
unsigned char flags = (leftPolyFlags & DT_POLY_OFFMESH_CONNECTION) ? DT_STRAIGHTPATH_OFFMESH_CONNECTION : 0;
dtPolyRef ref = leftPolyRef;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
if (straightPathFlags)
straightPathFlags[straightPathSize] = flags;
if (straightPathRefs)
straightPathRefs[straightPathSize] = ref;
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
else
{
// The vertices are equal, update flags and poly.
if (straightPathFlags)
straightPathFlags[straightPathSize-1] = flags;
if (straightPathRefs)
straightPathRefs[straightPathSize-1] = ref;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Left vertex.
if (vequal(portalApex, portalLeft))
{
vcopy(portalLeft, left);
leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
leftPolyFlags = toFlags;
leftIndex = i;
}
else
{
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (triArea2D(portalApex, portalRight, left) < 0.0f)
{
vcopy(portalLeft, left);
leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
leftPolyFlags = toFlags;
leftIndex = i;
}
else
{
vcopy(portalApex, portalRight);
apexIndex = rightIndex;
unsigned char flags = (rightPolyFlags & DT_POLY_OFFMESH_CONNECTION) ? DT_STRAIGHTPATH_OFFMESH_CONNECTION : 0;
dtPolyRef ref = rightPolyRef;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
if (straightPathFlags)
straightPathFlags[straightPathSize] = flags;
if (straightPathRefs)
straightPathRefs[straightPathSize] = ref;
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
else
{
// The vertices are equal, update flags and poly.
if (straightPathFlags)
straightPathFlags[straightPathSize-1] = flags;
if (straightPathRefs)
straightPathRefs[straightPathSize-1] = ref;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
}
}
// Add end point.
vcopy(&straightPath[straightPathSize*3], closestEndPos);
if (straightPathFlags)
straightPathFlags[straightPathSize] = DT_STRAIGHTPATH_END;
if (straightPathRefs)
straightPathRefs[straightPathSize] = 0;
straightPathSize++;
return straightPathSize;
}
// Moves towards end position a long the path corridor.
// Returns: Index to the result path polygon.
int dtNavMesh::moveAlongPathCorridor(const float* startPos, const float* endPos, float* resultPos,
const dtPolyRef* path, const int pathSize)
{
if (!pathSize)
return 0;
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
int n = 0;
static const float SLOP = 0.01f;
vcopy(resultPos, startPos);
while (n < pathSize)
{
// Get current polygon and poly vertices.
unsigned int salt, it, ip;
dtDecodePolyId(path[n], salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return n;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return n;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return n;
const dtMeshHeader* header = m_tiles[it].header;
const dtPoly* poly = &header->polys[ip];
// In case of Off-Mesh link, just snap to the end location and advance over it.
if (poly->flags & DT_POLY_OFFMESH_CONNECTION)
{
if (n+1 < pathSize)
{
float left[3], right[3];
unsigned char fromFlags, toFlags;
if (!getPortalPoints(path[n], path[n+1], left, right, fromFlags, toFlags))
return n;
vcopy(resultPos, endPos);
}
return n+1;
}
// Collect vertices.
int nv = 0;
for (int i = 0; i < (int)poly->vertCount; ++i)
{
vcopy(&verts[nv*3], &header->verts[poly->verts[i]*3]);
nv++;
}
bool inside = distancePtPolyEdgesSqr(endPos, verts, nv, edged, edget);
if (inside)
{
// The end point is inside the current polygon.
vcopy(resultPos, endPos);
return n;
}
// Constraint the point on the polygon boundary.
// This results sliding movement.
float dmin = FLT_MAX;
int imin = -1;
for (int i = 0; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
vlerp(resultPos, va, vb, edget[imin]);
// Check to see if the point is on the portal edge to the next polygon.
if (n+1 >= pathSize)
return n;
float left[3], right[3];
unsigned char fromFlags, toFlags;
if (!getPortalPoints(path[n], path[n+1], left, right, fromFlags, toFlags))
return n;
// If the clamped point is close to the next portal edge, advance to next poly.
float t;
float d = distancePtSegSqr2D(resultPos, left, right, t);
if (d > SLOP*SLOP)
return n;
// Advance to next polygon.
n++;
}
return n;
}
// Returns portal points between two polygons.
bool dtNavMesh::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
unsigned char& fromFlags, unsigned char& toFlags) const
{
unsigned int salt, it, ip;
dtDecodePolyId(from, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
const dtMeshHeader* fromHeader = m_tiles[it].header;
const dtPoly* fromPoly = &fromHeader->polys[ip];
fromFlags = fromPoly->flags;
for (int i = 0; i < fromPoly->linkCount; ++i)
{
const dtLink* link = &fromHeader->links[fromPoly->linkBase+i];
if (link->ref != to)
continue;
dtDecodePolyId(to, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
const dtMeshHeader* toHeader = m_tiles[it].header;
const dtPoly* toPoly = &toHeader->polys[ip];
toFlags = toPoly->flags;
if (fromPoly->flags & DT_POLY_OFFMESH_CONNECTION)
{
const int v = fromHeader->links[fromPoly->linkBase+0].ref == to ? 0 : 1;
vcopy(left, &fromHeader->verts[fromPoly->verts[v]*3]);
vcopy(right, &fromHeader->verts[fromPoly->verts[v]*3]);
return true;
}
if (toPoly->flags & DT_POLY_OFFMESH_CONNECTION)
{
const int v = toHeader->links[toPoly->linkBase+0].ref == from ? 0 : 1;
vcopy(left, &toHeader->verts[toPoly->verts[v]*3]);
vcopy(right, &toHeader->verts[toPoly->verts[v]*3]);
return true;
}
// Find portal vertices.
const int v0 = fromPoly->verts[link->edge];
const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount];
vcopy(left, &fromHeader->verts[v0*3]);
vcopy(right, &fromHeader->verts[v1*3]);
// If the link is at tile boundary, clamp the vertices to
// the link width.
if (link->side == 0 || link->side == 2)
{
// Unpack portal limits.
const float smin = min(left[2],right[2]);
const float smax = max(left[2],right[2]);
const float s = (smax-smin) / 255.0f;
const float lmin = smin + link->bmin*s;
const float lmax = smin + link->bmax*s;
left[2] = max(left[2],lmin);
left[2] = min(left[2],lmax);
right[2] = max(right[2],lmin);
right[2] = min(right[2],lmax);
}
else if (link->side == 1 || link->side == 3)
{
// Unpack portal limits.
const float smin = min(left[0],right[0]);
const float smax = max(left[0],right[0]);
const float s = (smax-smin) / 255.0f;
const float lmin = smin + link->bmin*s;
const float lmax = smin + link->bmax*s;
left[0] = max(left[0],lmin);
left[0] = min(left[0],lmax);
right[0] = max(right[0],lmin);
right[0] = min(right[0],lmax);
}
return true;
}
return false;
}
// Returns edge mid point between two polygons.
bool dtNavMesh::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const
{
float left[3], right[3];
unsigned char fromFlags, toFlags;
if (!getPortalPoints(from, to, left,right, fromFlags, toFlags)) return false;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return true;
}
int dtNavMesh::raycast(dtPolyRef centerRef, const float* startPos, const float* endPos,
float& t, float* hitNormal, dtPolyRef* path, const int pathSize)
{
t = 0;
if (!centerRef || !getPolyByRef(centerRef))
return 0;
dtPolyRef curRef = centerRef;
float verts[DT_VERTS_PER_POLYGON*3];
int n = 0;
hitNormal[0] = 0;
hitNormal[1] = 0;
hitNormal[2] = 0;
while (curRef)
{
// Cast ray against current polygon.
// The API input has been cheked already, skip checking internal data.
unsigned int salt, it, ip;
dtDecodePolyId(curRef, salt, it, ip);
const dtMeshHeader* header = m_tiles[it].header;
const dtPoly* poly = &header->polys[ip];
// Collect vertices.
int nv = 0;
for (int i = 0; i < (int)poly->vertCount; ++i)
{
vcopy(&verts[nv*3], &header->verts[poly->verts[i]*3]);
nv++;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not hit the polygon, keep the old t and report hit.
return n;
}
// Keep track of furthest t so far.
if (tmax > t)
t = tmax;
if (n < pathSize)
path[n++] = curRef;
// Follow neighbours.
dtPolyRef nextRef = 0;
for (int i = 0; i < poly->linkCount; ++i)
{
const dtLink* link = &header->links[poly->linkBase+i];
if ((int)link->edge == segMax)
{
// If the link is internal, just return the ref.
if (link->side == 0xff)
{
nextRef = link->ref;
break;
}
// If the link is at tile boundary,
const int v0 = poly->verts[link->edge];
const int v1 = poly->verts[(link->edge+1) % poly->vertCount];
const float* left = &header->verts[v0*3];
const float* right = &header->verts[v1*3];
// Check that the intersection lies inside the link portal.
if (link->side == 0 || link->side == 2)
{
// Calculate link size.
const float smin = min(left[2],right[2]);
const float smax = max(left[2],right[2]);
const float s = (smax-smin) / 255.0f;
const float lmin = smin + link->bmin*s;
const float lmax = smin + link->bmax*s;
// Find Z intersection.
float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
if (z >= lmin && z <= lmax)
{
nextRef = link->ref;
break;
}
}
else if (link->side == 1 || link->side == 3)
{
// Calculate link size.
const float smin = min(left[0],right[0]);
const float smax = max(left[0],right[0]);
const float s = (smax-smin) / 255.0f;
const float lmin = smin + link->bmin*s;
const float lmax = smin + link->bmax*s;
// Find X intersection.
float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
if (x >= lmin && x <= lmax)
{
nextRef = link->ref;
break;
}
}
}
}
if (!nextRef)
{
// No neighbour, we hit a wall.
// Calculate hit normal.
const int a = segMax;
const int b = segMax+1 < nv ? segMax+1 : 0;
const float* va = &verts[a*3];
const float* vb = &verts[b*3];
const float dx = vb[0] - va[0];
const float dz = vb[2] - va[2];
hitNormal[0] = dz;
hitNormal[1] = 0;
hitNormal[2] = -dx;
vnormalize(hitNormal);
return n;
}
// No hit, advance to neighbour polygon.
curRef = nextRef;
}
return n;
}
int dtNavMesh::findPolysAround(dtPolyRef centerRef, const float* centerPos, float radius,
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
const int maxResult)
{
if (!centerRef) return 0;
if (!getPolyByRef(centerRef)) return 0;
if (!m_nodePool || !m_openList) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
int n = 0;
if (n < maxResult)
{
if (resultRef)
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
if (resultCost)
resultCost[n] = 0;
++n;
}
const float radiusSqr = sqr(radius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
// Get poly and tile.
unsigned int salt, it, ip;
dtDecodePolyId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtMeshHeader* header = m_tiles[it].header;
const dtPoly* poly = &header->polys[ip];
for (int i = 0; i < poly->linkCount; ++i)
{
const dtLink* link = &header->links[poly->linkBase+i];
dtPolyRef neighbour = link->ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* va = &header->verts[poly->verts[link->edge]*3];
const float* vb = &header->verts[poly->verts[(link->edge+1) % poly->vertCount]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
if (n < maxResult)
{
if (resultRef)
resultRef[n] = actualNode->id;
if (resultParent)
resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
if (resultCost)
resultCost[n] = actualNode->total;
++n;
}
actualNode->flags = DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
}
return n;
}
float dtNavMesh::findDistanceToWall(dtPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal)
{
if (!centerRef) return 0;
if (!getPolyByRef(centerRef)) return 0;
if (!m_nodePool || !m_openList) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
float radiusSqr = sqr(maxRadius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
// Get poly and tile.
unsigned int salt, it, ip;
dtDecodePolyId(bestNode->id, salt, it, ip);
// The API input has been cheked already, skip checking internal data.
const dtMeshHeader* header = m_tiles[it].header;
const dtPoly* poly = &header->polys[ip];
// Hit test walls.
for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++)
{
// Skip non-solid edges.
if (poly->neis[j] & DT_EXT_LINK)
{
// Tile border.
bool solid = true;
for (int i = 0; i < poly->linkCount; ++i)
{
const dtLink* link = &header->links[poly->linkBase+i];
if (link->edge == j && link->ref != 0)
{
solid = false;
break;
}
}
if (!solid) continue;
}
else if (poly->neis[j])
{
// Internal edge
continue;
}
// Calc distance to the edge.
const float* vj = &header->verts[poly->verts[j]*3];
const float* vi = &header->verts[poly->verts[i]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
for (int i = 0; i < poly->linkCount; ++i)
{
const dtLink* link = &header->links[poly->linkBase+i];
dtPolyRef neighbour = link->ref;
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* va = &header->verts[poly->verts[link->edge]*3];
const float* vb = &header->verts[poly->verts[(link->edge+1) % poly->vertCount]*3];
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags = DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
}
// Calc hit normal.
vsub(hitNormal, centerPos, hitPos);
vnormalize(hitNormal);
return sqrtf(radiusSqr);
}
const dtPoly* dtNavMesh::getPolyByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
return &m_tiles[it].header->polys[ip];
}
const float* dtNavMesh::getPolyVertsByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
return m_tiles[it].header->verts;
}
const dtLink* dtNavMesh::getPolyLinksByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
dtDecodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return 0;
return m_tiles[it].header->links;
}
bool dtNavMesh::isInClosedList(dtPolyRef ref) const
{
if (!m_nodePool) return false;
const dtNode* node = m_nodePool->findNode(ref);
return node && node->flags & DT_NODE_CLOSED;
}