1432 lines
34 KiB
C++
1432 lines
34 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include <float.h>
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include "Recast.h"
|
|
#include "RecastAlloc.h"
|
|
#include "RecastAssert.h"
|
|
|
|
|
|
static const int RC_MAX_LAYERS = RC_NOT_CONNECTED;
|
|
static const int RC_MAX_NEIS = 16;
|
|
|
|
struct rcLayerRegion
|
|
{
|
|
unsigned char layers[RC_MAX_LAYERS];
|
|
unsigned char neis[RC_MAX_NEIS];
|
|
|
|
unsigned short ymin, ymax;
|
|
|
|
unsigned short count;
|
|
|
|
unsigned char layerId;
|
|
unsigned char nlayers;
|
|
unsigned char nneis;
|
|
|
|
unsigned char start;
|
|
};
|
|
|
|
|
|
static void addUnique(unsigned char* a, unsigned char& an, unsigned char v)
|
|
{
|
|
const int n = (int)an;
|
|
for (int i = 0; i < n; ++i)
|
|
if (a[i] == v)
|
|
return;
|
|
a[an] = v;
|
|
an++;
|
|
}
|
|
|
|
static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v)
|
|
{
|
|
const int n = (int)an;
|
|
if (n > 0 && a[n-1] == v) return;
|
|
a[an] = v;
|
|
an++;
|
|
}
|
|
|
|
static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v)
|
|
{
|
|
const int n = (int)an;
|
|
for (int i = 0; i < n; ++i)
|
|
if (a[i] == v)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
inline bool overlapRange(const unsigned short amin, const unsigned short amax,
|
|
const unsigned short bmin, const unsigned short bmax)
|
|
{
|
|
return (amin > bmax || amax < bmin) ? false : true;
|
|
}
|
|
|
|
|
|
struct rcLayerSweepSpan
|
|
{
|
|
unsigned short ns; // number samples
|
|
unsigned char id; // region id
|
|
unsigned char nei; // neighbour id
|
|
};
|
|
|
|
|
|
rcHeightfieldLayerPortal* allocPortal(rcHeightfieldLayerPortal** portals, int& nportals, int& cportals)
|
|
{
|
|
if (nportals+1 >= cportals)
|
|
{
|
|
cportals *= 2;
|
|
rcHeightfieldLayerPortal* np = (rcHeightfieldLayerPortal*)rcAlloc(sizeof(rcHeightfieldLayerPortal)*cportals,RC_ALLOC_PERM);
|
|
if (!np)
|
|
return 0;
|
|
if (nportals > 0)
|
|
memcpy(np,*portals,sizeof(rcHeightfieldLayerPortal)*nportals);
|
|
rcFree(*portals);
|
|
*portals = np;
|
|
}
|
|
nportals++;
|
|
return &(*portals)[nportals-1];
|
|
}
|
|
|
|
|
|
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
|
|
const int borderSize, const int walkableHeight,
|
|
rcHeightfieldLayerSet& lset)
|
|
{
|
|
rcAssert(ctx);
|
|
|
|
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
|
|
|
|
const int w = chf.width;
|
|
const int h = chf.height;
|
|
|
|
rcScopedDelete<unsigned char> srcReg = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
|
|
if (!srcReg)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
|
|
return false;
|
|
}
|
|
memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
|
|
|
|
const int nsweeps = chf.width;
|
|
rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
|
|
if (!sweeps)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
|
|
return false;
|
|
}
|
|
|
|
|
|
// Partition walkable area into monotone regions.
|
|
int prevCount[256];
|
|
unsigned char regId = 0;
|
|
|
|
// for (int y = 0; y < h; ++y)
|
|
for (int y = borderSize; y < h-borderSize; ++y)
|
|
{
|
|
memset(prevCount,0,sizeof(int)*regId);
|
|
unsigned char sweepId = 0;
|
|
|
|
// for (int x = 0; x < w; ++x)
|
|
for (int x = borderSize; x < w-borderSize; ++x)
|
|
{
|
|
const rcCompactCell& c = chf.cells[x+y*w];
|
|
|
|
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
|
{
|
|
const rcCompactSpan& s = chf.spans[i];
|
|
if (chf.areas[i] == RC_NULL_AREA) continue;
|
|
|
|
unsigned char sid = 0xff;
|
|
|
|
// -x
|
|
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
|
|
{
|
|
const int ax = x + rcGetDirOffsetX(0);
|
|
const int ay = y + rcGetDirOffsetY(0);
|
|
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
|
|
if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
|
|
sid = srcReg[ai];
|
|
}
|
|
|
|
if (sid == 0xff)
|
|
{
|
|
sid = sweepId++;
|
|
sweeps[sid].nei = 0xff;
|
|
sweeps[sid].ns = 0;
|
|
}
|
|
|
|
// -y
|
|
if (rcGetCon(s,3) != RC_NOT_CONNECTED)
|
|
{
|
|
const int ax = x + rcGetDirOffsetX(3);
|
|
const int ay = y + rcGetDirOffsetY(3);
|
|
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
|
|
const unsigned char nr = srcReg[ai];
|
|
if (nr != 0xff)
|
|
{
|
|
// Set neighbour when first valid neighbour is encoutered.
|
|
if (sweeps[sid].ns == 0)
|
|
sweeps[sid].nei = nr;
|
|
|
|
if (sweeps[sid].nei == nr)
|
|
{
|
|
// Update existing neighbour
|
|
sweeps[sid].ns++;
|
|
prevCount[nr]++;
|
|
}
|
|
else
|
|
{
|
|
// This is hit if there is nore than one neighbour.
|
|
// Invalidate the neighbour.
|
|
sweeps[sid].nei = 0xff;
|
|
}
|
|
}
|
|
}
|
|
|
|
srcReg[i] = sid;
|
|
}
|
|
}
|
|
|
|
// Create unique ID.
|
|
for (int i = 0; i < sweepId; ++i)
|
|
{
|
|
// If the neighbour is set and there is only one continuous connection to it,
|
|
// the sweep will be merged with the previous one, else new region is created.
|
|
if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
|
|
{
|
|
sweeps[i].id = sweeps[i].nei;
|
|
}
|
|
else
|
|
{
|
|
if (regId == 255)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
|
|
return false;
|
|
}
|
|
sweeps[i].id = regId++;
|
|
}
|
|
}
|
|
|
|
// Remap local sweep ids to region ids.
|
|
// for (int x = 0; x < w; ++x)
|
|
for (int x = borderSize; x < w-borderSize; ++x)
|
|
{
|
|
const rcCompactCell& c = chf.cells[x+y*w];
|
|
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
|
{
|
|
if (srcReg[i] != 0xff)
|
|
srcReg[i] = sweeps[srcReg[i]].id;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocate and init layer regions.
|
|
const int nregs = (int)regId;
|
|
rcScopedDelete<rcLayerRegion> regs = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP);
|
|
if (!regs)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
|
|
return false;
|
|
}
|
|
memset(regs, 0, sizeof(rcLayerRegion)*nregs);
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
regs[i].layerId = 0xff;
|
|
regs[i].ymin = 0xffff;
|
|
regs[i].ymax = 0;
|
|
}
|
|
|
|
// Find region neighbours and overlapping regions.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const rcCompactCell& c = chf.cells[x+y*w];
|
|
|
|
unsigned char lregs[RC_MAX_LAYERS];
|
|
int nlregs = 0;
|
|
|
|
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
|
{
|
|
const rcCompactSpan& s = chf.spans[i];
|
|
const unsigned char ri = srcReg[i];
|
|
if (ri == 0xff) continue;
|
|
|
|
regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
|
|
regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
|
|
|
|
// Collect all region layers.
|
|
if (nlregs < RC_MAX_LAYERS)
|
|
lregs[nlregs++] = ri;
|
|
|
|
// Update neighbours
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
|
{
|
|
const int ax = x + rcGetDirOffsetX(dir);
|
|
const int ay = y + rcGetDirOffsetY(dir);
|
|
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
|
const unsigned char rai = srcReg[ai];
|
|
if (rai != 0xff && rai != ri)
|
|
addUnique(regs[ri].neis, regs[ri].nneis, rai);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Update overlapping regions.
|
|
for (int i = 0; i < nlregs-1; ++i)
|
|
{
|
|
for (int j = i+1; j < nlregs; ++j)
|
|
{
|
|
if (lregs[i] != lregs[j])
|
|
{
|
|
rcLayerRegion& ri = regs[lregs[i]];
|
|
rcLayerRegion& rj = regs[lregs[j]];
|
|
addUnique(ri.layers, ri.nlayers, lregs[j]);
|
|
addUnique(rj.layers, rj.nlayers, lregs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// Create 2D layers from regions.
|
|
unsigned char layerId = 0;
|
|
|
|
static const int MAX_STACK = 64;
|
|
unsigned char stack[MAX_STACK];
|
|
int nstack = 0;
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
rcLayerRegion& root = regs[i];
|
|
// Skip alreadu visited.
|
|
if (root.layerId != 0xff)
|
|
continue;
|
|
|
|
// Start search.
|
|
root.layerId = layerId;
|
|
root.start = 1;
|
|
|
|
nstack = 0;
|
|
stack[nstack++] = (unsigned char)i;
|
|
|
|
while (nstack)
|
|
{
|
|
// Pop front
|
|
rcLayerRegion& reg = regs[stack[0]];
|
|
nstack--;
|
|
for (int j = 0; j < nstack; ++j)
|
|
stack[j] = stack[j+1];
|
|
|
|
const int nneis = (int)reg.nneis;
|
|
for (int j = 0; j < nneis; ++j)
|
|
{
|
|
const unsigned char nei = reg.neis[j];
|
|
// Skip already visited.
|
|
if (regs[nei].layerId != 0xff)
|
|
continue;
|
|
// Skip if the neighbour is overlapping root region.
|
|
if (contains(root.layers, root.nlayers, nei))
|
|
continue;
|
|
|
|
if (nstack < MAX_STACK)
|
|
{
|
|
// Deepen
|
|
stack[nstack++] = (unsigned char)nei;
|
|
|
|
rcLayerRegion& regn = regs[nei];
|
|
// Mark layer id
|
|
regn.layerId = layerId;
|
|
// Merge current layers to root.
|
|
for (int k = 0; k < regn.nlayers; ++k)
|
|
addUnique(root.layers, root.nlayers, regn.layers[k]);
|
|
root.ymin = rcMin(root.ymin, regn.ymin);
|
|
root.ymax = rcMax(root.ymax, regn.ymax);
|
|
}
|
|
}
|
|
}
|
|
|
|
layerId++;
|
|
}
|
|
|
|
// Merge non-overlapping regions that are close in height.
|
|
const int mergeHeight = walkableHeight * 4;
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
rcLayerRegion& ri = regs[i];
|
|
if (!ri.start) continue;
|
|
|
|
unsigned char newId = ri.layerId;
|
|
|
|
for (;;)
|
|
{
|
|
unsigned char oldId = 0xff;
|
|
|
|
for (int j = 0; j < nregs; ++j)
|
|
{
|
|
if (i == j) continue;
|
|
rcLayerRegion& rj = regs[j];
|
|
if (!rj.start) continue;
|
|
|
|
// Skip if teh regions are not close to each other.
|
|
if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
|
|
continue;
|
|
|
|
// Make sure that there is no overlap when mergin 'ri' and 'rj'.
|
|
bool overlap = false;
|
|
// Iterate over all regions which have the same layerId as 'rj'
|
|
for (int k = 0; k < nregs; ++k)
|
|
{
|
|
if (regs[k].layerId != rj.layerId)
|
|
continue;
|
|
// Check if region 'k' is overlapping region 'ri'
|
|
// Index to 'regs' is the same as region id.
|
|
if (contains(ri.layers,ri.nlayers, (unsigned char)k))
|
|
{
|
|
overlap = true;
|
|
break;
|
|
}
|
|
}
|
|
// Cannot merge of regions overlap.
|
|
if (overlap)
|
|
continue;
|
|
|
|
// Can merge i and j.
|
|
oldId = rj.layerId;
|
|
break;
|
|
}
|
|
|
|
// Could not find anything to merge with, stop.
|
|
if (oldId == 0xff)
|
|
break;
|
|
|
|
// Merge
|
|
for (int j = 0; j < nregs; ++j)
|
|
{
|
|
rcLayerRegion& rj = regs[j];
|
|
if (rj.layerId == oldId)
|
|
{
|
|
rj.start = 0;
|
|
// Remap layerIds.
|
|
rj.layerId = newId;
|
|
// Add overlaid layers from 'rj' to 'ri'.
|
|
for (int k = 0; k < rj.nlayers; ++k)
|
|
addUnique(ri.layers, ri.nlayers, rj.layers[k]);
|
|
// Update heigh bounds.
|
|
ri.ymin = rcMin(ri.ymin, rj.ymin);
|
|
ri.ymax = rcMax(ri.ymax, rj.ymax);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compact layerIds
|
|
unsigned char remap[256];
|
|
memset(remap, 0, 256);
|
|
|
|
// Find number of unique layers.
|
|
layerId = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
remap[regs[i].layerId] = 1;
|
|
for (int i = 0; i < 256; ++i)
|
|
{
|
|
if (remap[i])
|
|
remap[i] = layerId++;
|
|
else
|
|
remap[i] = 0xff;
|
|
}
|
|
// Remap ids.
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].layerId = remap[regs[i].layerId];
|
|
|
|
// No layers, return empty.
|
|
if (layerId == 0)
|
|
{
|
|
ctx->stopTimer(RC_TIMER_BUILD_REGIONS);
|
|
return true;
|
|
}
|
|
|
|
// Create layers.
|
|
rcAssert(lset.layers == 0);
|
|
|
|
const int lw = w - borderSize*2;
|
|
const int lh = h - borderSize*2;
|
|
|
|
// Build contracted bbox for layers.
|
|
float bmin[3], bmax[3];
|
|
rcVcopy(bmin, chf.bmin);
|
|
rcVcopy(bmax, chf.bmax);
|
|
bmin[0] += borderSize*chf.cs;
|
|
bmin[2] += borderSize*chf.cs;
|
|
bmax[0] -= borderSize*chf.cs;
|
|
bmax[2] -= borderSize*chf.cs;
|
|
|
|
lset.nlayers = (int)layerId;
|
|
|
|
lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
|
|
if (!lset.layers)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
|
|
return false;
|
|
}
|
|
memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
|
|
|
|
rcScopedDelete<unsigned char> cons = (unsigned char*)rcAlloc(sizeof(unsigned char)*lw*lh, RC_ALLOC_TEMP);
|
|
if (!cons)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'con' (%d).", lw*lh);
|
|
return false;
|
|
}
|
|
|
|
|
|
// Store layers.
|
|
for (int i = 0; i < lset.nlayers; ++i)
|
|
{
|
|
unsigned char curId = (unsigned char)i;
|
|
|
|
// Allocate memory for the current layer.
|
|
rcHeightfieldLayer* layer = &lset.layers[i];
|
|
|
|
layer->width = lw;
|
|
layer->height = lh;
|
|
layer->cs = chf.cs;
|
|
layer->ch = chf.ch;
|
|
// TODO: Should this be local bbox instead?
|
|
rcVcopy(layer->bmin, bmin);
|
|
rcVcopy(layer->bmax, bmax);
|
|
|
|
layer->heights = (unsigned short*)rcAlloc(sizeof(unsigned short)*lw*lh, RC_ALLOC_PERM);
|
|
if (!layer->heights)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", w*h);
|
|
return false;
|
|
}
|
|
memset(layer->heights, 0xff, sizeof(unsigned short)*lw*lh);
|
|
|
|
layer->areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*lw*lh, RC_ALLOC_PERM);
|
|
if (!layer->areas)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", w*h);
|
|
return false;
|
|
}
|
|
memset(layer->areas, RC_NULL_AREA, sizeof(unsigned char)*lw*lh);
|
|
|
|
memset(cons, 0, sizeof(unsigned char)*lw*lh);
|
|
|
|
// Find layer height bounds.
|
|
for (int j = 0; j < nregs; ++j)
|
|
{
|
|
if (regs[j].start && regs[j].layerId == curId)
|
|
{
|
|
layer->ymin = regs[j].ymin;
|
|
layer->ymax = regs[j].ymax;
|
|
}
|
|
}
|
|
|
|
// Copy height and area from compact heighfield.
|
|
for (int y = 0; y < lh; ++y)
|
|
{
|
|
for (int x = 0; x < lw; ++x)
|
|
{
|
|
const int cx = borderSize+x;
|
|
const int cy = borderSize+y;
|
|
const rcCompactCell& c = chf.cells[cx+cy*w];
|
|
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
|
{
|
|
const rcCompactSpan& s = chf.spans[i];
|
|
// Skip unassigned regions.
|
|
if (srcReg[i] == 0xff)
|
|
continue;
|
|
// Skip of does nto belong to current layer.
|
|
unsigned char lid = regs[srcReg[i]].layerId;
|
|
if (lid != curId)
|
|
continue;
|
|
// Store height and area type.
|
|
const int idx = x+y*lw;
|
|
layer->heights[idx] = s.y;
|
|
layer->areas[idx] = chf.areas[i];
|
|
|
|
// Check connection.
|
|
unsigned char con = 0;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
|
{
|
|
const int ax = cx + rcGetDirOffsetX(dir);
|
|
const int ay = cy + rcGetDirOffsetY(dir);
|
|
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
|
unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
|
|
if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
|
|
con |= (unsigned char)(1<<dir);
|
|
}
|
|
}
|
|
cons[idx] = con;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create portals
|
|
int cportals = 6;
|
|
layer->portals = (rcHeightfieldLayerPortal*)rcAlloc(sizeof(rcHeightfieldLayerPortal)*cportals,RC_ALLOC_PERM);
|
|
if (!layer->portals)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals);
|
|
return false;
|
|
}
|
|
layer->nportals = 0;
|
|
|
|
// Directions same as rcGetCon()
|
|
const unsigned char XM = 1<<0; // x-
|
|
const unsigned char YP = 1<<1; // y+
|
|
const unsigned char XP = 1<<2; // x+
|
|
const unsigned char YM = 1<<3; // y-
|
|
|
|
// Portals along x-axis
|
|
for (int y = 0; y < lh; ++y)
|
|
{
|
|
const unsigned char dir[2] = {3,1};
|
|
const unsigned char mask[2] = {YM,YP};
|
|
int start[2] = { -1, -1};
|
|
|
|
for (int x = 0; x < lw+1; ++x)
|
|
{
|
|
const int idx = x+y*lw;
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
unsigned char set = x<lw ? (cons[idx] & mask[j]) : 0;
|
|
if (set)
|
|
{
|
|
if (start[j] == -1)
|
|
start[j] = x;
|
|
}
|
|
else
|
|
{
|
|
if (start[j] != -1)
|
|
{
|
|
// Add portal.
|
|
rcHeightfieldLayerPortal* portal = allocPortal(&layer->portals, layer->nportals, cportals);
|
|
if (!portal)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals);
|
|
return false;
|
|
}
|
|
portal->pos = (unsigned char)y/*+off[j]*/;
|
|
portal->smin = (unsigned char)start[j];
|
|
portal->smax = (unsigned char)x;
|
|
portal->dir = dir[j];
|
|
|
|
start[j] = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Portals along y-axis
|
|
for (int x = 0; x < lw; ++x)
|
|
{
|
|
const unsigned char dir[2] = {0,2};
|
|
const unsigned char mask[2] = {XM,XP};
|
|
int start[2] = { -1, -1};
|
|
|
|
for (int y = 0; y < lh+1; ++y)
|
|
{
|
|
const int idx = x+y*lw;
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
unsigned char set = y<lh ? (cons[idx] & mask[j]) : 0;
|
|
if (set)
|
|
{
|
|
if (start[j] == -1)
|
|
start[j] = y;
|
|
}
|
|
else
|
|
{
|
|
if (start[j] != -1)
|
|
{
|
|
// Add portal.
|
|
rcHeightfieldLayerPortal* portal = allocPortal(&layer->portals,layer->nportals,cportals);
|
|
if (!portal)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'portals' (%d).", cportals);
|
|
return false;
|
|
}
|
|
portal->pos = (unsigned char)x/*+off[j]*/;
|
|
portal->smin = (unsigned char)start[j];
|
|
portal->smax = (unsigned char)y;
|
|
portal->dir = dir[j];
|
|
|
|
start[j] = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool isConnected(rcHeightfieldLayer& layer, const int ia, const int ib, const int walkableClimb)
|
|
{
|
|
if (layer.areas[ia] != layer.areas[ib]) return false;
|
|
if (rcAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false;
|
|
return true;
|
|
}
|
|
|
|
struct rcMonotoneRegion
|
|
{
|
|
int area;
|
|
unsigned char neis[RC_MAX_NEIS];
|
|
unsigned char nneis;
|
|
unsigned char regId;
|
|
};
|
|
|
|
static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const rcMonotoneRegion* regs, const int nregs)
|
|
{
|
|
int count = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
const rcMonotoneRegion& reg = regs[i];
|
|
if (reg.regId != oldRegId) continue;
|
|
const int nnei = (int)reg.nneis;
|
|
for (int j = 0; j < nnei; ++j)
|
|
{
|
|
if (regs[reg.neis[j]].regId == newRegId)
|
|
count++;
|
|
}
|
|
}
|
|
return count == 1;
|
|
}
|
|
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
bool rcBuildLayerRegions(rcContext* ctx, rcHeightfieldLayer& layer, const int walkableClimb)
|
|
{
|
|
rcAssert(ctx);
|
|
|
|
// ctx->startTimer(RC_TIMER_BUILD_LAYERS);
|
|
|
|
const int w = layer.width;
|
|
const int h = layer.height;
|
|
|
|
rcAssert(layer.regs == 0);
|
|
|
|
layer.regs = (unsigned char*)rcAlloc(sizeof(unsigned char)*w*h, RC_ALLOC_TEMP);
|
|
if (!layer.regs)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", w*h);
|
|
return false;
|
|
}
|
|
memset(layer.regs,0xff,sizeof(unsigned char)*w*h);
|
|
|
|
const int nsweeps = w;
|
|
rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
|
|
if (!sweeps)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
|
|
return false;
|
|
}
|
|
memset(sweeps,0,sizeof(rcLayerSweepSpan)*nsweeps);
|
|
|
|
// Partition walkable area into monotone regions.
|
|
int prevCount[256];
|
|
unsigned char regId = 0;
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
if (regId > 0)
|
|
memset(prevCount,0,sizeof(int)*regId);
|
|
unsigned char sweepId = 0;
|
|
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x + y*w;
|
|
if (layer.areas[idx] == RC_NULL_AREA) continue;
|
|
|
|
unsigned char sid = 0xff;
|
|
|
|
// -x
|
|
const int xidx = (x-1)+y*w;
|
|
if (x > 0 && isConnected(layer, idx, xidx, walkableClimb))
|
|
{
|
|
if (layer.regs[xidx] != 0xff)
|
|
sid = layer.regs[xidx];
|
|
}
|
|
|
|
if (sid == 0xff)
|
|
{
|
|
sid = sweepId++;
|
|
sweeps[sid].nei = 0xff;
|
|
sweeps[sid].ns = 0;
|
|
}
|
|
|
|
// -y
|
|
const int yidx = x+(y-1)*w;
|
|
if (y > 0 && isConnected(layer, idx, yidx, walkableClimb))
|
|
{
|
|
const unsigned char nr = layer.regs[yidx];
|
|
if (nr != 0xff)
|
|
{
|
|
// Set neighbour when first valid neighbour is encoutered.
|
|
if (sweeps[sid].ns == 0)
|
|
sweeps[sid].nei = nr;
|
|
|
|
if (sweeps[sid].nei == nr)
|
|
{
|
|
// Update existing neighbour
|
|
sweeps[sid].ns++;
|
|
prevCount[nr]++;
|
|
}
|
|
else
|
|
{
|
|
// This is hit if there is nore than one neighbour.
|
|
// Invalidate the neighbour.
|
|
sweeps[sid].nei = 0xff;
|
|
}
|
|
}
|
|
}
|
|
|
|
layer.regs[idx] = sid;
|
|
}
|
|
|
|
// Create unique ID.
|
|
for (int i = 0; i < sweepId; ++i)
|
|
{
|
|
// If the neighbour is set and there is only one continuous connection to it,
|
|
// the sweep will be merged with the previous one, else new region is created.
|
|
if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
|
|
{
|
|
sweeps[i].id = sweeps[i].nei;
|
|
}
|
|
else
|
|
{
|
|
if (regId == 255)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
|
|
return false;
|
|
}
|
|
sweeps[i].id = regId++;
|
|
}
|
|
}
|
|
|
|
// Remap local sweep ids to region ids.
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
if (layer.regs[idx] != 0xff)
|
|
layer.regs[idx] = sweeps[layer.regs[idx]].id;
|
|
}
|
|
}
|
|
|
|
// Allocate and init layer regions.
|
|
const int nregs = (int)regId;
|
|
rcScopedDelete<rcMonotoneRegion> regs = (rcMonotoneRegion*)rcAlloc(sizeof(rcMonotoneRegion)*nregs, RC_ALLOC_TEMP);
|
|
if (!regs)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
|
|
return false;
|
|
}
|
|
memset(regs, 0, sizeof(rcMonotoneRegion)*nregs);
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = 0xff;
|
|
|
|
// Find region neighbours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned char ri = layer.regs[idx];
|
|
if (ri == 0xff)
|
|
continue;
|
|
|
|
// Update area.
|
|
regs[ri].area++;
|
|
|
|
// Update neighbours
|
|
const int ymi = x+(y-1)*w;
|
|
if (y > 0 && isConnected(layer, idx, ymi, walkableClimb))
|
|
{
|
|
const unsigned char rai = layer.regs[ymi];
|
|
if (rai != 0xff && rai != ri)
|
|
{
|
|
addUniqueLast(regs[ri].neis, regs[ri].nneis, rai);
|
|
addUniqueLast(regs[rai].neis, regs[rai].nneis, ri);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = (unsigned char)i;
|
|
|
|
for (int i = 0; i < nregs; ++i)
|
|
{
|
|
rcMonotoneRegion& reg = regs[i];
|
|
|
|
int merge = -1;
|
|
int mergea = 0;
|
|
for (int j = 0; j < (int)reg.nneis; ++j)
|
|
{
|
|
const unsigned char nei = reg.neis[j];
|
|
rcMonotoneRegion& regn = regs[nei];
|
|
if (reg.regId == regn.regId)
|
|
continue;
|
|
if (regn.area > mergea)
|
|
{
|
|
if (canMerge(reg.regId, regn.regId, regs, nregs))
|
|
{
|
|
mergea = regn.area;
|
|
merge = (int)nei;
|
|
}
|
|
}
|
|
}
|
|
if (merge != -1)
|
|
{
|
|
const unsigned char oldId = reg.regId;
|
|
const unsigned char newId = regs[merge].regId;
|
|
for (int j = 0; j < nregs; ++j)
|
|
if (regs[j].regId == oldId)
|
|
regs[j].regId = newId;
|
|
}
|
|
}
|
|
|
|
// Compact ids.
|
|
unsigned char remap[256];
|
|
memset(remap, 0, 256);
|
|
// Find number of unique regions.
|
|
regId = 0;
|
|
for (int i = 0; i < nregs; ++i)
|
|
remap[regs[i].regId] = 1;
|
|
for (int i = 0; i < 256; ++i)
|
|
if (remap[i])
|
|
remap[i] = regId++;
|
|
// Remap ids.
|
|
for (int i = 0; i < nregs; ++i)
|
|
regs[i].regId = remap[regs[i].regId];
|
|
|
|
layer.regCount = regId;
|
|
|
|
for (int i = 0; i < w*h; ++i)
|
|
{
|
|
if (layer.regs[i] != 0xff)
|
|
layer.regs[i] = regs[layer.regs[i]].regId;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool allocVert(rcLayerContour& cont, int& cverts)
|
|
{
|
|
if (cont.nverts+1 > cverts)
|
|
{
|
|
cverts = !cverts ? 16 : cverts*2;
|
|
unsigned char* nv = (unsigned char*)rcAlloc(cverts*4, RC_ALLOC_TEMP);
|
|
if (!nv) return false;
|
|
if (cont.nverts)
|
|
memcpy(nv, cont.verts, cont.nverts*4);
|
|
rcFree(cont.verts);
|
|
cont.verts = nv;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool addVertex(rcLayerContour& cont, int x, int y, int z, int r, int& cverts)
|
|
{
|
|
// Try to merge with existing segments.
|
|
if (cont.nverts > 1)
|
|
{
|
|
unsigned char* pa = &cont.verts[(cont.nverts-2)*4];
|
|
unsigned char* pb = &cont.verts[(cont.nverts-1)*4];
|
|
if ((int)pb[3] == r)
|
|
{
|
|
if (pa[0] == pb[0] && (int)pb[0] == x)
|
|
{
|
|
// The verts are aligned aling x-axis, update z.
|
|
pb[1] = (unsigned char)y;
|
|
pb[2] = (unsigned char)z;
|
|
pb[3] = (unsigned char)r;
|
|
return true;
|
|
}
|
|
else if (pa[2] == pb[2] && (int)pb[2] == z)
|
|
{
|
|
// The verts are aligned aling z-axis, update x.
|
|
pb[0] = (unsigned char)x;
|
|
pb[1] = (unsigned char)y;
|
|
pb[3] = (unsigned char)r;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add new point.
|
|
if (!allocVert(cont, cverts))
|
|
return false;
|
|
|
|
unsigned char* v = &cont.verts[cont.nverts*4];
|
|
v[0] = (unsigned char)x;
|
|
v[1] = (unsigned char)y;
|
|
v[2] = (unsigned char)z;
|
|
v[3] = (unsigned char)r;
|
|
cont.nverts++;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static unsigned char getNeighbourReg(rcHeightfieldLayer& layer,
|
|
const unsigned char* cons,
|
|
const int ax, const int ay, const int dir,
|
|
const int walkableClimb)
|
|
{
|
|
const int ia = ax+ay*layer.width;
|
|
|
|
const int bx = ax + rcGetDirOffsetX(dir);
|
|
const int by = ay + rcGetDirOffsetY(dir);
|
|
if (bx < 0 || by < 0 || bx >= layer.width || by >= layer.height)
|
|
{
|
|
if (cons[ia] & (1<<dir))
|
|
return 0xfe - dir;
|
|
return 0xff;
|
|
}
|
|
|
|
const int ib = bx+by*layer.width;
|
|
|
|
if (rcAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb)
|
|
{
|
|
if (cons[ia] & (1<<dir))
|
|
return 0xfe - dir;
|
|
return 0xff;
|
|
}
|
|
|
|
return layer.regs[ib];
|
|
}
|
|
|
|
static int getCornerHeight(rcHeightfieldLayer& layer,
|
|
const int x, const int y, const int dir,
|
|
const int walkableClimb)
|
|
{
|
|
return layer.heights[x+y*layer.width];
|
|
}
|
|
|
|
static bool walkContour(int x, int y, rcHeightfieldLayer& layer,
|
|
const unsigned char* cons,
|
|
const int walkableClimb, rcLayerContour& cont)
|
|
{
|
|
const int w = layer.width;
|
|
const int h = layer.height;
|
|
int cverts = cont.nverts;
|
|
|
|
int startX = x;
|
|
int startY = y;
|
|
int startDir = -1;
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
const int dir = (i+3)&3;
|
|
unsigned char rn = getNeighbourReg(layer, cons, x, y, dir, walkableClimb);
|
|
if (rn != layer.regs[x+y*w])
|
|
{
|
|
startDir = dir;
|
|
break;
|
|
}
|
|
}
|
|
if (startDir == -1)
|
|
return true;
|
|
|
|
int dir = startDir;
|
|
const int maxIter = w*h;
|
|
|
|
int iter = 0;
|
|
while (iter < maxIter)
|
|
{
|
|
unsigned char rn = getNeighbourReg(layer, cons, x, y, dir, walkableClimb);
|
|
|
|
int nx = x;
|
|
int ny = y;
|
|
int ndir = dir;
|
|
|
|
if (rn != layer.regs[x+y*w])
|
|
{
|
|
// Solid edge.
|
|
int px = x;
|
|
int py = getCornerHeight(layer, x, y, dir, walkableClimb);
|
|
int pz = y;
|
|
switch(dir)
|
|
{
|
|
case 0: pz++; break;
|
|
case 1: px++; pz++; break;
|
|
case 2: px++; break;
|
|
}
|
|
|
|
// Try to merge with previous vertex.
|
|
if (!addVertex(cont,px,py,pz,rn,cverts))
|
|
return false;
|
|
|
|
ndir = (dir+1) & 0x3; // Rotate CW
|
|
}
|
|
else
|
|
{
|
|
// Move to next.
|
|
nx = x + rcGetDirOffsetX(dir);
|
|
ny = y + rcGetDirOffsetY(dir);
|
|
ndir = (dir+3) & 0x3; // Rotate CCW
|
|
}
|
|
|
|
if (iter > 0 && x == startX && y == startY && dir == startDir)
|
|
break;
|
|
|
|
x = nx;
|
|
y = ny;
|
|
dir = ndir;
|
|
|
|
iter++;
|
|
}
|
|
|
|
// Remove last vertex if it is duplicate of the first one.
|
|
unsigned char* pa = &cont.verts[(cont.nverts-1)*4];
|
|
unsigned char* pb = &cont.verts[0];
|
|
if (pa[0] == pb[0] && pa[2] == pb[2])
|
|
cont.nverts--;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static float distancePtSeg(const int x, const int z,
|
|
const int px, const int pz,
|
|
const int qx, const int qz)
|
|
{
|
|
/* float pqx = (float)(qx - px);
|
|
float pqy = (float)(qy - py);
|
|
float pqz = (float)(qz - pz);
|
|
float dx = (float)(x - px);
|
|
float dy = (float)(y - py);
|
|
float dz = (float)(z - pz);
|
|
float d = pqx*pqx + pqy*pqy + pqz*pqz;
|
|
float t = pqx*dx + pqy*dy + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = px + t*pqx - x;
|
|
dy = py + t*pqy - y;
|
|
dz = pz + t*pqz - z;
|
|
|
|
return dx*dx + dy*dy + dz*dz;*/
|
|
|
|
float pqx = (float)(qx - px);
|
|
float pqz = (float)(qz - pz);
|
|
float dx = (float)(x - px);
|
|
float dz = (float)(z - pz);
|
|
float d = pqx*pqx + pqz*pqz;
|
|
float t = pqx*dx + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = px + t*pqx - x;
|
|
dz = pz + t*pqz - z;
|
|
|
|
return dx*dx + dz*dz;
|
|
}
|
|
|
|
static bool simplifyContour(rcLayerContour& cont, const float maxError)
|
|
{
|
|
int* poly = (int*)rcAlloc(sizeof(int)*cont.nverts, RC_ALLOC_TEMP);
|
|
if (!poly)
|
|
return false;
|
|
int npoly = 0;
|
|
|
|
for (int i = 0; i < cont.nverts; ++i)
|
|
{
|
|
int j = (i+1) % cont.nverts;
|
|
// Check for start of a wall segment.
|
|
unsigned char ra = cont.verts[j*4+3];
|
|
unsigned char rb = cont.verts[i*4+3];
|
|
if (ra != rb)
|
|
poly[npoly++] = i;
|
|
}
|
|
if (npoly < 2)
|
|
{
|
|
// If there is no transitions at all,
|
|
// create some initial points for the simplification process.
|
|
// Find lower-left and upper-right vertices of the contour.
|
|
int llx = cont.verts[0];
|
|
int llz = cont.verts[2];
|
|
int lli = 0;
|
|
int urx = cont.verts[0];
|
|
int urz = cont.verts[2];
|
|
int uri = 0;
|
|
for (int i = 1; i < cont.nverts; ++i)
|
|
{
|
|
int x = cont.verts[i*4+0];
|
|
int z = cont.verts[i*4+2];
|
|
if (x < llx || (x == llx && z < llz))
|
|
{
|
|
llx = x;
|
|
llz = z;
|
|
lli = i;
|
|
}
|
|
if (x > urx || (x == urx && z > urz))
|
|
{
|
|
urx = x;
|
|
urz = z;
|
|
uri = i;
|
|
}
|
|
}
|
|
npoly = 0;
|
|
poly[npoly++] = lli;
|
|
poly[npoly++] = uri;
|
|
}
|
|
|
|
// Add points until all raw points are within
|
|
// error tolerance to the simplified shape.
|
|
for (int i = 0; i < npoly; )
|
|
{
|
|
int ii = (i+1) % npoly;
|
|
|
|
const int ai = poly[i];
|
|
const int ax = cont.verts[ai*4+0];
|
|
const int az = cont.verts[ai*4+2];
|
|
|
|
const int bi = poly[ii];
|
|
const int bx = cont.verts[bi*4+0];
|
|
const int bz = cont.verts[bi*4+2];
|
|
|
|
// Find maximum deviation from the segment.
|
|
float maxd = 0;
|
|
int maxi = -1;
|
|
int ci, cinc, endi;
|
|
|
|
// Traverse the segment in lexilogical order so that the
|
|
// max deviation is calculated similarly when traversing
|
|
// opposite segments.
|
|
if (bx > ax || (bx == ax && bz > az))
|
|
{
|
|
cinc = 1;
|
|
ci = (ai+cinc) % cont.nverts;
|
|
endi = bi;
|
|
}
|
|
else
|
|
{
|
|
cinc = cont.nverts-1;
|
|
ci = (bi+cinc) % cont.nverts;
|
|
endi = ai;
|
|
}
|
|
|
|
// Tessellate only outer edges or edges between areas.
|
|
while (ci != endi)
|
|
{
|
|
float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz);
|
|
if (d > maxd)
|
|
{
|
|
maxd = d;
|
|
maxi = ci;
|
|
}
|
|
ci = (ci+cinc) % cont.nverts;
|
|
}
|
|
|
|
|
|
// If the max deviation is larger than accepted error,
|
|
// add new point, else continue to next segment.
|
|
if (maxi != -1 && maxd > (maxError*maxError))
|
|
{
|
|
npoly++;
|
|
for (int j = npoly-1; j > i; --j)
|
|
poly[j] = poly[j-1];
|
|
poly[i+1] = maxi;
|
|
}
|
|
else
|
|
{
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// Remap vertices
|
|
int start = 0;
|
|
for (int i = 1; i < npoly; ++i)
|
|
if (poly[i] < poly[start])
|
|
start = i;
|
|
|
|
cont.nverts = 0;
|
|
for (int i = 0; i < npoly; ++i)
|
|
{
|
|
const int j = (start+i) % npoly;
|
|
unsigned char* src = &cont.verts[poly[j]*4];
|
|
unsigned char* dst = &cont.verts[cont.nverts*4];
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
cont.nverts++;
|
|
}
|
|
|
|
rcFree(poly);
|
|
|
|
return true;
|
|
}
|
|
|
|
// TODO: move this somewhere else, once the layer meshing is done.
|
|
bool rcBuildLayerContours(rcContext* ctx,
|
|
rcHeightfieldLayer& layer,
|
|
const int walkableClimb, const float maxError,
|
|
rcLayerContourSet& lcset)
|
|
{
|
|
rcAssert(ctx);
|
|
|
|
const int w = layer.width;
|
|
const int h = layer.height;
|
|
|
|
rcAssert(lcset.conts == 0);
|
|
|
|
rcVcopy(lcset.bmin, layer.bmin);
|
|
rcVcopy(lcset.bmax, layer.bmax);
|
|
lcset.cs = layer.cs;
|
|
lcset.ch = layer.ch;
|
|
lcset.nconts = layer.regCount;
|
|
lcset.conts = (rcLayerContour*)rcAlloc(sizeof(rcLayerContour)*lcset.nconts, RC_ALLOC_TEMP);
|
|
if (!lcset.conts)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Out of memory 'conts' (%d).", lcset.nconts);
|
|
return false;
|
|
}
|
|
memset(lcset.conts, 0, sizeof(rcLayerContour)*lcset.nconts);
|
|
|
|
rcScopedDelete<unsigned char> cons = (unsigned char*)rcAlloc(sizeof(unsigned char)*w*h, RC_ALLOC_TEMP);
|
|
if (!cons)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Out of memory 'cons' (%d).", w*h);
|
|
return false;
|
|
}
|
|
memset(cons,0,sizeof(unsigned char)*w*h);
|
|
|
|
|
|
/* if (portal->dir == 0 || portal->dir == 2)
|
|
{
|
|
const int xx = portal->dir == 0 ? (int)portal->pos : (int)portal->pos+1;
|
|
const float fx = layer->bmin[0] + xx*cs;
|
|
const float fya = layer->bmin[1] + (layer->ymin)*ch;
|
|
const float fyb = layer->bmin[1] + (layer->ymin)*ch;
|
|
const float fza = layer->bmin[2] + portal->smin*cs;
|
|
const float fzb = layer->bmin[2] + portal->smax*cs;
|
|
dd->vertex(fx, fya+h, fza, pcol);
|
|
dd->vertex(fx, fyb+h, fzb, pcol);
|
|
}
|
|
else if (portal->dir == 3 || portal->dir == 1)
|
|
{
|
|
const int yy = portal->dir == 3 ? (int)portal->pos : (int)portal->pos+1;
|
|
const float fxa = layer->bmin[0] + portal->smin*cs;
|
|
const float fxb = layer->bmin[0] + portal->smax*cs;
|
|
const float fya = layer->bmin[1] + (layer->ymin)*ch;
|
|
const float fyb = layer->bmin[1] + (layer->ymin)*ch;
|
|
const float fz = layer->bmin[2] + yy*cs;
|
|
dd->vertex(fxa, fya+h, fz, pcol);
|
|
dd->vertex(fxb, fyb+h, fz, pcol);
|
|
}*/
|
|
|
|
// Paint portals
|
|
for (int i = 0; i < layer.nportals; ++i)
|
|
{
|
|
const rcHeightfieldLayerPortal* portal = &layer.portals[i];
|
|
if (portal->dir == 0 || portal->dir == 2)
|
|
{
|
|
const unsigned char mask = (const unsigned char)(1 << portal->dir);
|
|
for (int j = (int)portal->smin; j < (int)portal->smax; ++j)
|
|
cons[(int)portal->pos + j*w] |= mask;
|
|
}
|
|
else
|
|
{
|
|
const unsigned char mask = (const unsigned char)(1 << portal->dir);
|
|
for (int j = (int)portal->smin; j < (int)portal->smax; ++j)
|
|
cons[j + (int)portal->pos*w] |= mask;
|
|
}
|
|
}
|
|
|
|
/* printf("cons:\n");
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
unsigned char c = cons[x+y*w];
|
|
if (c == 0)
|
|
printf(".");
|
|
else
|
|
printf("%x",c);
|
|
}
|
|
printf("\n");
|
|
}*/
|
|
|
|
|
|
// Find contours.
|
|
for (int y = 0; y < h; ++y)
|
|
{
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
const int idx = x+y*w;
|
|
const unsigned char ri = layer.regs[idx];
|
|
if (ri == 0xff)
|
|
continue;
|
|
|
|
rcLayerContour& cont = lcset.conts[ri];
|
|
|
|
if (cont.nverts > 0)
|
|
continue;
|
|
|
|
cont.reg = ri;
|
|
cont.area = layer.areas[idx];
|
|
|
|
if (!walkContour(x, y, layer, cons, walkableClimb, cont))
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Failed to walk contour.");
|
|
return false;
|
|
}
|
|
|
|
if (!simplifyContour(cont, maxError))
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildLayerContours: Failed to simplify contour.");
|
|
return false;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|