修改相关的prompt
This commit is contained in:
parent
c21de6bdda
commit
90d58aaedf
87
app.py
87
app.py
@ -4,23 +4,18 @@
|
|||||||
from langchain.prompts import PromptTemplate
|
from langchain.prompts import PromptTemplate
|
||||||
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
|
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
|
||||||
from langchain_community.chat_models import ChatOllama
|
from langchain_community.chat_models import ChatOllama
|
||||||
from langchain_community.tools import DuckDuckGoSearchRun
|
|
||||||
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
|
|
||||||
from langgraph.graph import END, StateGraph
|
from langgraph.graph import END, StateGraph
|
||||||
# For State Graph
|
# For State Graph
|
||||||
from typing_extensions import TypedDict
|
from typing_extensions import TypedDict
|
||||||
import os
|
import os
|
||||||
|
import json
|
||||||
|
|
||||||
# Defining LLM
|
# Defining LLM
|
||||||
local_llm = 'llama3.2'
|
local_llm = 'llama3.2'
|
||||||
llama3 = ChatOllama(model=local_llm, temperature=0)
|
llama3 = ChatOllama(model=local_llm, temperature=0)
|
||||||
llama3_json = ChatOllama(model=local_llm, format='json', temperature=0)
|
llama3_json = ChatOllama(model=local_llm, format='json', temperature=0)
|
||||||
|
|
||||||
# Web Search Tool
|
|
||||||
|
|
||||||
wrapper = DuckDuckGoSearchAPIWrapper(max_results=25)
|
|
||||||
web_search_tool = DuckDuckGoSearchRun(api_wrapper=wrapper)
|
|
||||||
|
|
||||||
# Generation Prompt
|
# Generation Prompt
|
||||||
|
|
||||||
generate_prompt = PromptTemplate(
|
generate_prompt = PromptTemplate(
|
||||||
@ -40,7 +35,7 @@ generate_prompt = PromptTemplate(
|
|||||||
<|start_header_id|>user<|end_header_id|>
|
<|start_header_id|>user<|end_header_id|>
|
||||||
|
|
||||||
Question: {question}
|
Question: {question}
|
||||||
Web Search Context: {context}
|
Send Order Context: {context}
|
||||||
Answer:
|
Answer:
|
||||||
|
|
||||||
<|eot_id|>
|
<|eot_id|>
|
||||||
@ -67,11 +62,11 @@ router_prompt = PromptTemplate(
|
|||||||
|
|
||||||
<|start_header_id|>system<|end_header_id|>
|
<|start_header_id|>system<|end_header_id|>
|
||||||
|
|
||||||
You are an expert at routing a user question to either the generation stage or web search.
|
You are an expert at routing a user question to either the generation stage or send order.
|
||||||
Use the web search for questions that require more context for a better answer, or recent events.
|
Use the send order for questions that user want buy CEC from you.
|
||||||
Otherwise, you can skip and go straight to the generation phase to respond.
|
Otherwise, you can skip and go straight to the generation phase to respond.
|
||||||
You do not need to be stringent with the keywords in the question related to these topics.
|
You do not need to be stringent with the keywords in the question related to these topics.
|
||||||
Give a binary choice 'web_search' or 'generate' based on the question.
|
Give a binary choice 'send_order' or 'generate' based on the question.
|
||||||
Return the JSON with a single key 'choice' with no premable or explanation.
|
Return the JSON with a single key 'choice' with no premable or explanation.
|
||||||
|
|
||||||
Question to route: {question}
|
Question to route: {question}
|
||||||
@ -100,10 +95,8 @@ query_prompt = PromptTemplate(
|
|||||||
|
|
||||||
<|start_header_id|>system<|end_header_id|>
|
<|start_header_id|>system<|end_header_id|>
|
||||||
|
|
||||||
You are an expert at crafting web search queries for research questions.
|
You are an expert at sell CEC,
|
||||||
More often than not, a user will ask a basic question that they wish to learn more about, however it might not be in the best format.
|
Return the JSON with a single key 'count' with amount which user want to buy.
|
||||||
Reword their query to be the most effective web search string possible.
|
|
||||||
Return the JSON with a single key 'query' with no premable or explanation.
|
|
||||||
|
|
||||||
Question to transform: {question}
|
Question to transform: {question}
|
||||||
|
|
||||||
@ -131,12 +124,12 @@ class GraphState(TypedDict):
|
|||||||
Attributes:
|
Attributes:
|
||||||
question: question
|
question: question
|
||||||
generation: LLM generation
|
generation: LLM generation
|
||||||
search_query: revised question for web search
|
send_order: revised question for send order
|
||||||
context: web_search result
|
context: send_order result
|
||||||
"""
|
"""
|
||||||
question : str
|
question : str
|
||||||
generation : str
|
generation : str
|
||||||
search_query : str
|
send_order : str
|
||||||
context : str
|
context : str
|
||||||
|
|
||||||
# Node - Generate
|
# Node - Generate
|
||||||
@ -154,18 +147,20 @@ def generate(state):
|
|||||||
|
|
||||||
print("Step: Generating Final Response")
|
print("Step: Generating Final Response")
|
||||||
question = state["question"]
|
question = state["question"]
|
||||||
context = state["context"]
|
context = state.get("context", None)
|
||||||
print(context)
|
print(context)
|
||||||
# TODO:: 根据context特定的内容生产答案
|
# TODO:: 根据context特定的内容生产答案
|
||||||
# Answer Generation
|
if context.index("orderinfo") != -1:
|
||||||
generation = generate_chain.invoke({"context": context, "question": question})
|
return {"generation": context.replace("orderinfo:", "")}
|
||||||
return {"generation": generation}
|
else:
|
||||||
|
generation = generate_chain.invoke({"context": context, "question": question})
|
||||||
|
return {"generation": generation}
|
||||||
|
|
||||||
# Node - Query Transformation
|
# Node - Query Transformation
|
||||||
|
|
||||||
def transform_query(state):
|
def transform_query(state):
|
||||||
"""
|
"""
|
||||||
Transform user question to web search
|
Transform user question to order info
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
state (dict): The current graph state
|
state (dict): The current graph state
|
||||||
@ -174,18 +169,19 @@ def transform_query(state):
|
|||||||
state (dict): Appended search query
|
state (dict): Appended search query
|
||||||
"""
|
"""
|
||||||
|
|
||||||
print("Step: Optimizing Query for Web Search")
|
print("Step: Optimizing Query for Send Order")
|
||||||
question = state['question']
|
question = state['question']
|
||||||
gen_query = query_chain.invoke({"question": question})
|
gen_query = query_chain.invoke({"question": question})
|
||||||
search_query = gen_query["query"]
|
search_query = gen_query["count"]
|
||||||
return {"search_query": search_query}
|
print("send_order", search_query)
|
||||||
|
return {"send_order": search_query}
|
||||||
|
|
||||||
|
|
||||||
# Node - Web Search
|
# Node - Send Order
|
||||||
|
|
||||||
def web_search(state):
|
def send_order(state):
|
||||||
"""
|
"""
|
||||||
Web search based on the question
|
Send order based on the question
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
state (dict): The current graph state
|
state (dict): The current graph state
|
||||||
@ -193,14 +189,12 @@ def web_search(state):
|
|||||||
Returns:
|
Returns:
|
||||||
state (dict): Appended web results to context
|
state (dict): Appended web results to context
|
||||||
"""
|
"""
|
||||||
|
print("Step: before Send Order")
|
||||||
# search_query = state['search_query']
|
amount = state['send_order']
|
||||||
# print(f'Step: Searching the Web for: "{search_query}"')
|
print(amount)
|
||||||
|
print(f'Step: build order info for : "{amount}" CEC')
|
||||||
# # Web search tool call
|
order_info = {"amount": amount, "price": 0.1, "name": "CEC", "url": "https://www.example.com"}
|
||||||
# search_result = web_search_tool.invoke(search_query)
|
search_result = f"orderinfo:{json.dumps(order_info)}"
|
||||||
print("Step: Web Search")
|
|
||||||
search_result = "Web Search Results"
|
|
||||||
return {"context": search_result}
|
return {"context": search_result}
|
||||||
|
|
||||||
|
|
||||||
@ -208,7 +202,7 @@ def web_search(state):
|
|||||||
|
|
||||||
def route_question(state):
|
def route_question(state):
|
||||||
"""
|
"""
|
||||||
route question to web search or generation.
|
route question to send order or generation.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
state (dict): The current graph state
|
state (dict): The current graph state
|
||||||
@ -220,16 +214,16 @@ def route_question(state):
|
|||||||
print("Step: Routing Query")
|
print("Step: Routing Query")
|
||||||
question = state['question']
|
question = state['question']
|
||||||
output = question_router.invoke({"question": question})
|
output = question_router.invoke({"question": question})
|
||||||
if output['choice'] == "web_search":
|
if output['choice'] == "send_order":
|
||||||
print("Step: Routing Query to Web Search")
|
print("Step: Routing Query to Send Order")
|
||||||
return "websearch"
|
return "sendorder"
|
||||||
elif output['choice'] == 'generate':
|
elif output['choice'] == 'generate':
|
||||||
print("Step: Routing Query to Generation")
|
print("Step: Routing Query to Generation")
|
||||||
return "generate"
|
return "generate"
|
||||||
|
|
||||||
# Build the nodes
|
# Build the nodes
|
||||||
workflow = StateGraph(GraphState)
|
workflow = StateGraph(GraphState)
|
||||||
workflow.add_node("websearch", web_search)
|
workflow.add_node("sendorder", send_order)
|
||||||
workflow.add_node("transform_query", transform_query)
|
workflow.add_node("transform_query", transform_query)
|
||||||
workflow.add_node("generate", generate)
|
workflow.add_node("generate", generate)
|
||||||
|
|
||||||
@ -237,12 +231,12 @@ workflow.add_node("generate", generate)
|
|||||||
workflow.set_conditional_entry_point(
|
workflow.set_conditional_entry_point(
|
||||||
route_question,
|
route_question,
|
||||||
{
|
{
|
||||||
"websearch": "transform_query",
|
"sendorder": "transform_query",
|
||||||
"generate": "generate",
|
"generate": "generate",
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
workflow.add_edge("transform_query", "websearch")
|
workflow.add_edge("transform_query", "sendorder")
|
||||||
workflow.add_edge("websearch", "generate")
|
workflow.add_edge("sendorder", "generate")
|
||||||
workflow.add_edge("generate", END)
|
workflow.add_edge("generate", END)
|
||||||
|
|
||||||
# Compile the workflow
|
# Compile the workflow
|
||||||
@ -254,4 +248,5 @@ def run_agent(query):
|
|||||||
print(output["generation"])
|
print(output["generation"])
|
||||||
# display(Markdown(output["generation"]))
|
# display(Markdown(output["generation"]))
|
||||||
|
|
||||||
run_agent("What is Latest news About Open AI?")
|
run_agent("I want to buy 100 CEC")
|
||||||
|
# run_agent("What the weather of New York today?")
|
Loading…
x
Reference in New Issue
Block a user