Removed stat and tile navmeshes. Fixed examples.

This commit is contained in:
Mikko Mononen 2009-12-04 07:27:53 +00:00
parent 6a00efb936
commit e4239a3bdf
26 changed files with 978 additions and 5716 deletions

View File

@ -19,18 +19,10 @@
#ifndef DETOURDEBUGDRAW_H
#define DETOURDEBUGDRAW_H
#include "DetourStatNavMesh.h"
#include "DetourTileNavMesh.h"
#include "DetourNavMesh.h"
void dtDebugDrawStatNavMeshPoly(const dtStatNavMesh* mesh, dtStatPolyRef ref, const float* col);
void dtDebugDrawStatNavMeshBVTree(const dtStatNavMesh* mesh);
void dtDebugDrawStatNavMesh(const dtStatNavMesh* mesh, bool drawClosedList = false);
void dtDebugDrawTiledNavMesh(const dtTiledNavMesh* mesh);
void dtDebugDrawTiledNavMeshPoly(const dtTiledNavMesh* mesh, dtTilePolyRef ref, const float* col);
void dtDebugDrawNavMesh(const dtNavMesh* mesh, bool drawClosedList = false);
void dtDebugDrawNavMeshBVTree(const dtNavMesh* mesh);
void dtDebugDrawNavMeshPoly(const dtNavMesh* mesh, dtPolyRef ref, const float* col);
#endif // DETOURDEBUGDRAW_H

View File

@ -1,237 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURSTATNAVMESH_H
#define DETOURSTATNAVMESH_H
// Reference to navigation polygon.
typedef unsigned short dtStatPolyRef;
// Maximum number of vertices per navigation polygon.
static const int DT_STAT_VERTS_PER_POLYGON = 6;
// Structure holding the navigation polygon data.
struct dtStatPoly
{
unsigned short v[DT_STAT_VERTS_PER_POLYGON]; // Indices to vertices of the poly.
dtStatPolyRef n[DT_STAT_VERTS_PER_POLYGON]; // Refs to neighbours of the poly.
unsigned char nv; // Number of vertices.
unsigned char flags; // Flags (not used).
};
struct dtStatPolyDetail
{
unsigned short vbase; // Offset to detail vertex array.
unsigned short nverts; // Number of vertices in the detail mesh.
unsigned short tbase; // Offset to detail triangle array.
unsigned short ntris; // Number of triangles.
};
const int DT_STAT_NAVMESH_MAGIC = 'NAVM';
const int DT_STAT_NAVMESH_VERSION = 3;
struct dtStatBVNode
{
unsigned short bmin[3], bmax[3];
int i;
};
struct dtStatNavMeshHeader
{
int magic;
int version;
int npolys;
int nverts;
int nnodes;
int ndmeshes;
int ndverts;
int ndtris;
float cs;
float bmin[3], bmax[3];
dtStatPoly* polys;
float* verts;
dtStatBVNode* bvtree;
dtStatPolyDetail* dmeshes;
float* dverts;
unsigned char* dtris;
};
class dtStatNavMesh
{
public:
dtStatNavMesh();
~dtStatNavMesh();
// Initializes the navmesh with data.
// Params:
// data - (in) Pointer to navmesh data.
// dataSize - (in) size of the navmesh data.
// ownsData - (in) Flag indicating if the navmesh should own and delete the data.
bool init(unsigned char* data, int dataSize, bool ownsData);
// Finds the nearest navigation polygon around the center location.
// Params:
// center - (in) The center of the search box.
// extents - (in) The extents of the search box.
// Returns: Reference identifier for the polygon, or 0 if no polygons found.
dtStatPolyRef findNearestPoly(const float* center, const float* extents);
// Returns polygons which touch the query box.
// Params:
// center - (in) the center of the search box.
// extents - (in) the extents of the search box.
// polys - (out) array holding the search result.
// maxPolys - (in) The max number of polygons the polys array can hold.
// Returns: Number of polygons in search result array.
int queryPolygons(const float* center, const float* extents,
dtStatPolyRef* polys, const int maxPolys);
// Finds path from start polygon to end polygon.
// If target polygon canno be reached through the navigation graph,
// the last node on the array is nearest node to the end polygon.
// Params:
// startRef - (in) ref to path start polygon.
// endRef - (in) ref to path end polygon.
// path - (out) array holding the search result.
// maxPathSize - (in) The max number of polygons the path array can hold.
// Returns: Number of polygons in search result array.
int findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
const float* startPos, const float* endPos,
dtStatPolyRef* path, const int maxPathSize);
// Finds a straight path from start to end locations within the corridor
// described by the path polygons.
// Start and end locations will be clamped on the corridor.
// Params:
// startPos - (in) Path start location.
// endPos - (in) Path end location.
// path - (in) Array of connected polygons describing the corridor.
// pathSize - (in) Number of polygons in path array.
// straightPath - (out) Points describing the straight path.
// maxStraightPathSize - (in) The max number of points the straight path array can hold.
// Returns: Number of points in the path.
int findStraightPath(const float* startPos, const float* endPos,
const dtStatPolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize);
// Finds intersection againts walls starting from start pos.
// Params:
// startRef - (in) ref to the polygon where the start lies.
// startPos - (in) start position of the query.
// endPos - (in) end position of the query.
// t - (out) hit parameter along the segment, 0 if no hit.
// endRef - (out) ref to the last polygon which was processed.
// Returns: Number of polygons in path or 0 if failed.
int raycast(dtStatPolyRef startRef, const float* startPos, const float* endPos,
float& t, dtStatPolyRef* path, const int pathSize);
// Returns distance to nearest wall from the specified location.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle.
// maxRadius - (in) max search radius.
// hitPos - (out) location of the nearest hit.
// hitNormal - (out) normal of the nearest hit.
// Returns: Distance to nearest wall from the test location.
float findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal);
// Finds polygons found along the navigation graph which touch the specified circle.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle
// radius - (in) radius of the query circle
// resultRef - (out, opt) refs to the polygons touched by the circle.
// resultParent - (out, opt) parent of each result polygon.
// resultCost - (out, opt) search cost at each result polygon.
// maxResult - (int) maximum capacity of search results.
// Returns: Number of results.
int findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
const int maxResult);
// Returns closest point on navigation polygon.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point to check.
// closest - (out) closest point.
// Returns: true if closest point found.
bool closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const;
// Returns height of the polygon at specified location.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point where to locate the height.
// height - (out) height at the location.
// Returns: true if oer polygon.
bool getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const;
int moveAlongPath(const float* startPos, const float* endPos, float* resultPos,
const dtStatPolyRef* path, const int pathSize);
// Returns pointer to a polygon based on ref.
const dtStatPoly* getPolyByRef(dtStatPolyRef ref) const;
// Returns polygon index based on ref, or -1 if failed.
int getPolyIndexByRef(dtStatPolyRef ref) const;
// Returns number of navigation polygons.
inline int getPolyCount() const { return m_header ? m_header->npolys : 0; }
// Rerturns pointer to specified navigation polygon.
inline const dtStatPoly* getPoly(int i) const { return &m_header->polys[i]; }
// Returns number of vertices.
inline int getVertexCount() const { return m_header ? m_header->nverts : 0; }
// Returns pointer to specified vertex.
inline const float* getVertex(int i) const { return &m_header->verts[i*3]; }
// Returns number of navigation polygons details.
inline int getPolyDetailCount() const { return m_header ? m_header->ndmeshes : 0; }
// Rerturns pointer to specified navigation polygon detail.
const dtStatPolyDetail* getPolyDetail(int i) const { return &m_header->dmeshes[i]; }
// Returns pointer to specified vertex.
inline const float* getDetailVertex(int i) const { return &m_header->dverts[i*3]; }
// Returns pointer to specified vertex.
inline const unsigned char* getDetailTri(int i) const { return &m_header->dtris[i*4]; }
bool isInClosedList(dtStatPolyRef ref) const;
int getMemUsed() const;
inline unsigned char* getData() const { return m_data; }
inline int getDataSize() const { return m_dataSize; }
inline const dtStatNavMeshHeader* getHeader() const { return m_header; }
inline const dtStatBVNode* getBvTreeNodes() const { return m_header ? m_header->bvtree : 0; }
inline int getBvTreeNodeCount() const { return m_header ? m_header->nnodes : 0; }
private:
// Copies the locations of vertices of a polygon to an array.
int getPolyVerts(dtStatPolyRef ref, float* verts) const;
// Returns portal points between two polygons.
bool getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const;
// Returns edge mid point between two polygons.
bool getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const;
unsigned char* m_data;
int m_dataSize;
dtStatNavMeshHeader* m_header;
class dtNodePool* m_nodePool;
class dtNodeQueue* m_openList;
};
#endif // DETOURSTATNAVMESH_H

View File

@ -1,29 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURSTATNAVMESHBUILDER_H
#define DETOURSTATNAVMESHBUILDER_H
bool dtCreateNavMeshData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const float* bmin, const float* bmax, float cs, float ch,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
unsigned char** outData, int* outDataSize);
#endif // DETOURSTATNAVMESHBUILDER_H

View File

@ -1,315 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURTILENAVMESH_H
#define DETOURTILENAVMESH_H
// Reference to navigation polygon.
typedef unsigned int dtTilePolyRef;
// The bits used in the poly ref.
static const int DT_TILE_REF_SALT_BITS = 12;
static const int DT_TILE_REF_TILE_BITS = 12;
static const int DT_TILE_REF_POLY_BITS = 8;
static const int DT_TILE_REF_SALT_MASK = (1<<DT_TILE_REF_SALT_BITS)-1;
static const int DT_TILE_REF_TILE_MASK = (1<<DT_TILE_REF_TILE_BITS)-1;
static const int DT_TILE_REF_POLY_MASK = (1<<DT_TILE_REF_POLY_BITS)-1;
// Maximum number of vertices per navigation polygon.
static const int DT_TILE_VERTS_PER_POLYGON = 6;
static const int DT_MAX_TILES = 1 << DT_TILE_REF_TILE_BITS;
static const int DT_MAX_POLYGONS = 1 << DT_TILE_REF_POLY_BITS;
static const int DT_TILE_NAVMESH_MAGIC = 'NAVT';
static const int DT_TILE_NAVMESH_VERSION = 2;
// Structure holding the navigation polygon data.
struct dtTilePoly
{
unsigned short v[DT_TILE_VERTS_PER_POLYGON]; // Indices to vertices of the poly.
unsigned short n[DT_TILE_VERTS_PER_POLYGON]; // Refs to neighbours of the poly.
unsigned short links; // Base index to header 'links' array.
unsigned char nlinks; // Number of links for
unsigned char nv; // Number of vertices.
unsigned char flags; // Flags (not used).
};
struct dtTilePolyDetail
{
unsigned short vbase; // Offset to detail vertex array.
unsigned short nverts; // Number of vertices in the detail mesh.
unsigned short tbase; // Offset to detail triangle array.
unsigned short ntris; // Number of triangles.
};
// Stucture holding a link to another polygon.
struct dtTileLink
{
dtTilePolyRef ref; // Neighbour reference.
unsigned short p; // Index to polygon which owns this link.
unsigned char e; // Index to polygon edge which owns this link.
unsigned char side; // If boundary link, defines on which side the link is.
unsigned char bmin, bmax; // If boundary link, defines the sub edge area.
};
struct dtTileHeader
{
int magic; // Magic number, used to identify the data.
int version; // Data version number.
int npolys; // Number of polygons in the tile.
int nverts; // Number of vertices in the tile.
int nlinks; // Number of links in the tile (will be updated when tile is added).
int maxlinks; // Number of allocated links.
int ndmeshes;
int ndverts;
int ndtris;
float bmin[3], bmax[3]; // Bounding box of the tile.
dtTilePoly* polys; // Pointer to the polygons (will be updated when tile is added).
float* verts; // Pointer to the vertices (will be updated when tile added).
dtTileLink* links; // Pointer to the links (will be updated when tile added).
dtTilePolyDetail* dmeshes;
float* dverts;
unsigned char* dtris;
};
struct dtTile
{
int salt; // Counter describing modifications to the tile.
int x,y; // Grid location of the tile.
dtTileHeader* header; // Pointer to tile header.
unsigned char* data; // Pointer to tile data.
int dataSize; // Size of the tile data.
bool ownsData; // Flag indicating of the navmesh should release the data.
dtTile* next; // Next free tile or, next tile in spatial grid.
};
// Encodes a tile id.
inline dtTilePolyRef dtEncodeTileId(unsigned int salt, unsigned int it, unsigned int ip)
{
return (salt << (DT_TILE_REF_POLY_BITS+DT_TILE_REF_TILE_BITS)) | ((it+1) << DT_TILE_REF_POLY_BITS) | ip;
}
// Decodes a tile id.
inline void dtDecodeTileId(dtTilePolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip)
{
salt = (ref >> (DT_TILE_REF_POLY_BITS+DT_TILE_REF_TILE_BITS)) & DT_TILE_REF_SALT_MASK;
it = ((ref >> DT_TILE_REF_POLY_BITS) & DT_TILE_REF_TILE_MASK) - 1;
ip = ref & DT_TILE_REF_POLY_MASK;
}
static const int DT_TILE_LOOKUP_SIZE = DT_MAX_TILES/4;
class dtTiledNavMesh
{
public:
dtTiledNavMesh();
~dtTiledNavMesh();
// Initializes the nav mesh.
// Params:
// orig - (in) origin of the nav mesh tile space.
// tileSiz - (in) size of a tile.
// portalheight - (in) height of the portal region between tiles.
// Returns: True if succeed, else false.
bool init(const float* orig, float tileSize, float portalHeight);
// Adds new tile into the navmesh.
// The add will fail if the data is in wrong format,
// there is not enough tiles left, or if there is a tile already at the location.
// Params:
// x,y - (in) Location of the new tile.
// data - (in) Data of the new tile mesh.
// dataSize - (in) Data size of the new tile mesh.
// ownsData - (in) Flag indicating if the navmesh should own and delete the data.
// Returns: True if tile was added, else false.
bool addTileAt(int x, int y, unsigned char* data, int dataSize, bool ownsData);
// Removes tile at specified location.
// Params:
// x,y - (in) Location of the tile to remove.
// data - (out) Data associated with deleted tile.
// dataSize - (out) Size of the data associated with deleted tile.
// Returns: True if remove suceed, else false.
bool removeTileAt(int x, int y, unsigned char** data, int* dataSize);
// Returns pointer to tile at specified location.
// Params:
// x,y - (in) Location of the tile to get.
// Returns: pointer to tile if tile exists or 0 tile does not exists.
dtTile* getTileAt(int x, int y);
// Returns pointer to tile in the tile array.
// Params:
// i - (in) Index to the tile to retrieve, must be in range [0,DT_MAX_TILES[
// Returns: Pointer to specified tile.
dtTile* getTile(int i);
const dtTile* getTile(int i) const;
// Finds the nearest navigation polygon around the center location.
// Params:
// center - (in) The center of the search box.
// extents - (in) The extents of the search box.
// Returns: Reference identifier for the polygon, or 0 if no polygons found.
dtTilePolyRef findNearestPoly(const float* center, const float* extents);
// Returns polygons which touch the query box.
// Params:
// center - (in) the center of the search box.
// extents - (in) the extents of the search box.
// polys - (out) array holding the search result.
// maxPolys - (in) The max number of polygons the polys array can hold.
// Returns: Number of polygons in search result array.
int queryPolygons(const float* center, const float* extents,
dtTilePolyRef* polys, const int maxPolys);
// Finds path from start polygon to end polygon.
// If target polygon canno be reached through the navigation graph,
// the last node on the array is nearest node to the end polygon.
// Params:
// startRef - (in) ref to path start polygon.
// endRef - (in) ref to path end polygon.
// path - (out) array holding the search result.
// maxPathSize - (in) The max number of polygons the path array can hold.
// Returns: Number of polygons in search result array.
int findPath(dtTilePolyRef startRef, dtTilePolyRef endRef,
const float* startPos, const float* endPos,
dtTilePolyRef* path, const int maxPathSize);
// Finds a straight path from start to end locations within the corridor
// described by the path polygons.
// Start and end locations will be clamped on the corridor.
// Params:
// startPos - (in) Path start location.
// endPos - (in) Path end location.
// path - (in) Array of connected polygons describing the corridor.
// pathSize - (in) Number of polygons in path array.
// straightPath - (out) Points describing the straight path.
// maxStraightPathSize - (in) The max number of points the straight path array can hold.
// Returns: Number of points in the path.
int findStraightPath(const float* startPos, const float* endPos,
const dtTilePolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize);
// Finds intersection againts walls starting from start pos.
// Params:
// startRef - (in) ref to the polygon where the start lies.
// startPos - (in) start position of the query.
// endPos - (in) end position of the query.
// t - (out) hit parameter along the segment, 0 if no hit.
// endRef - (out) ref to the last polygon which was processed.
// Returns: Number of polygons in path or 0 if failed.
int raycast(dtTilePolyRef startRef, const float* startPos, const float* endPos,
float& t, dtTilePolyRef* path, const int pathSize);
// Returns distance to nearest wall from the specified location.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle.
// maxRadius - (in) max search radius.
// hitPos - (out) location of the nearest hit.
// hitNormal - (out) normal of the nearest hit.
// Returns: Distance to nearest wall from the test location.
float findDistanceToWall(dtTilePolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal);
// Finds polygons found along the navigation graph which touch the specified circle.
// Params:
// centerRef - (in) ref to the polygon where the center lies.
// centerPos - (in) center if the query circle
// radius - (in) radius of the query circle
// resultRef - (out, opt) refs to the polygons touched by the circle.
// resultParent - (out, opt) parent of each result polygon.
// resultCost - (out, opt) search cost at each result polygon.
// maxResult - (int) maximum capacity of search results.
// Returns: Number of results.
int findPolysAround(dtTilePolyRef centerRef, const float* centerPos, float radius,
dtTilePolyRef* resultRef, dtTilePolyRef* resultParent, float* resultCost,
const int maxResult);
// Returns closest point on navigation polygon.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point to check.
// closest - (out) closest point.
// Returns: true if closest point found.
bool closestPointToPoly(dtTilePolyRef ref, const float* pos, float* closest) const;
// Returns height of the polygon at specified location.
// Params:
// ref - (in) ref to the polygon.
// pos - (in) the point where to locate the height.
// height - (out) height at the location.
// Returns: true if over polygon.
bool getPolyHeight(dtTilePolyRef ref, const float* pos, float* height) const;
// Returns pointer to a polygon based on ref.
const dtTilePoly* getPolyByRef(dtTilePolyRef ref) const;
// Returns pointer to a polygon vertices based on ref.
const float* getPolyVertsByRef(dtTilePolyRef ref) const;
// Returns pointer to a polygon link based on ref.
const dtTileLink* getPolyLinksByRef(dtTilePolyRef ref) const;
private:
// Returns base id for the tile.
dtTilePolyRef getTileId(dtTile* tile);
// Returns neighbour tile based on side.
dtTile* getNeighbourTileAt(int x, int y, int side);
// Returns all polygons in neighbour tile based on portal defined by the segment.
int findConnectingPolys(const float* va, const float* vb,
dtTile* tile, int side,
dtTilePolyRef* con, float* conarea, int maxcon);
// Builds internal polygons links for a tile.
void buildIntLinks(dtTile* tile);
// Builds external polygon links for a tile.
void buildExtLinks(dtTile* tile, dtTile* target, int side);
// Removes external links at specified side.
void removeExtLinks(dtTile* tile, int side);
// Queries polygons within a tile.
int queryTilePolygons(dtTile* tile, const float* qmin, const float* qmax,
dtTilePolyRef* polys, const int maxPolys);
float getCost(dtTilePolyRef prev, dtTilePolyRef from, dtTilePolyRef to) const;
float getFirstCost(const float* pos, dtTilePolyRef from, dtTilePolyRef to) const;
float getLastCost(dtTilePolyRef from, dtTilePolyRef to, const float* pos) const;
float getHeuristic(const float* from, const float* to) const;
// Returns portal points between two polygons.
bool getPortalPoints(dtTilePolyRef from, dtTilePolyRef to, float* left, float* right) const;
// Returns edge mid point between two polygons.
bool getEdgeMidPoint(dtTilePolyRef from, dtTilePolyRef to, float* mid) const;
float m_orig[3];
float m_tileSize;
float m_portalHeight;
dtTile* m_posLookup[DT_TILE_LOOKUP_SIZE];
dtTile* m_nextFree;
dtTile m_tiles[DT_MAX_TILES];
dtTileLink* m_tmpLinks;
int m_ntmpLinks;
class dtNodePool* m_nodePool;
class dtNodeQueue* m_openList;
};
#endif // DETOURTILENAVMESH_H

View File

@ -1,29 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef DETOURTILEDNAVMESHBUILDER_H
#define DETOURTILEDNAVMESHBUILDER_H
bool dtCreateNavMeshTileData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
const float* bmin, const float* bmax, float cs, float ch, int tileSize, int walkableClimb,
unsigned char** outData, int* outDataSize);
#endif // DETOURTILEDNAVMESHBUILDER_H

View File

@ -17,57 +17,10 @@
//
#include "DetourDebugDraw.h"
#include "DetourStatNavMesh.h"
#include "DetourTileNavMesh.h"
#include "DetourNavMesh.h"
#include "SDL.h"
#include "SDL_opengl.h"
void dtDebugDrawStatNavMeshPoly(const dtStatNavMesh* mesh, dtStatPolyRef ref, const float* col)
{
int idx = mesh->getPolyIndexByRef(ref);
if (idx == -1) return;
glColor4f(col[0],col[1],col[2],0.25f);
if (mesh->getPolyDetailCount())
{
const dtStatPoly* p = mesh->getPoly(idx);
const dtStatPolyDetail* pd = mesh->getPolyDetail(idx);
glBegin(GL_TRIANGLES);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+j);
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(mesh->getVertex(p->v[t[k]]));
else
glVertex3fv(mesh->getDetailVertex(pd->vbase+(t[k]-p->nv)));
}
}
glEnd();
}
else
{
const dtStatPoly* p = mesh->getPoly(idx);
glBegin(GL_TRIANGLES);
unsigned short vi[3];
for (int j = 2; j < (int)p->nv; ++j)
{
vi[0] = p->v[0];
vi[1] = p->v[j-1];
vi[2] = p->v[j];
for (int k = 0; k < 3; ++k)
{
const float* v = mesh->getVertex(vi[k]);
glVertex3f(v[0], v[1]+0.2f, v[2]);
}
}
glEnd();
}
}
static void drawBoxWire(float minx, float miny, float minz, float maxx, float maxy, float maxz, const float* col)
{
glColor4fv(col);
@ -103,32 +56,6 @@ static void drawBoxWire(float minx, float miny, float minz, float maxx, float ma
glVertex3f(minx, maxy, maxz);
}
void dtDebugDrawStatNavMeshBVTree(const dtStatNavMesh* mesh)
{
const float col[] = { 1,1,1,0.5f };
const dtStatNavMeshHeader* hdr = mesh->getHeader();
const dtStatBVNode* nodes = mesh->getBvTreeNodes();
int nnodes = mesh->getBvTreeNodeCount();
glBegin(GL_LINES);
for (int i = 0; i < nnodes; ++i)
{
const dtStatBVNode* n = &nodes[i];
if (n->i < 0) // Leaf indices are positive.
continue;
drawBoxWire(hdr->bmin[0] + n->bmin[0]*hdr->cs,
hdr->bmin[1] + n->bmin[1]*hdr->cs,
hdr->bmin[2] + n->bmin[2]*hdr->cs,
hdr->bmin[0] + n->bmax[0]*hdr->cs,
hdr->bmin[1] + n->bmax[1]*hdr->cs,
hdr->bmin[2] + n->bmax[2]*hdr->cs, col);
}
glEnd();
}
static float distancePtLine2d(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
@ -143,363 +70,6 @@ static float distancePtLine2d(const float* pt, const float* p, const float* q)
return dx*dx + dz*dz;
}
static void drawStatMeshPolyBoundaries(const dtStatNavMesh* mesh, bool inner)
{
static const float thr = 0.01f*0.01f;
glBegin(GL_LINES);
for (int i = 0; i < mesh->getPolyCount(); ++i)
{
const dtStatPoly* p = mesh->getPoly(i);
const dtStatPolyDetail* pd = mesh->getPolyDetail(i);
for (int j = 0, nj = (int)p->nv; j < nj; ++j)
{
if (inner)
{
// Skip non-connected edges.
if (p->n[j] == 0) continue;
}
else
{
// Skip connected edges.
if (p->n[j] != 0) continue;
}
const float* v0 = mesh->getVertex(p->v[j]);
const float* v1 = mesh->getVertex(p->v[(j+1) % nj]);
// Draw detail mesh edges which align with the actual poly edge.
// This is really slow.
for (int k = 0; k < pd->ntris; ++k)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+k);
const float* tv[3];
for (int m = 0; m < 3; ++m)
{
if (t[m] < p->nv)
tv[m] = mesh->getVertex(p->v[t[m]]);
else
tv[m] = mesh->getDetailVertex(pd->vbase+(t[m]-p->nv));
}
for (int m = 0, n = 2; m < 3; n=m++)
{
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner edges.
if (distancePtLine2d(tv[n],v0,v1) < thr &&
distancePtLine2d(tv[m],v0,v1) < thr)
{
glVertex3fv(tv[n]);
glVertex3fv(tv[m]);
}
}
}
}
}
glEnd();
}
void dtDebugDrawStatNavMesh(const dtStatNavMesh* mesh, bool drawClosedList)
{
glBegin(GL_TRIANGLES);
for (int i = 0; i < mesh->getPolyDetailCount(); ++i)
{
const dtStatPoly* p = mesh->getPoly(i);
const dtStatPolyDetail* pd = mesh->getPolyDetail(i);
if (drawClosedList && mesh->isInClosedList(i+1))
glColor4ub(255,196,0,64);
else
glColor4ub(0,196,255,64);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = mesh->getDetailTri(pd->tbase+j);
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(mesh->getVertex(p->v[t[k]]));
else
glVertex3fv(mesh->getDetailVertex(pd->vbase+(t[k]-p->nv)));
}
}
}
glEnd();
// Draw inter poly boundaries
glColor4ub(0,48,64,32);
glLineWidth(1.5f);
drawStatMeshPolyBoundaries(mesh, true);
// Draw outer poly boundaries
glLineWidth(2.5f);
glColor4ub(0,48,64,220);
drawStatMeshPolyBoundaries(mesh, false);
glLineWidth(1.0f);
glPointSize(3.0f);
glColor4ub(0,0,0,196);
glBegin(GL_POINTS);
for (int i = 0; i < mesh->getVertexCount(); ++i)
{
const float* v = mesh->getVertex(i);
glVertex3f(v[0], v[1], v[2]);
}
glEnd();
glPointSize(1.0f);
}
static void drawTilePolyBoundaries(const dtTileHeader* header, bool inner)
{
static const float thr = 0.01f*0.01f;
glBegin(GL_LINES);
for (int i = 0; i < header->npolys; ++i)
{
const dtTilePoly* p = &header->polys[i];
const dtTilePolyDetail* pd = &header->dmeshes[i];
for (int j = 0, nj = (int)p->nv; j < nj; ++j)
{
if (inner)
{
if (p->n[j] == 0) continue;
if (p->n[j] & 0x8000)
{
bool con = false;
for (int k = 0; k < p->nlinks; ++k)
{
if (header->links[p->links+k].e == j)
{
con = true;
break;
}
}
if (con)
glColor4ub(255,255,255,128);
else
glColor4ub(0,0,0,128);
}
else
glColor4ub(0,48,64,32);
}
else
{
if (p->n[j] != 0) continue;
}
const float* v0 = &header->verts[p->v[j]*3];
const float* v1 = &header->verts[p->v[(j+1)%nj]*3];
// Draw detail mesh edges which align with the actual poly edge.
// This is really slow.
for (int k = 0; k < pd->ntris; ++k)
{
const unsigned char* t = &header->dtris[(pd->tbase+k)*4];
const float* tv[3];
for (int m = 0; m < 3; ++m)
{
if (t[m] < p->nv)
tv[m] = &header->verts[p->v[t[m]]*3];
else
tv[m] = &header->dverts[(pd->vbase+(t[m]-p->nv))*3];
}
for (int m = 0, n = 2; m < 3; n=m++)
{
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner detail edges.
if (distancePtLine2d(tv[n],v0,v1) < thr &&
distancePtLine2d(tv[m],v0,v1) < thr)
{
glVertex3fv(tv[n]);
glVertex3fv(tv[m]);
}
}
}
}
}
glEnd();
}
static void drawTile(const dtTileHeader* header)
{
glBegin(GL_TRIANGLES);
for (int i = 0; i < header->npolys; ++i)
{
const dtTilePoly* p = &header->polys[i];
const dtTilePolyDetail* pd = &header->dmeshes[i];
glColor4ub(0,196,255,64);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = &header->dtris[(pd->tbase+j)*4];
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
glVertex3fv(&header->verts[p->v[t[k]]*3]);
else
glVertex3fv(&header->dverts[(pd->vbase+t[k]-p->nv)*3]);
}
}
}
glEnd();
// Draw inter poly boundaries
glColor4ub(0,48,64,32);
glLineWidth(1.5f);
drawTilePolyBoundaries(header, true);
// Draw outer poly boundaries
glLineWidth(2.5f);
glColor4ub(0,48,64,220);
drawTilePolyBoundaries(header, false);
glLineWidth(1.0f);
glPointSize(3.0f);
glColor4ub(0,0,0,196);
glBegin(GL_POINTS);
for (int i = 0; i < header->nverts; ++i)
{
const float* v = &header->verts[i*3];
glVertex3f(v[0], v[1], v[2]);
}
glEnd();
glPointSize(1.0f);
// Draw portals
/* glBegin(GL_LINES);
for (int i = 0; i < header->nportals[0]; ++i)
{
const dtTilePortal* p = &header->portals[0][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[1]; ++i)
{
const dtTilePortal* p = &header->portals[1][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
}
for (int i = 0; i < header->nportals[2]; ++i)
{
const dtTilePortal* p = &header->portals[2][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[3]; ++i)
{
const dtTilePortal* p = &header->portals[3][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
}
glEnd();*/
}
void dtDebugDrawTiledNavMesh(const dtTiledNavMesh* mesh)
{
if (!mesh) return;
for (int i = 0; i < DT_MAX_TILES; ++i)
{
const dtTile* tile = mesh->getTile(i);
if (!tile->header) continue;
drawTile(tile->header);
}
}
void dtDebugDrawTiledNavMeshPoly(const dtTiledNavMesh* mesh, dtTilePolyRef ref, const float* col)
{
unsigned int salt, it, ip;
dtDecodeTileId(ref, salt, it, ip);
if (it >= DT_MAX_TILES) return;
const dtTile* tile = mesh->getTile(it);
if (tile->salt != salt || tile->header == 0) return;
const dtTileHeader* header = tile->header;
if (ip >= (unsigned int)header->npolys) return;
glColor4f(col[0],col[1],col[2],0.25f);
const dtTilePoly* p = &header->polys[ip];
const dtTilePolyDetail* pd = &header->dmeshes[ip];
glBegin(GL_TRIANGLES);
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = &header->dtris[(pd->tbase+i)*4];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
glVertex3fv(&header->verts[p->v[t[j]]*3]);
else
glVertex3fv(&header->dverts[(pd->vbase+t[j]-p->nv)*3]);
}
}
glEnd();
}
static void drawPolyBoundaries(const dtMeshHeader* header, bool inner)
{
static const float thr = 0.01f*0.01f;
@ -626,26 +196,6 @@ static void drawMeshTile(const dtNavMesh* mesh, const dtMeshTile* tile, bool dra
glEnd();
glPointSize(1.0f);
/*
// Draw BV nodes.
const float col[] = { 1,1,1,0.5f };
const float cs = 1.0f / header->bvquant;
glBegin(GL_LINES);
for (int i = 0; i < header->nbvtree; ++i)
{
const dtBVNode* n = &header->bvtree[i];
if (n->i < 0) // Leaf indices are positive.
continue;
drawBoxWire(header->bmin[0] + n->bmin[0]*cs,
header->bmin[1] + n->bmin[1]*cs,
header->bmin[2] + n->bmin[2]*cs,
header->bmin[0] + n->bmax[0]*cs,
header->bmin[1] + n->bmax[1]*cs,
header->bmin[2] + n->bmax[2]*cs, col);
}
glEnd();
*/
// Draw portals
/* glBegin(GL_LINES);
@ -741,6 +291,121 @@ void dtDebugDrawNavMesh(const dtNavMesh* mesh, bool drawClosedList)
}
static void drawMeshTileBVTree(const dtNavMesh* mesh, const dtMeshTile* tile)
{
const dtMeshHeader* header = tile->header;
// Draw BV nodes.
const float col[] = { 1,1,1,0.5f };
const float cs = 1.0f / header->bvquant;
glBegin(GL_LINES);
for (int i = 0; i < header->nbvtree; ++i)
{
const dtBVNode* n = &header->bvtree[i];
if (n->i < 0) // Leaf indices are positive.
continue;
drawBoxWire(header->bmin[0] + n->bmin[0]*cs,
header->bmin[1] + n->bmin[1]*cs,
header->bmin[2] + n->bmin[2]*cs,
header->bmin[0] + n->bmax[0]*cs,
header->bmin[1] + n->bmax[1]*cs,
header->bmin[2] + n->bmax[2]*cs, col);
}
glEnd();
// Draw portals
/* glBegin(GL_LINES);
for (int i = 0; i < header->nportals[0]; ++i)
{
const dtTilePortal* p = &header->portals[0][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmax[0]-0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[1]; ++i)
{
const dtTilePortal* p = &header->portals[1][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmax[2]-0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmax[2]-0.1f);
}
for (int i = 0; i < header->nportals[2]; ++i)
{
const dtTilePortal* p = &header->portals[2][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmin[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmax[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmax[0]);
glVertex3f(header->bmin[0]+0.1f, p->bmin[1], p->bmin[0]);
}
for (int i = 0; i < header->nportals[3]; ++i)
{
const dtTilePortal* p = &header->portals[3][i];
if (p->ncon)
glColor4ub(255,255,255,192);
else
glColor4ub(255,0,0,64);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmax[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmax[0], p->bmin[1], header->bmin[2]+0.1f);
glVertex3f(p->bmin[0], p->bmin[1], header->bmin[2]+0.1f);
}
glEnd();*/
}
void dtDebugDrawNavMeshBVTree(const dtNavMesh* mesh)
{
if (!mesh) return;
for (int i = 0; i < mesh->getMaxTiles(); ++i)
{
const dtMeshTile* tile = mesh->getTile(i);
if (!tile->header) continue;
drawMeshTileBVTree(mesh, tile);
}
}
void dtDebugDrawNavMeshPoly(const dtNavMesh* mesh, dtPolyRef ref, const float* col)
{

View File

@ -76,19 +76,30 @@ inline int computeTileHash(int x, int y, const int mask)
return (int)(n & mask);
}
//////////////////////////////////////////////////////////////////////////////////////////
dtNavMesh::dtNavMesh() :
m_tileWidth(0),
m_tileHeight(0),
m_portalHeight(0),
m_maxTiles(0),
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFree(0),
m_tiles(0),
m_tmpLinks(0),
m_ntmpLinks(0),
m_saltBits(0),
m_tileBits(0),
m_polyBits(0),
m_nodePool(0),
m_openList(0),
m_posLookup(0),
m_tiles(0)
m_openList(0)
{
m_orig[0] = 0;
m_orig[1] = 0;
m_orig[2] = 0;
}
dtNavMesh::~dtNavMesh()

View File

@ -1,953 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourStatNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
//////////////////////////////////////////////////////////////////////////////////////////
dtStatNavMesh::dtStatNavMesh() :
m_data(0),
m_dataSize(0),
m_header(0),
m_nodePool(0),
m_openList(0)
{
}
dtStatNavMesh::~dtStatNavMesh()
{
delete m_nodePool;
delete m_openList;
if (m_data)
delete [] m_data;
}
bool dtStatNavMesh::init(unsigned char* data, int dataSize, bool ownsData)
{
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)data;
if (header->magic != DT_STAT_NAVMESH_MAGIC)
return false;
if (header->version != DT_STAT_NAVMESH_VERSION)
return false;
const int headerSize = align4(sizeof(dtStatNavMeshHeader));
const int vertsSize = align4(sizeof(float)*3*header->nverts);
const int polysSize = align4(sizeof(dtStatPoly)*header->npolys);
const int nodesSize = align4(sizeof(dtStatBVNode)*header->npolys*2);
const int detailMeshesSize = align4(sizeof(dtStatPolyDetail)*header->ndmeshes);
const int detailVertsSize = align4(sizeof(float)*3*header->ndverts);
const int detailTrisSize = align4(sizeof(unsigned char)*4*header->ndtris);
unsigned char* d = data + headerSize;
header->verts = (float*)d; d += vertsSize;
header->polys = (dtStatPoly*)d; d += polysSize;
header->bvtree = (dtStatBVNode*)d; d += nodesSize;
header->dmeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
header->dverts = (float*)d; d += detailVertsSize;
header->dtris = (unsigned char*)d; d += detailTrisSize;
m_nodePool = new dtNodePool(2048, 256);
if (!m_nodePool)
return false;
m_openList = new dtNodeQueue(2048);
if (!m_openList)
return false;
if (ownsData)
{
m_data = data;
m_dataSize = dataSize;
}
m_header = header;
return true;
}
const dtStatPoly* dtStatNavMesh::getPolyByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return 0;
return &m_header->polys[ref-1];
}
int dtStatNavMesh::getPolyIndexByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return -1;
return (int)ref-1;
}
int dtStatNavMesh::findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
const float* startPos, const float* endPos,
dtStatPolyRef* path, const int maxPathSize)
{
if (!m_header) return 0;
if (!startRef || !endRef)
return 0;
if (!maxPathSize)
return 0;
if (startRef == endRef)
{
path[0] = startRef;
return 1;
}
m_nodePool->clear();
m_openList->clear();
static const float H_SCALE = 1.1f; // Heuristic scale.
dtNode* startNode = m_nodePool->getNode(startRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = vdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (int i = 0; i < (int)poly->nv; ++i)
{
dtStatPolyRef neighbour = poly->n[i];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Calculate cost.
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, startPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.cost = parent->cost + vdist(p0,p1);
// Special case for last node.
if (newNode.id == endRef)
newNode.cost += vdist(p1, endPos);
// Heuristic
const float h = vdist(p1,endPos)*H_SCALE;
newNode.total = newNode.cost + h;
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (h < lastBestNodeCost)
{
lastBestNodeCost = h;
lastBestNode = actualNode;
}
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Reverse the path.
dtNode* prev = 0;
dtNode* node = lastBestNode;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
node = next;
}
while (node);
// Store path
node = prev;
int n = 0;
do
{
path[n++] = node->id;
node = m_nodePool->getNodeAtIdx(node->pidx);
}
while (node && n < maxPathSize);
return n;
}
bool dtStatNavMesh::closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
float closestDistSqr = FLT_MAX;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = getDetailTri(pd->tbase+j);
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
v[k] = getVertex(p->v[t[k]]);
else
v[k] = getDetailVertex(pd->vbase+(t[k]-p->nv));
}
float pt[3];
closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
float d = vdistSqr(pos, pt);
if (d < closestDistSqr)
{
vcopy(closest, pt);
closestDistSqr = d;
}
}
return true;
}
bool dtStatNavMesh::getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = getDetailTri(pd->tbase+i);
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
v[j] = getVertex(p->v[t[j]]);
else
v[j] = getDetailVertex(pd->vbase+(t[j]-p->nv));
}
float h;
if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height)
*height = h;
return true;
}
}
return false;
}
int dtStatNavMesh::findStraightPath(const float* startPos, const float* endPos,
const dtStatPolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize)
{
if (!m_header) return 0;
if (!maxStraightPathSize)
return 0;
if (!path[0])
return 0;
int straightPathSize = 0;
float closestStartPos[3];
if (!closestPointToPoly(path[0], startPos, closestStartPos))
return 0;
// Add start point.
vcopy(&straightPath[straightPathSize*3], closestStartPos);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
float closestEndPos[3];
if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
return 0;
float portalApex[3], portalLeft[3], portalRight[3];
if (pathSize > 1)
{
vcopy(portalApex, closestStartPos);
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
if (i < pathSize-1)
{
// Next portal.
getPortalPoints(path[i], path[i+1], left, right);
}
else
{
// End of the path.
vcopy(left, closestEndPos);
vcopy(right, closestEndPos);
}
// Right vertex.
if (vequal(portalApex, portalRight))
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
vcopy(portalApex, portalLeft);
apexIndex = leftIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Left vertex.
if (vequal(portalApex, portalLeft))
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (triArea2D(portalApex, portalRight, left) < 0.0f)
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
vcopy(portalApex, portalRight);
apexIndex = rightIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
}
}
// Add end point.
vcopy(&straightPath[straightPathSize*3], closestEndPos);
straightPathSize++;
return straightPathSize;
}
static bool pointInPoly(int nvert, const float* verts, const float* p)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
{
const float* vi = &verts[i*3];
const float* vj = &verts[j*3];
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
c = !c;
}
return c != 0;
}
int dtStatNavMesh::moveAlongPath(const float* startPos, const float* endPos, float* resultPos,
const dtStatPolyRef* path, const int pathSize)
{
static const float SLOP = 0.01f;
float verts[DT_STAT_VERTS_PER_POLYGON*3];
int n = 0, prevn = 0;
vcopy(resultPos, startPos);
while (n < pathSize)
{
// Cast ray against current polygon.
int nv = getPolyVerts(path[n], verts);
if (nv < 3)
{
return prevn;
}
if (pointInPoly(nv, verts, endPos))
{
vcopy(resultPos, endPos);
return n;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not a polygon
return prevn;
}
resultPos[0] = startPos[0] + (endPos[0] - startPos[0])*tmax;
resultPos[1] = startPos[1] + (endPos[1] - startPos[1])*tmax;
resultPos[2] = startPos[2] + (endPos[2] - startPos[2])*tmax;
// Check if the hitpos is on the exit segment.
float p0[3], p1[3];
if (!getPortalPoints(path[n], path[n+1], p0, p1))
return 0;
float segt;
float distToPortalSqr = distancePtSegSqr2D(resultPos, p0, p1, segt);
if (distToPortalSqr > SLOP*SLOP)
{
// Hit wall, return pos so far.
return n;
}
prevn = n;
n++;
}
return n;
/* // Check the neighbour of this polygon.
const dtStatPoly* poly = getPolyByRef(curRef);
dtStatPolyRef nextRef = poly->n[segMax];
if (!nextRef)*/
}
int dtStatNavMesh::getPolyVerts(dtStatPolyRef ref, float* verts) const
{
if (!m_header) return 0;
const dtStatPoly* poly = getPolyByRef(ref);
if (!poly) return 0;
float* v = verts;
for (int i = 0; i < (int)poly->nv; ++i)
{
const float* cv = &m_header->verts[poly->v[i]*3];
*v++ = cv[0];
*v++ = cv[1];
*v++ = cv[2];
}
return (int)poly->nv;
}
int dtStatNavMesh::raycast(dtStatPolyRef centerRef, const float* startPos, const float* endPos,
float& t, dtStatPolyRef* path, const int pathSize)
{
if (!m_header) return 0;
if (!centerRef) return 0;
dtStatPolyRef prevRef = centerRef;
dtStatPolyRef curRef = centerRef;
t = 0;
float verts[DT_STAT_VERTS_PER_POLYGON*3];
int n = 0;
while (curRef)
{
// Cast ray against current polygon.
int nv = getPolyVerts(curRef, verts);
if (nv < 3)
{
// Hit bad polygon, report hit.
return n;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not a polygon, keep the old t and report hit.
return n;
}
// Keep track of furthest t so far.
if (tmax > t)
t = tmax;
if (n < pathSize)
path[n++] = curRef;
// Check the neighbour of this polygon.
const dtStatPoly* poly = getPolyByRef(curRef);
dtStatPolyRef nextRef = poly->n[segMax];
if (!nextRef)
{
// No neighbour, we hit a wall.
return n;
}
// No hit, advance to neighbour polygon.
prevRef = curRef;
curRef = nextRef;
}
return n;
}
float dtStatNavMesh::findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
float radiusSqr = sqr(maxRadius);
hitNormal[0] = 1;
hitNormal[1] = 0;
hitNormal[2] = 0;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
// Hit test walls.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip non-solid edges.
if (poly->n[j]) continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
// Check to see if teh circle expands to one of the neighbours and expand.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip solid edges.
if (!poly->n[j]) continue;
// Expand to neighbour if not visited yet.
dtStatPolyRef neighbour = poly->n[j];
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Calc hit normal.
vsub(hitNormal, centerPos, hitPos);
vnormalize(hitNormal);
return sqrtf(radiusSqr);
}
int dtStatNavMesh::findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
const int maxResult)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
int n = 0;
if (n < maxResult)
{
if (resultRef)
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
if (resultCost)
resultCost[n] = 0;
++n;
}
const float radiusSqr = sqr(radius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (unsigned i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j=i++)
{
dtStatPolyRef neighbour = poly->n[j];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
if (n < maxResult)
{
if (resultRef)
resultRef[n] = actualNode->id;
if (resultParent)
resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
if (resultCost)
resultCost[n] = actualNode->total;
++n;
}
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
return n;
}
// Returns polygons which are withing certain radius from the query location.
int dtStatNavMesh::queryPolygons(const float* center, const float* extents,
dtStatPolyRef* polys, const int maxIds)
{
if (!m_header) return 0;
const dtStatBVNode* node = &m_header->bvtree[0];
const dtStatBVNode* end = &m_header->bvtree[m_header->nnodes];
// Calculate quantized box
const float ics = 1.0f / m_header->cs;
unsigned short bmin[3], bmax[3];
// Clamp query box to world box.
float minx = clamp(center[0] - extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float miny = clamp(center[1] - extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float minz = clamp(center[2] - extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
float maxx = clamp(center[0] + extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float maxy = clamp(center[1] + extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float maxz = clamp(center[2] + extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
// Quantize
bmin[0] = (unsigned short)(ics * minx) & 0xfffe;
bmin[1] = (unsigned short)(ics * miny) & 0xfffe;
bmin[2] = (unsigned short)(ics * minz) & 0xfffe;
bmax[0] = (unsigned short)(ics * maxx + 1) | 1;
bmax[1] = (unsigned short)(ics * maxy + 1) | 1;
bmax[2] = (unsigned short)(ics * maxz + 1) | 1;
// Traverse tree
int n = 0;
while (node < end)
{
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxIds)
{
polys[n] = (dtStatPolyRef)node->i;
n++;
}
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
dtStatPolyRef dtStatNavMesh::findNearestPoly(const float* center, const float* extents)
{
if (!m_header) return 0;
// Get nearby polygons from proximity grid.
dtStatPolyRef polys[128];
int npolys = queryPolygons(center, extents, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtStatPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyRef ref = polys[i];
float closest[3];
if (!closestPointToPoly(ref, center, closest))
continue;
float d = vdistSqr(center, closest);
if (d < nearestDistanceSqr)
{
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
bool dtStatNavMesh::getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const
{
const dtStatPoly* fromPoly = getPolyByRef(from);
if (!fromPoly)
return false;
// Find common edge between the polygons and returns the segment end points.
for (unsigned i = 0, j = (int)fromPoly->nv - 1; i < (int)fromPoly->nv; j = i++)
{
unsigned short neighbour = fromPoly->n[j];
if (neighbour == to)
{
vcopy(left, getVertex(fromPoly->v[j]));
vcopy(right, getVertex(fromPoly->v[i]));
return true;
}
}
return false;
}
bool dtStatNavMesh::getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const
{
float left[3], right[3];
if (!getPortalPoints(from, to, left,right)) return false;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return true;
}
bool dtStatNavMesh::isInClosedList(dtStatPolyRef ref) const
{
if (!m_nodePool) return false;
const dtNode* node = m_nodePool->findNode(ref);
return node && node->flags & DT_NODE_CLOSED;
}
int dtStatNavMesh::getMemUsed() const
{
if (!m_nodePool || ! m_openList)
return 0;
return sizeof(*this) + m_dataSize +
m_nodePool->getMemUsed() +
m_openList->getMemUsed();
}

View File

@ -1,347 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "DetourCommon.h"
#include "DetourStatNavMesh.h"
struct BVItem
{
unsigned short bmin[3];
unsigned short bmax[3];
int i;
};
static int compareItemX(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[0] < b->bmin[0])
return -1;
if (a->bmin[0] > b->bmin[0])
return 1;
return 0;
}
static int compareItemY(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[1] < b->bmin[1])
return -1;
if (a->bmin[1] > b->bmin[1])
return 1;
return 0;
}
static int compareItemZ(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[2] < b->bmin[2])
return -1;
if (a->bmin[2] > b->bmin[2])
return 1;
return 0;
}
static void calcExtends(BVItem* items, int nitems, int imin, int imax,
unsigned short* bmin, unsigned short* bmax)
{
bmin[0] = items[imin].bmin[0];
bmin[1] = items[imin].bmin[1];
bmin[2] = items[imin].bmin[2];
bmax[0] = items[imin].bmax[0];
bmax[1] = items[imin].bmax[1];
bmax[2] = items[imin].bmax[2];
for (int i = imin+1; i < imax; ++i)
{
const BVItem& it = items[i];
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
}
}
inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
{
int axis = 0;
unsigned short maxVal = x;
if (y > maxVal)
{
axis = 1;
maxVal = y;
}
if (z > maxVal)
{
axis = 2;
maxVal = z;
}
return axis;
}
static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtStatBVNode* nodes)
{
int inum = imax - imin;
int icur = curNode;
dtStatBVNode& node = nodes[curNode++];
if (inum == 1)
{
// Leaf
node.bmin[0] = items[imin].bmin[0];
node.bmin[1] = items[imin].bmin[1];
node.bmin[2] = items[imin].bmin[2];
node.bmax[0] = items[imin].bmax[0];
node.bmax[1] = items[imin].bmax[1];
node.bmax[2] = items[imin].bmax[2];
node.i = items[imin].i;
}
else
{
// Split
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
int axis = longestAxis(node.bmax[0] - node.bmin[0],
node.bmax[1] - node.bmin[1],
node.bmax[2] - node.bmin[2]);
if (axis == 0)
{
// Sort along x-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemX);
}
else if (axis == 1)
{
// Sort along y-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemY);
}
else
{
// Sort along z-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
}
int isplit = imin+inum/2;
// Left
subdivide(items, nitems, imin, isplit, curNode, nodes);
// Right
subdivide(items, nitems, isplit, imax, curNode, nodes);
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
static int createBVTree(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
float cs, float ch,
int nnodes, dtStatBVNode* nodes)
{
// Build tree
BVItem* items = new BVItem[npolys];
for (int i = 0; i < npolys; i++)
{
BVItem& it = items[i];
it.i = i+1;
// Calc polygon bounds.
const unsigned short* p = &polys[i*nvp*2];
it.bmin[0] = it.bmax[0] = verts[p[0]*3+0];
it.bmin[1] = it.bmax[1] = verts[p[0]*3+1];
it.bmin[2] = it.bmax[2] = verts[p[0]*3+2];
for (int j = 1; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
unsigned short x = verts[p[j]*3+0];
unsigned short y = verts[p[j]*3+1];
unsigned short z = verts[p[j]*3+2];
if (x < it.bmin[0]) it.bmin[0] = x;
if (y < it.bmin[1]) it.bmin[1] = y;
if (z < it.bmin[2]) it.bmin[2] = z;
if (x > it.bmax[0]) it.bmax[0] = x;
if (y > it.bmax[1]) it.bmax[1] = y;
if (z > it.bmax[2]) it.bmax[2] = z;
}
// Remap y
it.bmin[1] = (unsigned short)floorf((float)it.bmin[1]*ch/cs);
it.bmax[1] = (unsigned short)ceilf((float)it.bmax[1]*ch/cs);
}
int curNode = 0;
subdivide(items, npolys, 0, npolys, curNode, nodes);
delete [] items;
return curNode;
}
bool dtCreateNavMeshData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const float* bmin, const float* bmax, float cs, float ch,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
unsigned char** outData, int* outDataSize)
{
if (nvp > DT_STAT_VERTS_PER_POLYGON)
return false;
if (nverts >= 0xffff)
return false;
if (!nverts)
return false;
if (!npolys)
return false;
if (!dmeshes || !dverts || ! dtris)
return false;
// Find unique detail vertices.
int uniqueDetailVerts = 0;
if (dmeshes)
{
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*nvp*2];
int ndv = dmeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
nv++;
}
ndv -= nv;
uniqueDetailVerts += ndv;
}
}
// Calculate data size
const int headerSize = align4(sizeof(dtStatNavMeshHeader));
const int vertsSize = align4(sizeof(float)*3*nverts);
const int polysSize = align4(sizeof(dtStatPoly)*npolys);
const int nodesSize = align4(sizeof(dtStatBVNode)*npolys*2);
const int detailMeshesSize = align4(sizeof(dtStatPolyDetail)*npolys);
const int detailVertsSize = align4(sizeof(float)*3*uniqueDetailVerts);
const int detailTrisSize = align4(sizeof(unsigned char)*4*ndtris);
const int dataSize = headerSize + vertsSize + polysSize + nodesSize +
detailMeshesSize + detailVertsSize + detailTrisSize;
unsigned char* data = new unsigned char[dataSize];
if (!data)
return false;
memset(data, 0, dataSize);
unsigned char* d = data;
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)d; d += headerSize;
float* navVerts = (float*)d; d += vertsSize;
dtStatPoly* navPolys = (dtStatPoly*)d; d += polysSize;
dtStatBVNode* navNodes = (dtStatBVNode*)d; d += nodesSize;
dtStatPolyDetail* navDMeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
float* navDVerts = (float*)d; d += detailVertsSize;
unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize;
// Store header
header->magic = DT_STAT_NAVMESH_MAGIC;
header->version = DT_STAT_NAVMESH_VERSION;
header->npolys = npolys;
header->nverts = nverts;
header->cs = cs;
header->bmin[0] = bmin[0];
header->bmin[1] = bmin[1];
header->bmin[2] = bmin[2];
header->bmax[0] = bmax[0];
header->bmax[1] = bmax[1];
header->bmax[2] = bmax[2];
header->ndmeshes = dmeshes ? npolys : 0;
header->ndverts = dmeshes ? uniqueDetailVerts : 0;
header->ndtris = dmeshes ? ndtris : 0;
// Store vertices
for (int i = 0; i < nverts; ++i)
{
const unsigned short* iv = &verts[i*3];
float* v = &navVerts[i*3];
v[0] = bmin[0] + iv[0] * cs;
v[1] = bmin[1] + iv[1] * ch;
v[2] = bmin[2] + iv[2] * cs;
}
// Store polygons
const unsigned short* src = polys;
for (int i = 0; i < npolys; ++i)
{
dtStatPoly* p = &navPolys[i];
p->nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (src[j] == 0xffff) break;
p->v[j] = src[j];
p->n[j] = src[nvp+j]+1;
p->nv++;
}
src += nvp*2;
}
header->nnodes = createBVTree(verts, nverts, polys, npolys, nvp,
cs, ch, npolys*2, navNodes);
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
unsigned short vbase = 0;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyDetail& dtl = navDMeshes[i];
const int vb = dmeshes[i*4+0];
const int ndv = dmeshes[i*4+1];
const int nv = navPolys[i].nv;
dtl.vbase = vbase;
dtl.nverts = ndv-nv;
dtl.tbase = dmeshes[i*4+2];
dtl.ntris = dmeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv > 0)
{
memcpy(&navDVerts[vbase*3], &dverts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += ndv-nv;
}
}
// Store triangles.
memcpy(navDTris, dtris, sizeof(unsigned char)*4*ndtris);
*outData = data;
*outDataSize = dataSize;
return true;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,215 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "DetourTileNavMesh.h"
#include "DetourCommon.h"
bool dtCreateNavMeshTileData(const unsigned short* verts, const int nverts,
const unsigned short* polys, const int npolys, const int nvp,
const unsigned short* dmeshes, const float* dverts, const int ndverts,
const unsigned char* dtris, const int ndtris,
const float* bmin, const float* bmax, float cs, float ch, int tileSize, int walkableClimb,
unsigned char** outData, int* outDataSize)
{
if (nvp != DT_TILE_VERTS_PER_POLYGON)
return false;
if (nverts >= 0xffff)
return false;
if (npolys > DT_MAX_TILES)
return false;
if (!nverts)
return false;
if (!npolys)
return false;
if (!dmeshes || !dverts || ! dtris)
return false;
// Find portal edges which are at tile borders.
int nedges = 0;
int nportals = 0;
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*2*nvp];
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
int nj = j+1;
if (nj >= nvp || p[nj] == 0xffff) nj = 0;
const unsigned short* va = &verts[p[j]*3];
const unsigned short* vb = &verts[p[nj]*3];
nedges++;
if (va[0] == tileSize && vb[0] == tileSize)
nportals++; // x+
else if (va[2] == tileSize && vb[2] == tileSize)
nportals++; // z+
else if (va[0] == 0 && vb[0] == 0)
nportals++; // x-
else if (va[2] == 0 && vb[2] == 0)
nportals++; // z-
}
}
const int maxLinks = nedges + nportals*2;
// Find unique detail vertices.
int uniqueDetailVerts = 0;
if (dmeshes)
{
for (int i = 0; i < npolys; ++i)
{
const unsigned short* p = &polys[i*nvp*2];
int ndv = dmeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == 0xffff) break;
nv++;
}
ndv -= nv;
uniqueDetailVerts += ndv;
}
}
// Calculate data size
const int headerSize = align4(sizeof(dtTileHeader));
const int vertsSize = align4(sizeof(float)*3*nverts);
const int polysSize = align4(sizeof(dtTilePoly)*npolys);
const int linksSize = align4(sizeof(dtTileLink)*maxLinks);
const int detailMeshesSize = align4(sizeof(dtTilePolyDetail)*npolys);
const int detailVertsSize = align4(sizeof(float)*3*uniqueDetailVerts);
const int detailTrisSize = align4(sizeof(unsigned char)*4*ndtris);
const int dataSize = headerSize + vertsSize + polysSize + linksSize +
detailMeshesSize + detailVertsSize + detailTrisSize;
unsigned char* data = new unsigned char[dataSize];
if (!data)
return false;
memset(data, 0, dataSize);
unsigned char* d = data;
dtTileHeader* header = (dtTileHeader*)d; d += headerSize;
float* navVerts = (float*)d; d += vertsSize;
dtTilePoly* navPolys = (dtTilePoly*)d; d += polysSize;
d += linksSize;
dtTilePolyDetail* navDMeshes = (dtTilePolyDetail*)d; d += detailMeshesSize;
float* navDVerts = (float*)d; d += detailVertsSize;
unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize;
// Store header
header->magic = DT_TILE_NAVMESH_MAGIC;
header->version = DT_TILE_NAVMESH_VERSION;
header->npolys = npolys;
header->nverts = nverts;
header->maxlinks = maxLinks;
header->bmin[0] = bmin[0];
header->bmin[1] = bmin[1];
header->bmin[2] = bmin[2];
header->bmax[0] = bmax[0];
header->bmax[1] = bmax[1];
header->bmax[2] = bmax[2];
header->ndmeshes = npolys;
header->ndverts = uniqueDetailVerts;
header->ndtris = ndtris;
// Store vertices
for (int i = 0; i < nverts; ++i)
{
const unsigned short* iv = &verts[i*3];
float* v = &navVerts[i*3];
v[0] = bmin[0] + iv[0] * cs;
v[1] = bmin[1] + iv[1] * ch;
v[2] = bmin[2] + iv[2] * cs;
}
// Store polygons
const unsigned short* src = polys;
for (int i = 0; i < npolys; ++i)
{
dtTilePoly* p = &navPolys[i];
p->nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (src[j] == 0xffff) break;
p->v[j] = src[j];
p->n[j] = (src[nvp+j]+1) & 0xffff;
p->nv++;
}
src += nvp*2;
}
// Store portal edges.
for (int i = 0; i < npolys; ++i)
{
dtTilePoly* poly = &navPolys[i];
for (int j = 0; j < poly->nv; ++j)
{
int nj = j+1;
if (nj >= poly->nv) nj = 0;
const unsigned short* va = &verts[poly->v[j]*3];
const unsigned short* vb = &verts[poly->v[nj]*3];
if (va[0] == tileSize && vb[0] == tileSize) // x+
poly->n[j] = 0x8000 | 0;
else if (va[2] == tileSize && vb[2] == tileSize) // z+
poly->n[j] = 0x8000 | 1;
else if (va[0] == 0 && vb[0] == 0) // x-
poly->n[j] = 0x8000 | 2;
else if (va[2] == 0 && vb[2] == 0) // z-
poly->n[j] = 0x8000 | 3;
}
}
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
unsigned short vbase = 0;
for (int i = 0; i < npolys; ++i)
{
dtTilePolyDetail& dtl = navDMeshes[i];
const int vb = dmeshes[i*4+0];
const int ndv = dmeshes[i*4+1];
const int nv = navPolys[i].nv;
dtl.vbase = vbase;
dtl.nverts = ndv-nv;
dtl.tbase = dmeshes[i*4+2];
dtl.ntris = dmeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv)
{
memcpy(&navDVerts[vbase*3], &dverts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += ndv-nv;
}
}
// Store triangles.
memcpy(navDTris, dtris, sizeof(unsigned char)*4*ndtris);
*outData = data;
*outDataSize = dataSize;
return true;
}

View File

@ -6,6 +6,8 @@
<string>English</string>
<key>CFBundleExecutable</key>
<string>Recast</string>
<key>CFBundleIconFile</key>
<string>Icon.icns</string>
<key>CFBundleIdentifier</key>
<string>com.yourcompany.Recast</string>
<key>CFBundleInfoDictionaryVersion</key>

File diff suppressed because it is too large Load Diff

View File

@ -9,7 +9,6 @@
/* Begin PBXBuildFile section */
1DDD58160DA1D0A300B32029 /* MainMenu.xib in Resources */ = {isa = PBXBuildFile; fileRef = 1DDD58140DA1D0A300B32029 /* MainMenu.xib */; };
6B024C0D10060AC600CF7107 /* Icon.icns in Resources */ = {isa = PBXBuildFile; fileRef = 6B024C0C10060AC600CF7107 /* Icon.icns */; };
6B092B940FFCC2BD0088D3A5 /* DetourTileNavMeshBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B092B930FFCC2BD0088D3A5 /* DetourTileNavMeshBuilder.cpp */; };
6B1185F51006895B0018F96F /* DetourNode.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B1185F41006895B0018F96F /* DetourNode.cpp */; };
6B1185FE10068B150018F96F /* DetourCommon.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B1185FD10068B150018F96F /* DetourCommon.cpp */; };
6B137C710F7FCBBB00459200 /* imgui.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B137C6C0F7FCBBB00459200 /* imgui.cpp */; };
@ -27,21 +26,17 @@
6B25B6190FFA62BE004F1BC4 /* Sample.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B25B6140FFA62BE004F1BC4 /* Sample.cpp */; };
6B25B61D0FFA62BE004F1BC4 /* main.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B25B6180FFA62BE004F1BC4 /* main.cpp */; };
6B2AEC530FFB8958005BE9CC /* Sample_TileMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B2AEC520FFB8958005BE9CC /* Sample_TileMesh.cpp */; };
6B2AEC5A0FFB8A7A005BE9CC /* DetourTileNavMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B2AEC590FFB8A7A005BE9CC /* DetourTileNavMesh.cpp */; };
6B555DB1100B212E00247EA3 /* imguiRenderGL.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B555DB0100B212E00247EA3 /* imguiRenderGL.cpp */; };
6B62416A103434880002E346 /* RecastMeshDetail.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B624169103434880002E346 /* RecastMeshDetail.cpp */; };
6B8632DA0F78122C00E2684A /* SDL.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 6B8632D90F78122C00E2684A /* SDL.framework */; };
6B8632DC0F78123E00E2684A /* OpenGL.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 6B8632DB0F78123E00E2684A /* OpenGL.framework */; };
6B8DE88910B69E3E00DF20FB /* DetourNavMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B8DE88710B69E3E00DF20FB /* DetourNavMesh.cpp */; };
6B8DE88A10B69E3E00DF20FB /* DetourNavMeshBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B8DE88810B69E3E00DF20FB /* DetourNavMeshBuilder.cpp */; };
6B8DE8F810B6B70E00DF20FB /* Sample_DynMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6B8DE8F710B6B70E00DF20FB /* Sample_DynMesh.cpp */; };
6BA1E88A10C7BFC9008007F6 /* Sample_SoloMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BA1E88710C7BFC9008007F6 /* Sample_SoloMesh.cpp */; };
6BA1E88B10C7BFC9008007F6 /* Sample_SoloMeshSimple.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BA1E88810C7BFC9008007F6 /* Sample_SoloMeshSimple.cpp */; };
6BA1E88C10C7BFC9008007F6 /* Sample_SoloMeshTiled.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BA1E88910C7BFC9008007F6 /* Sample_SoloMeshTiled.cpp */; };
6BB788170FC0472B003C24DB /* ChunkyTriMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BB788160FC0472B003C24DB /* ChunkyTriMesh.cpp */; };
6BDD9E0A0F91113800904EEF /* DetourDebugDraw.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BDD9E070F91113800904EEF /* DetourDebugDraw.cpp */; };
6BDD9E0B0F91113800904EEF /* DetourStatNavMesh.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BDD9E080F91113800904EEF /* DetourStatNavMesh.cpp */; };
6BDD9E0C0F91113800904EEF /* DetourStatNavMeshBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 6BDD9E090F91113800904EEF /* DetourStatNavMeshBuilder.cpp */; };
8D11072B0486CEB800E47090 /* InfoPlist.strings in Resources */ = {isa = PBXBuildFile; fileRef = 089C165CFE840E0CC02AAC07 /* InfoPlist.strings */; };
8D11072F0486CEB800E47090 /* Cocoa.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 1058C7A1FEA54F0111CA2CBB /* Cocoa.framework */; };
/* End PBXBuildFile section */
@ -55,8 +50,6 @@
29B97325FDCFA39411CA2CEA /* Foundation.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Foundation.framework; path = /System/Library/Frameworks/Foundation.framework; sourceTree = "<absolute>"; };
32CA4F630368D1EE00C91783 /* Recast_Prefix.pch */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = Recast_Prefix.pch; sourceTree = "<group>"; };
6B024C0C10060AC600CF7107 /* Icon.icns */ = {isa = PBXFileReference; lastKnownFileType = image.icns; path = Icon.icns; sourceTree = "<group>"; };
6B092B920FFCC2AC0088D3A5 /* DetourTileNavMeshBuilder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourTileNavMeshBuilder.h; path = ../../../Detour/Include/DetourTileNavMeshBuilder.h; sourceTree = SOURCE_ROOT; };
6B092B930FFCC2BD0088D3A5 /* DetourTileNavMeshBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourTileNavMeshBuilder.cpp; path = ../../../Detour/Source/DetourTileNavMeshBuilder.cpp; sourceTree = SOURCE_ROOT; };
6B1185F41006895B0018F96F /* DetourNode.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourNode.cpp; path = ../../../Detour/Source/DetourNode.cpp; sourceTree = SOURCE_ROOT; };
6B1185F61006896B0018F96F /* DetourNode.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourNode.h; path = ../../../Detour/Include/DetourNode.h; sourceTree = SOURCE_ROOT; };
6B1185FC10068B040018F96F /* DetourCommon.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourCommon.h; path = ../../../Detour/Include/DetourCommon.h; sourceTree = SOURCE_ROOT; };
@ -85,8 +78,6 @@
6B25B6180FFA62BE004F1BC4 /* main.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = main.cpp; path = ../../Source/main.cpp; sourceTree = SOURCE_ROOT; };
6B2AEC510FFB8946005BE9CC /* Sample_TileMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = Sample_TileMesh.h; path = ../../Include/Sample_TileMesh.h; sourceTree = SOURCE_ROOT; };
6B2AEC520FFB8958005BE9CC /* Sample_TileMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Sample_TileMesh.cpp; path = ../../Source/Sample_TileMesh.cpp; sourceTree = SOURCE_ROOT; };
6B2AEC580FFB8A68005BE9CC /* DetourTileNavMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourTileNavMesh.h; path = ../../../Detour/Include/DetourTileNavMesh.h; sourceTree = SOURCE_ROOT; };
6B2AEC590FFB8A7A005BE9CC /* DetourTileNavMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourTileNavMesh.cpp; path = ../../../Detour/Source/DetourTileNavMesh.cpp; sourceTree = SOURCE_ROOT; };
6B555DAE100B211D00247EA3 /* imguiRenderGL.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = imguiRenderGL.h; path = ../../Include/imguiRenderGL.h; sourceTree = SOURCE_ROOT; };
6B555DB0100B212E00247EA3 /* imguiRenderGL.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = imguiRenderGL.cpp; path = ../../Source/imguiRenderGL.cpp; sourceTree = SOURCE_ROOT; };
6B555DF6100B273500247EA3 /* stb_truetype.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = stb_truetype.h; path = ../../Contrib/stb_truetype.h; sourceTree = SOURCE_ROOT; };
@ -97,8 +88,6 @@
6B8DE88810B69E3E00DF20FB /* DetourNavMeshBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourNavMeshBuilder.cpp; path = ../../../Detour/Source/DetourNavMeshBuilder.cpp; sourceTree = SOURCE_ROOT; };
6B8DE88B10B69E4C00DF20FB /* DetourNavMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourNavMesh.h; path = ../../../Detour/Include/DetourNavMesh.h; sourceTree = SOURCE_ROOT; };
6B8DE88C10B69E4C00DF20FB /* DetourNavMeshBuilder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourNavMeshBuilder.h; path = ../../../Detour/Include/DetourNavMeshBuilder.h; sourceTree = SOURCE_ROOT; };
6B8DE8F610B6B70100DF20FB /* Sample_DynMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = Sample_DynMesh.h; path = ../../Include/Sample_DynMesh.h; sourceTree = SOURCE_ROOT; };
6B8DE8F710B6B70E00DF20FB /* Sample_DynMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Sample_DynMesh.cpp; path = ../../Source/Sample_DynMesh.cpp; sourceTree = SOURCE_ROOT; };
6BA1E88710C7BFC9008007F6 /* Sample_SoloMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Sample_SoloMesh.cpp; path = ../../Source/Sample_SoloMesh.cpp; sourceTree = SOURCE_ROOT; };
6BA1E88810C7BFC9008007F6 /* Sample_SoloMeshSimple.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Sample_SoloMeshSimple.cpp; path = ../../Source/Sample_SoloMeshSimple.cpp; sourceTree = SOURCE_ROOT; };
6BA1E88910C7BFC9008007F6 /* Sample_SoloMeshTiled.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = Sample_SoloMeshTiled.cpp; path = ../../Source/Sample_SoloMeshTiled.cpp; sourceTree = SOURCE_ROOT; };
@ -108,11 +97,7 @@
6BB788160FC0472B003C24DB /* ChunkyTriMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = ChunkyTriMesh.cpp; path = ../../Source/ChunkyTriMesh.cpp; sourceTree = SOURCE_ROOT; };
6BB788180FC04753003C24DB /* ChunkyTriMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ChunkyTriMesh.h; path = ../../Include/ChunkyTriMesh.h; sourceTree = SOURCE_ROOT; };
6BDD9E040F91112200904EEF /* DetourDebugDraw.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourDebugDraw.h; path = ../../../Detour/Include/DetourDebugDraw.h; sourceTree = SOURCE_ROOT; };
6BDD9E050F91112200904EEF /* DetourStatNavMesh.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourStatNavMesh.h; path = ../../../Detour/Include/DetourStatNavMesh.h; sourceTree = SOURCE_ROOT; };
6BDD9E060F91112200904EEF /* DetourStatNavMeshBuilder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = DetourStatNavMeshBuilder.h; path = ../../../Detour/Include/DetourStatNavMeshBuilder.h; sourceTree = SOURCE_ROOT; };
6BDD9E070F91113800904EEF /* DetourDebugDraw.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourDebugDraw.cpp; path = ../../../Detour/Source/DetourDebugDraw.cpp; sourceTree = SOURCE_ROOT; };
6BDD9E080F91113800904EEF /* DetourStatNavMesh.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourStatNavMesh.cpp; path = ../../../Detour/Source/DetourStatNavMesh.cpp; sourceTree = SOURCE_ROOT; };
6BDD9E090F91113800904EEF /* DetourStatNavMeshBuilder.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = DetourStatNavMeshBuilder.cpp; path = ../../../Detour/Source/DetourStatNavMeshBuilder.cpp; sourceTree = SOURCE_ROOT; };
8D1107310486CEB800E47090 /* Info.plist */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
8D1107320486CEB800E47090 /* Recast.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = Recast.app; sourceTree = BUILT_PRODUCTS_DIR; };
/* End PBXFileReference section */
@ -253,8 +238,6 @@
6BA1E88910C7BFC9008007F6 /* Sample_SoloMeshTiled.cpp */,
6B25B6100FFA62AD004F1BC4 /* Sample.h */,
6B25B6140FFA62BE004F1BC4 /* Sample.cpp */,
6B8DE8F610B6B70100DF20FB /* Sample_DynMesh.h */,
6B8DE8F710B6B70E00DF20FB /* Sample_DynMesh.cpp */,
6B2AEC510FFB8946005BE9CC /* Sample_TileMesh.h */,
6B2AEC520FFB8958005BE9CC /* Sample_TileMesh.cpp */,
);
@ -270,14 +253,6 @@
6B8DE88810B69E3E00DF20FB /* DetourNavMeshBuilder.cpp */,
6BDD9E040F91112200904EEF /* DetourDebugDraw.h */,
6BDD9E070F91113800904EEF /* DetourDebugDraw.cpp */,
6BDD9E050F91112200904EEF /* DetourStatNavMesh.h */,
6BDD9E080F91113800904EEF /* DetourStatNavMesh.cpp */,
6BDD9E060F91112200904EEF /* DetourStatNavMeshBuilder.h */,
6BDD9E090F91113800904EEF /* DetourStatNavMeshBuilder.cpp */,
6B2AEC580FFB8A68005BE9CC /* DetourTileNavMesh.h */,
6B2AEC590FFB8A7A005BE9CC /* DetourTileNavMesh.cpp */,
6B092B920FFCC2AC0088D3A5 /* DetourTileNavMeshBuilder.h */,
6B092B930FFCC2BD0088D3A5 /* DetourTileNavMeshBuilder.cpp */,
6B1185F61006896B0018F96F /* DetourNode.h */,
6B1185F41006895B0018F96F /* DetourNode.cpp */,
6B1185FC10068B040018F96F /* DetourCommon.h */,
@ -355,21 +330,16 @@
6B137C920F7FCC1100459200 /* RecastRegion.cpp in Sources */,
6B137C930F7FCC1100459200 /* RecastTimer.cpp in Sources */,
6BDD9E0A0F91113800904EEF /* DetourDebugDraw.cpp in Sources */,
6BDD9E0B0F91113800904EEF /* DetourStatNavMesh.cpp in Sources */,
6BDD9E0C0F91113800904EEF /* DetourStatNavMeshBuilder.cpp in Sources */,
6BB788170FC0472B003C24DB /* ChunkyTriMesh.cpp in Sources */,
6B25B6190FFA62BE004F1BC4 /* Sample.cpp in Sources */,
6B25B61D0FFA62BE004F1BC4 /* main.cpp in Sources */,
6B2AEC530FFB8958005BE9CC /* Sample_TileMesh.cpp in Sources */,
6B2AEC5A0FFB8A7A005BE9CC /* DetourTileNavMesh.cpp in Sources */,
6B092B940FFCC2BD0088D3A5 /* DetourTileNavMeshBuilder.cpp in Sources */,
6B1185F51006895B0018F96F /* DetourNode.cpp in Sources */,
6B1185FE10068B150018F96F /* DetourCommon.cpp in Sources */,
6B555DB1100B212E00247EA3 /* imguiRenderGL.cpp in Sources */,
6B62416A103434880002E346 /* RecastMeshDetail.cpp in Sources */,
6B8DE88910B69E3E00DF20FB /* DetourNavMesh.cpp in Sources */,
6B8DE88A10B69E3E00DF20FB /* DetourNavMeshBuilder.cpp in Sources */,
6B8DE8F810B6B70E00DF20FB /* Sample_DynMesh.cpp in Sources */,
6BA1E88A10C7BFC9008007F6 /* Sample_SoloMesh.cpp in Sources */,
6BA1E88B10C7BFC9008007F6 /* Sample_SoloMeshSimple.cpp in Sources */,
6BA1E88C10C7BFC9008007F6 /* Sample_SoloMeshTiled.cpp in Sources */,

View File

@ -1,114 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECASTSAMPLEDYNMESH_H
#define RECASTSAMPLEDYNMESH_H
#include "Sample.h"
#include "DetourNavMesh.h"
#include "Recast.h"
#include "RecastLog.h"
#include "ChunkyTriMesh.h"
class Sample_DynMesh : public Sample
{
protected:
bool m_keepInterResults;
rcBuildTimes m_buildTimes;
dtNavMesh* m_navMesh;
rcChunkyTriMesh* m_chunkyMesh;
unsigned char* m_triflags;
rcHeightfield* m_solid;
rcCompactHeightfield* m_chf;
rcContourSet* m_cset;
rcPolyMesh* m_pmesh;
rcPolyMeshDetail* m_dmesh;
rcConfig m_cfg;
float m_tileSize;
float m_spos[3];
float m_epos[3];
bool m_sposSet;
bool m_eposSet;
float m_tileCol[4];
float m_tileBmin[3];
float m_tileBmax[3];
float m_tileBuildTime;
float m_tileMemUsage;
int m_tileTriCount;
enum ToolMode
{
TOOLMODE_CREATE_TILES,
TOOLMODE_PATHFIND,
TOOLMODE_RAYCAST,
TOOLMODE_DISTANCE_TO_WALL,
TOOLMODE_FIND_POLYS_AROUND,
};
dtPolyRef m_startRef;
dtPolyRef m_endRef;
float m_polyPickExt[3];
static const int MAX_POLYS = 256;
dtPolyRef m_polys[MAX_POLYS];
dtPolyRef m_parent[MAX_POLYS];
int m_npolys;
float m_straightPath[MAX_POLYS*3];
int m_nstraightPath;
float m_hitPos[3];
float m_hitNormal[3];
float m_distanceToWall;
ToolMode m_toolMode;
void toolRecalc();
void buildTile(const float* pos);
void removeTile(const float* pos);
unsigned char* buildTileMesh(const float* bmin, const float* bmax, int& dataSize);
void cleanup();
public:
Sample_DynMesh();
virtual ~Sample_DynMesh();
virtual void handleSettings();
virtual void handleTools();
virtual void handleDebugMode();
virtual void setToolStartPos(const float* p);
virtual void setToolEndPos(const float* p);
virtual void handleRender();
virtual void handleRenderOverlay(double* proj, double* model, int* view);
virtual void handleMeshChanged(const float* verts, int nverts,
const int* tris, const float* trinorms, int ntris,
const float* bmin, const float* bmax);
virtual bool handleBuild();
};
#endif // RECASTSAMPLEDYNMESH_H

View File

@ -2,7 +2,7 @@
#define RECASTSAMPLESOLOMESHSIMPLE_H
#include "Sample_SoloMesh.h"
#include "DetourStatNavMesh.h"
#include "DetourNavMesh.h"
#include "Recast.h"
#include "RecastLog.h"

View File

@ -2,7 +2,7 @@
#define RECASTSAMPLESOLOMESHTILED_H
#include "Sample_SoloMesh.h"
#include "DetourStatNavMesh.h"
#include "DetourNavMesh.h"
#include "Recast.h"
#include "RecastLog.h"
#include "ChunkyTriMesh.h"

View File

@ -16,11 +16,11 @@
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECASTSAMPLETILEDMESH_H
#define RECASTSAMPLETILEDMESH_H
#ifndef RECASTSAMPLETILEMESH_H
#define RECASTSAMPLETILEMESH_H
#include "Sample.h"
#include "DetourTileNavMesh.h"
#include "DetourNavMesh.h"
#include "Recast.h"
#include "RecastLog.h"
#include "ChunkyTriMesh.h"
@ -31,8 +31,8 @@ protected:
bool m_keepInterResults;
rcBuildTimes m_buildTimes;
dtTiledNavMesh* m_navMesh;
dtNavMesh* m_navMesh;
rcChunkyTriMesh* m_chunkyMesh;
unsigned char* m_triflags;
rcHeightfield* m_solid;
@ -42,8 +42,11 @@ protected:
rcPolyMeshDetail* m_dmesh;
rcConfig m_cfg;
int m_maxTiles;
int m_maxPolysPerTile;
float m_tileSize;
float m_spos[3];
float m_epos[3];
bool m_sposSet;
@ -65,14 +68,14 @@ protected:
TOOLMODE_FIND_POLYS_AROUND,
};
dtTilePolyRef m_startRef;
dtTilePolyRef m_endRef;
dtPolyRef m_startRef;
dtPolyRef m_endRef;
float m_polyPickExt[3];
static const int MAX_POLYS = 256;
dtTilePolyRef m_polys[MAX_POLYS];
dtTilePolyRef m_parent[MAX_POLYS];
dtPolyRef m_polys[MAX_POLYS];
dtPolyRef m_parent[MAX_POLYS];
int m_npolys;
float m_straightPath[MAX_POLYS*3];
int m_nstraightPath;
@ -88,7 +91,7 @@ protected:
void removeTile(const float* pos);
unsigned char* buildTileMesh(const float* bmin, const float* bmax, int& dataSize);
void cleanup();
public:
@ -111,4 +114,4 @@ public:
};
#endif // RECASTBUILDERTILEDMESH_H
#endif // RECASTSAMPLETILEMESH_H

View File

@ -1,931 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "SDL.h"
#include "SDL_opengl.h"
#include "imgui.h"
#include "Sample.h"
#include "Sample_DynMesh.h"
#include "Recast.h"
#include "RecastTimer.h"
#include "RecastDebugDraw.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
Sample_DynMesh::Sample_DynMesh() :
m_keepInterResults(false),
m_navMesh(0),
m_chunkyMesh(0),
m_triflags(0),
m_solid(0),
m_chf(0),
m_cset(0),
m_pmesh(0),
m_dmesh(0),
m_tileSize(32),
m_sposSet(false),
m_eposSet(false),
m_tileBuildTime(0),
m_tileMemUsage(0),
m_tileTriCount(0),
m_startRef(0),
m_endRef(0),
m_npolys(0),
m_nstraightPath(0),
m_distanceToWall(0),
m_toolMode(TOOLMODE_CREATE_TILES)
{
resetCommonSettings();
memset(m_tileBmin, 0, sizeof(m_tileBmin));
memset(m_tileBmax, 0, sizeof(m_tileBmax));
m_polyPickExt[0] = 2;
m_polyPickExt[1] = 4;
m_polyPickExt[2] = 2;
}
Sample_DynMesh::~Sample_DynMesh()
{
cleanup();
delete m_navMesh;
delete m_chunkyMesh;
}
void Sample_DynMesh::cleanup()
{
delete [] m_triflags;
m_triflags = 0;
delete m_solid;
m_solid = 0;
delete m_chf;
m_chf = 0;
delete m_cset;
m_cset = 0;
delete m_pmesh;
m_pmesh = 0;
delete m_dmesh;
m_dmesh = 0;
}
void Sample_DynMesh::handleSettings()
{
Sample::handleCommonSettings();
imguiLabel("Tiling");
imguiSlider("TileSize", &m_tileSize, 16.0f, 1024.0f, 16.0f);
char text[64];
int gw = 0, gh = 0;
rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts-1) / ts;
const int th = (gh + ts-1) / ts;
snprintf(text, 64, "Tiles %d x %d", tw, th);
imguiValue(text);
}
void Sample_DynMesh::toolRecalc()
{
m_startRef = 0;
if (m_sposSet)
m_startRef = m_navMesh->findNearestPoly(m_spos, m_polyPickExt);
m_endRef = 0;
if (m_eposSet)
m_endRef = m_navMesh->findNearestPoly(m_epos, m_polyPickExt);
if (m_toolMode == TOOLMODE_PATHFIND)
{
if (m_sposSet && m_eposSet && m_startRef && m_endRef)
{
m_npolys = m_navMesh->findPath(m_startRef, m_endRef, m_spos, m_epos, m_polys, MAX_POLYS);
if (m_npolys)
m_nstraightPath = m_navMesh->findStraightPath(m_spos, m_epos, m_polys, m_npolys, m_straightPath, MAX_POLYS);
}
else
{
m_npolys = 0;
m_nstraightPath = 0;
}
}
else if (m_toolMode == TOOLMODE_RAYCAST)
{
m_nstraightPath = 0;
if (m_sposSet && m_eposSet && m_startRef)
{
float t = 0;
m_npolys = 0;
m_nstraightPath = 2;
m_straightPath[0] = m_spos[0];
m_straightPath[1] = m_spos[1];
m_straightPath[2] = m_spos[2];
m_npolys = m_navMesh->raycast(m_startRef, m_spos, m_epos, t, m_polys, MAX_POLYS);
if (m_npolys && t < 1)
{
m_straightPath[3] = m_spos[0] + (m_epos[0] - m_spos[0]) * t;
m_straightPath[4] = m_spos[1] + (m_epos[1] - m_spos[1]) * t;
m_straightPath[5] = m_spos[2] + (m_epos[2] - m_spos[2]) * t;
}
else
{
m_straightPath[3] = m_epos[0];
m_straightPath[4] = m_epos[1];
m_straightPath[5] = m_epos[2];
}
}
}
else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL)
{
m_distanceToWall = 0;
if (m_sposSet && m_startRef)
m_distanceToWall = m_navMesh->findDistanceToWall(m_startRef, m_spos, 100.0f, m_hitPos, m_hitNormal);
}
else if (m_toolMode == TOOLMODE_FIND_POLYS_AROUND)
{
if (m_sposSet && m_startRef && m_eposSet)
{
const float dx = m_epos[0] - m_spos[0];
const float dz = m_epos[2] - m_spos[2];
float dist = sqrtf(dx*dx + dz*dz);
m_npolys = m_navMesh->findPolysAround(m_startRef, m_spos, dist, m_polys, m_parent, 0, MAX_POLYS);
}
}
}
void Sample_DynMesh::handleTools()
{
if (imguiCheck("Create Tiles", m_toolMode == TOOLMODE_CREATE_TILES))
{
m_toolMode = TOOLMODE_CREATE_TILES;
toolRecalc();
}
if (imguiCheck("Pathfind", m_toolMode == TOOLMODE_PATHFIND))
{
m_toolMode = TOOLMODE_PATHFIND;
toolRecalc();
}
if (imguiCheck("Distance to Wall", m_toolMode == TOOLMODE_DISTANCE_TO_WALL))
{
m_toolMode = TOOLMODE_DISTANCE_TO_WALL;
toolRecalc();
}
if (imguiCheck("Raycast", m_toolMode == TOOLMODE_RAYCAST))
{
m_toolMode = TOOLMODE_RAYCAST;
toolRecalc();
}
if (imguiCheck("Find Polys Around", m_toolMode == TOOLMODE_FIND_POLYS_AROUND))
{
m_toolMode = TOOLMODE_FIND_POLYS_AROUND;
toolRecalc();
}
if (imguiButton("Create All"))
{
int gw = 0, gh = 0;
rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts-1) / ts;
const int th = (gh + ts-1) / ts;
const float tcs = m_tileSize*m_cellSize;
for (int y = 0; y < th; ++y)
{
for (int x = 0; x < tw; ++x)
{
m_tileBmin[0] = m_bmin[0] + x*tcs;
m_tileBmin[1] = m_bmin[1];
m_tileBmin[2] = m_bmin[2] + y*tcs;
m_tileBmax[0] = m_bmin[0] + (x+1)*tcs;
m_tileBmax[1] = m_bmax[1];
m_tileBmax[2] = m_bmin[2] + (y+1)*tcs;
int dataSize = 0;
unsigned char* data = buildTileMesh(m_tileBmin, m_tileBmax, dataSize);
if (data)
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTileAt(x,y,0,0);
// Let the navmesh own the data.
if (!m_navMesh->addTileAt(x,y,data,dataSize,true))
delete [] data;
}
}
}
toolRecalc();
}
}
void Sample_DynMesh::handleDebugMode()
{
if (m_navMesh)
{
imguiValue("Navmesh ready.");
imguiValue("Use 'Create Tiles' tool to experiment.");
imguiValue("LMB: (Re)Create tiles.");
imguiValue("LMB+SHIFT: Remove tiles.");
}
}
static void getPolyCenter(dtNavMesh* navMesh, dtPolyRef ref, float* center)
{
const dtPoly* p = navMesh->getPolyByRef(ref);
if (!p) return;
const float* verts = navMesh->getPolyVertsByRef(ref);
center[0] = 0;
center[1] = 0;
center[2] = 0;
for (int i = 0; i < (int)p->nv; ++i)
{
const float* v = &verts[p->v[i]*3];
center[0] += v[0];
center[1] += v[1];
center[2] += v[2];
}
const float s = 1.0f / p->nv;
center[0] *= s;
center[1] *= s;
center[2] *= s;
}
void Sample_DynMesh::handleRender()
{
if (!m_verts || !m_tris || !m_trinorms)
return;
DebugDrawGL dd;
// Draw mesh
if (m_navMesh)
rcDebugDrawMesh(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, 0);
else
rcDebugDrawMeshSlope(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, m_agentMaxSlope);
glDepthMask(GL_FALSE);
// Draw bounds
float col[4] = {1,1,1,0.5f};
rcDebugDrawBoxWire(&dd, m_bmin[0],m_bmin[1],m_bmin[2], m_bmax[0],m_bmax[1],m_bmax[2], col);
// Tiling grid.
const int ts = (int)m_tileSize;
int gw = 0, gh = 0;
rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh);
int tw = (gw + ts-1) / ts;
int th = (gh + ts-1) / ts;
const float s = ts*m_cellSize;
glBegin(GL_LINES);
glColor4ub(0,0,0,64);
for (int y = 0; y < th; ++y)
{
for (int x = 0; x < tw; ++x)
{
float fx, fy, fz;
fx = m_bmin[0] + x*s;
fy = m_bmin[1];
fz = m_bmin[2] + y*s;
glVertex3f(fx,fy,fz);
glVertex3f(fx+s,fy,fz);
glVertex3f(fx,fy,fz);
glVertex3f(fx,fy,fz+s);
if (x+1 >= tw)
{
glVertex3f(fx+s,fy,fz);
glVertex3f(fx+s,fy,fz+s);
}
if (y+1 >= th)
{
glVertex3f(fx,fy,fz+s);
glVertex3f(fx+s,fy,fz+s);
}
}
}
glEnd();
// Draw active tile
rcDebugDrawBoxWire(&dd, m_tileBmin[0],m_tileBmin[1],m_tileBmin[2], m_tileBmax[0],m_tileBmax[1],m_tileBmax[2], m_tileCol);
if (m_navMesh)
dtDebugDrawNavMesh(m_navMesh);
if (m_sposSet)
{
const float s = 0.5f;
glColor4ub(64,16,0,255);
glLineWidth(3.0f);
glBegin(GL_LINES);
glVertex3f(m_spos[0]-s,m_spos[1]+m_cellHeight,m_spos[2]);
glVertex3f(m_spos[0]+s,m_spos[1]+m_cellHeight,m_spos[2]);
glVertex3f(m_spos[0],m_spos[1]-s+m_cellHeight,m_spos[2]);
glVertex3f(m_spos[0],m_spos[1]+s+m_cellHeight,m_spos[2]);
glVertex3f(m_spos[0],m_spos[1]+m_cellHeight,m_spos[2]-s);
glVertex3f(m_spos[0],m_spos[1]+m_cellHeight,m_spos[2]+s);
glEnd();
glLineWidth(1.0f);
}
if (m_eposSet)
{
const float s = 0.5f;
glColor4ub(16,64,0,255);
glLineWidth(3.0f);
glBegin(GL_LINES);
glVertex3f(m_epos[0]-s,m_epos[1]+m_cellHeight,m_epos[2]);
glVertex3f(m_epos[0]+s,m_epos[1]+m_cellHeight,m_epos[2]);
glVertex3f(m_epos[0],m_epos[1]-s+m_cellHeight,m_epos[2]);
glVertex3f(m_epos[0],m_epos[1]+s+m_cellHeight,m_epos[2]);
glVertex3f(m_epos[0],m_epos[1]+m_cellHeight,m_epos[2]-s);
glVertex3f(m_epos[0],m_epos[1]+m_cellHeight,m_epos[2]+s);
glEnd();
glLineWidth(1.0f);
}
static const float startCol[4] = { 0.5f, 0.1f, 0.0f, 0.75f };
static const float endCol[4] = { 0.2f, 0.4f, 0.0f, 0.75f };
static const float pathCol[4] = {0,0,0,0.25f};
if (m_toolMode == TOOLMODE_PATHFIND)
{
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_endRef, endCol);
if (m_npolys)
{
for (int i = 1; i < m_npolys-1; ++i)
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
}
if (m_nstraightPath)
{
glColor4ub(64,16,0,220);
glLineWidth(3.0f);
glBegin(GL_LINE_STRIP);
for (int i = 0; i < m_nstraightPath; ++i)
glVertex3f(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2]);
glEnd();
glLineWidth(1.0f);
glPointSize(4.0f);
glBegin(GL_POINTS);
for (int i = 0; i < m_nstraightPath; ++i)
glVertex3f(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2]);
glEnd();
glPointSize(1.0f);
}
}
else if (m_toolMode == TOOLMODE_RAYCAST)
{
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
if (m_nstraightPath)
{
for (int i = 1; i < m_npolys; ++i)
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
glColor4ub(64,16,0,220);
glLineWidth(3.0f);
glBegin(GL_LINE_STRIP);
for (int i = 0; i < m_nstraightPath; ++i)
glVertex3f(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2]);
glEnd();
glLineWidth(1.0f);
glPointSize(4.0f);
glBegin(GL_POINTS);
for (int i = 0; i < m_nstraightPath; ++i)
glVertex3f(m_straightPath[i*3], m_straightPath[i*3+1]+0.4f, m_straightPath[i*3+2]);
glEnd();
glPointSize(1.0f);
}
}
else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL)
{
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
const float col[4] = {1,1,1,0.5f};
rcDebugDrawCylinderWire(&dd, m_spos[0]-m_distanceToWall, m_spos[1]+0.02f, m_spos[2]-m_distanceToWall,
m_spos[0]+m_distanceToWall, m_spos[1]+m_agentHeight, m_spos[2]+m_distanceToWall, col);
glLineWidth(3.0f);
glColor4fv(col);
glBegin(GL_LINES);
glVertex3f(m_hitPos[0], m_hitPos[1] + 0.02f, m_hitPos[2]);
glVertex3f(m_hitPos[0], m_hitPos[1] + m_agentHeight, m_hitPos[2]);
glEnd();
glLineWidth(1.0f);
}
else if (m_toolMode == TOOLMODE_FIND_POLYS_AROUND)
{
const float cola[4] = {0,0,0,0.5f};
for (int i = 0; i < m_npolys; ++i)
{
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
if (m_parent[i])
{
float p0[3], p1[3];
getPolyCenter(m_navMesh, m_polys[i], p0);
getPolyCenter(m_navMesh, m_parent[i], p1);
glColor4ub(0,0,0,128);
rcDrawArc(&dd, p0, p1, cola, 2.0f);
}
}
const float dx = m_epos[0] - m_spos[0];
const float dz = m_epos[2] - m_spos[2];
float dist = sqrtf(dx*dx + dz*dz);
const float col[4] = {1,1,1,0.5f};
rcDebugDrawCylinderWire(&dd, m_spos[0]-dist, m_spos[1]+0.02f, m_spos[2]-dist,
m_spos[0]+dist, m_spos[1]+m_agentHeight, m_spos[2]+dist, col);
}
glDepthMask(GL_TRUE);
}
void Sample_DynMesh::handleRenderOverlay(double* proj, double* model, int* view)
{
GLdouble x, y, z;
// Draw start and end point labels
if (m_tileBuildTime > 0.0f && gluProject((GLdouble)(m_tileBmin[0]+m_tileBmax[0])/2, (GLdouble)(m_tileBmin[1]+m_tileBmax[1])/2, (GLdouble)(m_tileBmin[2]+m_tileBmax[2])/2,
model, proj, view, &x, &y, &z))
{
char text[32];
snprintf(text,32,"%.3fms / %dTris / %.1fkB", m_tileBuildTime, m_tileTriCount, m_tileMemUsage);
imguiDrawText((int)x, (int)y-25, IMGUI_ALIGN_CENTER, text, imguiRGBA(0,0,0,220));
}
}
void Sample_DynMesh::handleMeshChanged(const float* verts, int nverts,
const int* tris, const float* trinorms, int ntris,
const float* bmin, const float* bmax)
{
m_verts = verts;
m_nverts = nverts;
m_tris = tris;
m_trinorms = trinorms;
m_ntris = ntris;
vcopy(m_bmin, bmin);
vcopy(m_bmax, bmax);
delete m_chunkyMesh;
m_chunkyMesh = 0;
delete m_navMesh;
m_navMesh = 0;
cleanup();
}
void Sample_DynMesh::setToolStartPos(const float* p)
{
m_sposSet = true;
vcopy(m_spos, p);
if (m_toolMode == TOOLMODE_CREATE_TILES)
removeTile(m_spos);
else
toolRecalc();
}
void Sample_DynMesh::setToolEndPos(const float* p)
{
if (!m_navMesh)
return;
m_eposSet = true;
vcopy(m_epos, p);
if (m_toolMode == TOOLMODE_CREATE_TILES)
buildTile(m_epos);
else
toolRecalc();
}
bool Sample_DynMesh::handleBuild()
{
if (!m_verts || !m_tris)
{
printf("No verts or tris\n");
return false;
}
delete m_navMesh;
m_navMesh = new dtNavMesh;
if (!m_navMesh)
{
printf("Could not allocate navmehs\n");
return false;
}
if (!m_navMesh->init(m_bmin, m_tileSize*m_cellSize, m_tileSize*m_cellSize, m_agentMaxClimb*m_cellHeight, 512, 512, 2048))
{
printf("Could not init navmesh\n");
return false;
}
// Build chunky mesh.
delete m_chunkyMesh;
m_chunkyMesh = new rcChunkyTriMesh;
if (!m_chunkyMesh)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Out of memory 'm_chunkyMesh'.");
return false;
}
if (!rcCreateChunkyTriMesh(m_verts, m_tris, m_ntris, 256, m_chunkyMesh))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Could not build chunky mesh.");
return false;
}
return true;
}
void Sample_DynMesh::buildTile(const float* pos)
{
if (!m_navMesh)
return;
const float ts = m_tileSize*m_cellSize;
const int tx = (int)floorf((pos[0]-m_bmin[0]) / ts);
const int ty = (int)floorf((pos[2]-m_bmin[2]) / ts);
if (tx < 0 || ty < 0)
return;
m_tileBmin[0] = m_bmin[0] + tx*ts;
m_tileBmin[1] = m_bmin[1];
m_tileBmin[2] = m_bmin[2] + ty*ts;
m_tileBmax[0] = m_bmin[0] + (tx+1)*ts;
m_tileBmax[1] = m_bmax[1];
m_tileBmax[2] = m_bmin[2] + (ty+1)*ts;
m_tileCol[0] = 0.3f; m_tileCol[1] = 0.8f; m_tileCol[2] = 0; m_tileCol[3] = 1;
int dataSize = 0;
unsigned char* data = buildTileMesh(m_tileBmin, m_tileBmax, dataSize);
if (data)
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTileAt(tx,ty,0,0);
// Let the navmesh own the data.
if (!m_navMesh->addTileAt(tx,ty,data,dataSize,true))
delete [] data;
}
}
void Sample_DynMesh::removeTile(const float* pos)
{
if (!m_navMesh)
return;
const float ts = m_tileSize*m_cellSize;
const int tx = (int)floorf((pos[0]-m_bmin[0]) / ts);
const int ty = (int)floorf((pos[2]-m_bmin[2]) / ts);
m_tileBmin[0] = m_bmin[0] + tx*ts;
m_tileBmin[1] = m_bmin[1];
m_tileBmin[2] = m_bmin[2] + ty*ts;
m_tileBmax[0] = m_bmin[0] + (tx+1)*ts;
m_tileBmax[1] = m_bmax[1];
m_tileBmax[2] = m_bmin[2] + (ty+1)*ts;
m_tileCol[0] = 0.8f; m_tileCol[1] = 0.1f; m_tileCol[2] = 0; m_tileCol[3] = 1;
unsigned char* rdata = 0;
int rdataSize = 0;
if (m_navMesh->removeTileAt(tx,ty,&rdata,&rdataSize))
delete [] rdata;
}
unsigned char* Sample_DynMesh::buildTileMesh(const float* bmin, const float* bmax, int& dataSize)
{
if (!m_verts || ! m_tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return 0;
}
cleanup();
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)ceilf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionSize = (int)rcSqr(m_regionMinSize);
m_cfg.mergeRegionSize = (int)rcSqr(m_regionMergeSize);
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
m_cfg.tileSize = (int)m_tileSize;
m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
vcopy(m_cfg.bmin, bmin);
vcopy(m_cfg.bmax, bmax);
m_cfg.bmin[0] -= m_cfg.borderSize*m_cfg.cs;
m_cfg.bmin[2] -= m_cfg.borderSize*m_cfg.cs;
m_cfg.bmax[0] += m_cfg.borderSize*m_cfg.cs;
m_cfg.bmax[2] += m_cfg.borderSize*m_cfg.cs;
// Reset build times gathering.
memset(&m_buildTimes, 0, sizeof(m_buildTimes));
rcSetBuildTimes(&m_buildTimes);
// Start the build process.
rcTimeVal totStartTime = rcGetPerformanceTimer();
if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Building navigation:");
rcGetLog()->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
rcGetLog()->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", m_nverts/1000.0f, m_ntris/1000.0f);
}
// Allocate voxel heighfield where we rasterize our input data to.
m_solid = new rcHeightfield;
if (!m_solid)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
return 0;
}
if (!rcCreateHeightfield(*m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
return 0;
}
// Allocate array that can hold triangle flags.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triflags = new unsigned char[m_chunkyMesh->maxTrisPerChunk];
if (!m_triflags)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'triangleFlags' (%d).", m_chunkyMesh->maxTrisPerChunk);
return 0;
}
float tbmin[2], tbmax[2];
tbmin[0] = m_cfg.bmin[0];
tbmin[1] = m_cfg.bmin[2];
tbmax[0] = m_cfg.bmax[0];
tbmax[1] = m_cfg.bmax[2];
int cid[256];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksInRect(m_chunkyMesh, tbmin, tbmax, cid, 256);
if (!ncid)
return 0;
m_tileTriCount = 0;
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = m_chunkyMesh->nodes[cid[i]];
const int* tris = &m_chunkyMesh->tris[node.i*3];
const int ntris = node.n;
m_tileTriCount += ntris;
memset(m_triflags, 0, ntris*sizeof(unsigned char));
rcMarkWalkableTriangles(m_cfg.walkableSlopeAngle,
m_verts, m_nverts, tris, ntris, m_triflags);
rcRasterizeTriangles(m_verts, m_nverts, tris, m_triflags, ntris, *m_solid);
}
if (!m_keepInterResults)
{
delete [] m_triflags;
m_triflags = 0;
}
// Once all geoemtry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
rcFilterLedgeSpans(m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
rcFilterWalkableLowHeightSpans(m_cfg.walkableHeight, *m_solid);
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = new rcCompactHeightfield;
if (!m_chf)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return 0;
}
if (!rcBuildCompactHeightfield(m_cfg.walkableHeight, m_cfg.walkableClimb, RC_WALKABLE, *m_solid, *m_chf))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return 0;
}
if (!m_keepInterResults)
{
delete m_solid;
m_solid = 0;
}
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(*m_chf))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return 0;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(*m_chf, m_cfg.walkableRadius, m_cfg.borderSize, m_cfg.minRegionSize, m_cfg.mergeRegionSize))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not build regions.");
return 0;
}
// Create contours.
m_cset = new rcContourSet;
if (!m_cset)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return 0;
}
if (!rcBuildContours(*m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return 0;
}
if (m_cset->nconts == 0)
{
return 0;
}
// Build polygon navmesh from the contours.
m_pmesh = new rcPolyMesh;
if (!m_pmesh)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return 0;
}
if (!rcBuildPolyMesh(*m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return 0;
}
// Build detail mesh.
m_dmesh = new rcPolyMeshDetail;
if (!m_dmesh)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
return 0;
}
if (!rcBuildPolyMeshDetail(*m_pmesh, *m_chf,
m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
*m_dmesh))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail.");
return 0;
}
if (!m_keepInterResults)
{
delete m_chf;
m_chf = 0;
delete m_cset;
m_cset = 0;
}
unsigned char* navData = 0;
int navDataSize = 0;
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
// Remove padding from the polymesh data. TODO: Remove this odditity.
for (int i = 0; i < m_pmesh->nverts; ++i)
{
unsigned short* v = &m_pmesh->verts[i*3];
v[0] -= (unsigned short)m_cfg.borderSize;
v[2] -= (unsigned short)m_cfg.borderSize;
}
if (m_pmesh->nverts >= 0xffff)
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
return false;
}
/* if (m_pmesh->npolys > DT_MAX_TILES)
{
// If you hit this error, you have too many polygons per tile.
// You can trade off tile count to poly count by adjusting DT_TILE_REF_TILE_BITS and DT_TILE_REF_POLY_BITS.
// The current setup is optimized for large number of tiles and small number of polys per tile.
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Too many polygons per tile %d (max: %d).", m_pmesh->npolys, DT_MAX_TILES);
return false;
}*/
if (!dtCreateNavMeshData(m_pmesh->verts, m_pmesh->nverts,
m_pmesh->polys, m_pmesh->npolys, m_pmesh->nvp,
m_dmesh->meshes, m_dmesh->verts, m_dmesh->nverts, m_dmesh->tris, m_dmesh->ntris,
bmin, bmax, m_cfg.cs, m_cfg.ch, m_cfg.tileSize, m_cfg.walkableClimb, &navData, &navDataSize))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return 0;
}
}
m_tileMemUsage = navDataSize/1024.0f;
rcTimeVal totEndTime = rcGetPerformanceTimer();
// Show performance stats.
if (rcGetLog())
{
const float pc = 100.0f / rcGetDeltaTimeUsec(totStartTime, totEndTime);
rcGetLog()->log(RC_LOG_PROGRESS, "Rasterize: %.1fms (%.1f%%)", m_buildTimes.rasterizeTriangles/1000.0f, m_buildTimes.rasterizeTriangles*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Compact: %.1fms (%.1f%%)", m_buildTimes.buildCompact/1000.0f, m_buildTimes.buildCompact*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Border: %.1fms (%.1f%%)", m_buildTimes.filterBorder/1000.0f, m_buildTimes.filterBorder*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Walkable: %.1fms (%.1f%%)", m_buildTimes.filterWalkable/1000.0f, m_buildTimes.filterWalkable*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Filter Reachable: %.1fms (%.1f%%)", m_buildTimes.filterMarkReachable/1000.0f, m_buildTimes.filterMarkReachable*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Distancefield: %.1fms (%.1f%%)", m_buildTimes.buildDistanceField/1000.0f, m_buildTimes.buildDistanceField*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - distance: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldDist/1000.0f, m_buildTimes.buildDistanceFieldDist*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.1fms (%.1f%%)", m_buildTimes.buildDistanceFieldBlur/1000.0f, m_buildTimes.buildDistanceFieldBlur*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Regions: %.1fms (%.1f%%)", m_buildTimes.buildRegions/1000.0f, m_buildTimes.buildRegions*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - watershed: %.1fms (%.1f%%)", m_buildTimes.buildRegionsReg/1000.0f, m_buildTimes.buildRegionsReg*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - expand: %.1fms (%.1f%%)", m_buildTimes.buildRegionsExp/1000.0f, m_buildTimes.buildRegionsExp*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - find catchment basins: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFlood/1000.0f, m_buildTimes.buildRegionsFlood*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.1fms (%.1f%%)", m_buildTimes.buildRegionsFilter/1000.0f, m_buildTimes.buildRegionsFilter*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Contours: %.1fms (%.1f%%)", m_buildTimes.buildContours/1000.0f, m_buildTimes.buildContours*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - trace: %.1fms (%.1f%%)", m_buildTimes.buildContoursTrace/1000.0f, m_buildTimes.buildContoursTrace*pc);
rcGetLog()->log(RC_LOG_PROGRESS, " - simplify: %.1fms (%.1f%%)", m_buildTimes.buildContoursSimplify/1000.0f, m_buildTimes.buildContoursSimplify*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh: %.1fms (%.1f%%)", m_buildTimes.buildPolymesh/1000.0f, m_buildTimes.buildPolymesh*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh Detail: %.1fms (%.1f%%)", m_buildTimes.buildDetailMesh/1000.0f, m_buildTimes.buildDetailMesh*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Merge Polymeshes: %.1fms (%.1f%%)", m_buildTimes.mergePolyMesh/1000.0f, m_buildTimes.mergePolyMesh*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Merge Polymesh Details: %.1fms (%.1f%%)", m_buildTimes.mergePolyMeshDetail/1000.0f, m_buildTimes.mergePolyMeshDetail*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Build Polymesh: %.1fms (%.1f%%)", m_buildTimes.buildPolymesh/1000.0f, m_buildTimes.buildPolymesh*pc);
rcGetLog()->log(RC_LOG_PROGRESS, "Polymesh: Verts:%d Polys:%d", m_pmesh->nverts, m_pmesh->npolys);
rcGetLog()->log(RC_LOG_PROGRESS, "TOTAL: %.1fms", rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f);
}
m_tileBuildTime = rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f;
dataSize = navDataSize;
return navData;
}

View File

@ -23,7 +23,7 @@ inline bool inRange(const float* v1, const float* v2, const float r, const float
const float dx = v2[0] - v1[0];
const float dy = v2[1] - v1[1];
const float dz = v2[2] - v1[2];
return (dx*dx + dz*dz) < r*r; // && fabsf(dy) < h;
return (dx*dx + dz*dz) < r*r && fabsf(dy) < h;
}
@ -293,8 +293,8 @@ void Sample_SoloMesh::toolRender(int flags)
if (flags & NAVMESH_POLYS)
dtDebugDrawNavMesh(m_navMesh, m_toolMode == TOOLMODE_PATHFIND);
/* if (flags & NAVMESH_BVTREE)
dtDebugDrawNavMeshBVTree(m_navMesh);*/
if (flags & NAVMESH_BVTREE)
dtDebugDrawNavMeshBVTree(m_navMesh);
if (flags & NAVMESH_TOOLS)
{

View File

@ -488,7 +488,7 @@ bool Sample_SoloMeshSimple::handleBuild()
// The GUI may allow more max points per polygon than Detour can handle.
// Only build the detour navmesh if we do not exceed the limit.
if (m_cfg.maxVertsPerPoly <= DT_STAT_VERTS_PER_POLYGON)
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;

View File

@ -905,7 +905,7 @@ bool Sample_SoloMeshTiled::handleBuild()
}
}
if (m_pmesh && m_cfg.maxVertsPerPoly <= DT_STAT_VERTS_PER_POLYGON)
if (m_pmesh && m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;

View File

@ -28,8 +28,8 @@
#include "Recast.h"
#include "RecastTimer.h"
#include "RecastDebugDraw.h"
#include "DetourTileNavMesh.h"
#include "DetourTileNavMeshBuilder.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#ifdef WIN32
@ -37,6 +37,31 @@
#endif
inline unsigned int nextPow2(unsigned int v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned int ilog2(unsigned int v)
{
unsigned int r;
unsigned int shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
Sample_TileMesh::Sample_TileMesh() :
m_keepInterResults(false),
m_navMesh(0),
@ -47,6 +72,8 @@ Sample_TileMesh::Sample_TileMesh() :
m_cset(0),
m_pmesh(0),
m_dmesh(0),
m_maxTiles(0),
m_maxPolysPerTile(0),
m_tileSize(32),
m_sposSet(false),
m_eposSet(false),
@ -94,7 +121,7 @@ void Sample_TileMesh::cleanup()
void Sample_TileMesh::handleSettings()
{
Sample::handleCommonSettings();
imguiLabel("Tiling");
imguiSlider("TileSize", &m_tileSize, 16.0f, 1024.0f, 16.0f);
@ -106,6 +133,18 @@ void Sample_TileMesh::handleSettings()
const int th = (gh + ts-1) / ts;
snprintf(text, 64, "Tiles %d x %d", tw, th);
imguiValue(text);
// Max tiles and max polys affect how the tile IDs are caculated.
// There are 22 bits available for identifying a tile and a polygon.
int tileBits = rcMin((int)ilog2(nextPow2(tw*th)), 14);
if (tileBits > 14) tileBits = 14;
int polyBits = 22 - tileBits;
m_maxTiles = 1 << tileBits;
m_maxPolysPerTile = 1 << polyBits;
snprintf(text, 64, "Max Tiles %d", m_maxTiles);
imguiValue(text);
snprintf(text, 64, "Max Polys %d", m_maxPolysPerTile);
imguiValue(text);
}
void Sample_TileMesh::toolRecalc()
@ -113,7 +152,7 @@ void Sample_TileMesh::toolRecalc()
m_startRef = 0;
if (m_sposSet)
m_startRef = m_navMesh->findNearestPoly(m_spos, m_polyPickExt);
m_endRef = 0;
if (m_eposSet)
m_endRef = m_navMesh->findNearestPoly(m_epos, m_polyPickExt);
@ -184,6 +223,49 @@ void Sample_TileMesh::handleTools()
m_toolMode = TOOLMODE_CREATE_TILES;
toolRecalc();
}
imguiIndent();
if (imguiButton("Create All"))
{
int gw = 0, gh = 0;
rcCalcGridSize(m_bmin, m_bmax, m_cellSize, &gw, &gh);
const int ts = (int)m_tileSize;
const int tw = (gw + ts-1) / ts;
const int th = (gh + ts-1) / ts;
const float tcs = m_tileSize*m_cellSize;
for (int y = 0; y < th; ++y)
{
for (int x = 0; x < tw; ++x)
{
m_tileBmin[0] = m_bmin[0] + x*tcs;
m_tileBmin[1] = m_bmin[1];
m_tileBmin[2] = m_bmin[2] + y*tcs;
m_tileBmax[0] = m_bmin[0] + (x+1)*tcs;
m_tileBmax[1] = m_bmax[1];
m_tileBmax[2] = m_bmin[2] + (y+1)*tcs;
int dataSize = 0;
unsigned char* data = buildTileMesh(m_tileBmin, m_tileBmax, dataSize);
if (data)
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTileAt(x,y,0,0);
// Let the navmesh own the data.
if (!m_navMesh->addTileAt(x,y,data,dataSize,true))
delete [] data;
}
}
}
toolRecalc();
}
imguiUnindent();
imguiSeparator();
if (imguiCheck("Pathfind", m_toolMode == TOOLMODE_PATHFIND))
{
m_toolMode = TOOLMODE_PATHFIND;
@ -203,7 +285,7 @@ void Sample_TileMesh::handleTools()
{
m_toolMode = TOOLMODE_FIND_POLYS_AROUND;
toolRecalc();
}
}
}
void Sample_TileMesh::handleDebugMode()
@ -215,12 +297,16 @@ void Sample_TileMesh::handleDebugMode()
imguiValue("LMB: (Re)Create tiles.");
imguiValue("LMB+SHIFT: Remove tiles.");
}
else
{
imguiValue("Press [Build] to create tile mesh");
imguiValue("with specified parameters.");
}
}
static void getPolyCenter(dtTiledNavMesh* navMesh, dtTilePolyRef ref, float* center)
static void getPolyCenter(dtNavMesh* navMesh, dtPolyRef ref, float* center)
{
const dtTilePoly* p = navMesh->getPolyByRef(ref);
const dtPoly* p = navMesh->getPolyByRef(ref);
if (!p) return;
const float* verts = navMesh->getPolyVertsByRef(ref);
center[0] = 0;
@ -243,21 +329,21 @@ void Sample_TileMesh::handleRender()
{
if (!m_verts || !m_tris || !m_trinorms)
return;
DebugDrawGL dd;
// Draw mesh
if (m_navMesh)
rcDebugDrawMesh(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, 0);
else
rcDebugDrawMeshSlope(&dd, m_verts, m_nverts, m_tris, m_trinorms, m_ntris, m_agentMaxSlope);
glDepthMask(GL_FALSE);
// Draw bounds
float col[4] = {1,1,1,0.5f};
rcDebugDrawBoxWire(&dd, m_bmin[0],m_bmin[1],m_bmin[2], m_bmax[0],m_bmax[1],m_bmax[2], col);
// Tiling grid.
const int ts = (int)m_tileSize;
int gw = 0, gh = 0;
@ -297,9 +383,9 @@ void Sample_TileMesh::handleRender()
// Draw active tile
rcDebugDrawBoxWire(&dd, m_tileBmin[0],m_tileBmin[1],m_tileBmin[2], m_tileBmax[0],m_tileBmax[1],m_tileBmax[2], m_tileCol);
if (m_navMesh)
dtDebugDrawTiledNavMesh(m_navMesh);
dtDebugDrawNavMesh(m_navMesh);
if (m_sposSet)
{
@ -338,13 +424,13 @@ void Sample_TileMesh::handleRender()
if (m_toolMode == TOOLMODE_PATHFIND)
{
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_startRef, startCol);
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_endRef, endCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_endRef, endCol);
if (m_npolys)
{
for (int i = 1; i < m_npolys-1; ++i)
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_polys[i], pathCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
}
if (m_nstraightPath)
{
@ -365,12 +451,12 @@ void Sample_TileMesh::handleRender()
}
else if (m_toolMode == TOOLMODE_RAYCAST)
{
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_startRef, startCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
if (m_nstraightPath)
{
for (int i = 1; i < m_npolys; ++i)
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_polys[i], pathCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
glColor4ub(64,16,0,220);
glLineWidth(3.0f);
@ -389,7 +475,7 @@ void Sample_TileMesh::handleRender()
}
else if (m_toolMode == TOOLMODE_DISTANCE_TO_WALL)
{
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_startRef, startCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_startRef, startCol);
const float col[4] = {1,1,1,0.5f};
rcDebugDrawCylinderWire(&dd, m_spos[0]-m_distanceToWall, m_spos[1]+0.02f, m_spos[2]-m_distanceToWall,
m_spos[0]+m_distanceToWall, m_spos[1]+m_agentHeight, m_spos[2]+m_distanceToWall, col);
@ -406,7 +492,7 @@ void Sample_TileMesh::handleRender()
const float cola[4] = {0,0,0,0.5f};
for (int i = 0; i < m_npolys; ++i)
{
dtDebugDrawTiledNavMeshPoly(m_navMesh, m_polys[i], pathCol);
dtDebugDrawNavMeshPoly(m_navMesh, m_polys[i], pathCol);
if (m_parent[i])
{
float p0[3], p1[3];
@ -435,7 +521,7 @@ void Sample_TileMesh::handleRenderOverlay(double* proj, double* model, int* view
// Draw start and end point labels
if (m_tileBuildTime > 0.0f && gluProject((GLdouble)(m_tileBmin[0]+m_tileBmax[0])/2, (GLdouble)(m_tileBmin[1]+m_tileBmax[1])/2, (GLdouble)(m_tileBmin[2]+m_tileBmax[2])/2,
model, proj, view, &x, &y, &z))
model, proj, view, &x, &y, &z))
{
char text[32];
snprintf(text,32,"%.3fms / %dTris / %.1fkB", m_tileBuildTime, m_tileTriCount, m_tileMemUsage);
@ -444,8 +530,8 @@ void Sample_TileMesh::handleRenderOverlay(double* proj, double* model, int* view
}
void Sample_TileMesh::handleMeshChanged(const float* verts, int nverts,
const int* tris, const float* trinorms, int ntris,
const float* bmin, const float* bmax)
const int* tris, const float* trinorms, int ntris,
const float* bmin, const float* bmax)
{
m_verts = verts;
m_nverts = nverts;
@ -454,7 +540,7 @@ void Sample_TileMesh::handleMeshChanged(const float* verts, int nverts,
m_ntris = ntris;
vcopy(m_bmin, bmin);
vcopy(m_bmax, bmax);
delete m_chunkyMesh;
m_chunkyMesh = 0;
delete m_navMesh;
@ -466,7 +552,7 @@ void Sample_TileMesh::setToolStartPos(const float* p)
{
m_sposSet = true;
vcopy(m_spos, p);
if (m_toolMode == TOOLMODE_CREATE_TILES)
removeTile(m_spos);
else
@ -477,7 +563,7 @@ void Sample_TileMesh::setToolEndPos(const float* p)
{
if (!m_navMesh)
return;
m_eposSet = true;
vcopy(m_epos, p);
@ -491,23 +577,26 @@ bool Sample_TileMesh::handleBuild()
{
if (!m_verts || !m_tris)
{
printf("No verts or tris\n");
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: No vertices and triangles.");
return false;
}
delete m_navMesh;
m_navMesh = new dtTiledNavMesh;
m_navMesh = new dtNavMesh;
if (!m_navMesh)
{
printf("Could not allocate navmehs\n");
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Could not allocate navmesh.");
return false;
}
if (!m_navMesh->init(m_bmin, m_tileSize*m_cellSize, m_agentMaxClimb*m_cellHeight))
if (!m_navMesh->init(m_bmin, m_tileSize*m_cellSize, m_tileSize*m_cellSize, m_agentMaxClimb*m_cellHeight, m_maxTiles, m_maxPolysPerTile, 2048))
{
printf("Could not init navmesh\n");
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Could not init navmesh.");
return false;
}
// Build chunky mesh.
delete m_chunkyMesh;
m_chunkyMesh = new rcChunkyTriMesh;
@ -523,7 +612,7 @@ bool Sample_TileMesh::handleBuild()
rcGetLog()->log(RC_LOG_ERROR, "buildTiledNavigation: Could not build chunky mesh.");
return false;
}
return true;
}
@ -531,17 +620,17 @@ void Sample_TileMesh::buildTile(const float* pos)
{
if (!m_navMesh)
return;
const float ts = m_tileSize*m_cellSize;
const int tx = (int)floorf((pos[0]-m_bmin[0]) / ts);
const int ty = (int)floorf((pos[2]-m_bmin[2]) / ts);
if (tx < 0 || ty < 0)
return;
m_tileBmin[0] = m_bmin[0] + tx*ts;
m_tileBmin[1] = m_bmin[1];
m_tileBmin[2] = m_bmin[2] + ty*ts;
m_tileBmax[0] = m_bmin[0] + (tx+1)*ts;
m_tileBmax[1] = m_bmax[1];
m_tileBmax[2] = m_bmin[2] + (ty+1)*ts;
@ -665,7 +754,7 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
return 0;
}
float tbmin[2], tbmax[2];
tbmin[0] = m_cfg.bmin[0];
tbmin[1] = m_cfg.bmin[2];
@ -675,15 +764,15 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
const int ncid = rcGetChunksInRect(m_chunkyMesh, tbmin, tbmax, cid, 256);
if (!ncid)
return 0;
m_tileTriCount = 0;
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = m_chunkyMesh->nodes[cid[i]];
const int* tris = &m_chunkyMesh->tris[node.i*3];
const int ntris = node.n;
m_tileTriCount += ntris;
memset(m_triflags, 0, ntris*sizeof(unsigned char));
@ -759,6 +848,11 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
return 0;
}
if (m_cset->nconts == 0)
{
return 0;
}
// Build polygon navmesh from the contours.
m_pmesh = new rcPolyMesh;
if (!m_pmesh)
@ -773,7 +867,7 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
rcGetLog()->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return 0;
}
// Build detail mesh.
m_dmesh = new rcPolyMeshDetail;
if (!m_dmesh)
@ -802,7 +896,7 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
unsigned char* navData = 0;
int navDataSize = 0;
if (m_cfg.maxVertsPerPoly == DT_TILE_VERTS_PER_POLYGON)
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
// Remove padding from the polymesh data. TODO: Remove this odditity.
for (int i = 0; i < m_pmesh->nverts; ++i)
@ -819,20 +913,20 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
rcGetLog()->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
return false;
}
if (m_pmesh->npolys > DT_MAX_TILES)
{
// If you hit this error, you have too many polygons per tile.
// You can trade off tile count to poly count by adjusting DT_TILE_REF_TILE_BITS and DT_TILE_REF_POLY_BITS.
// The current setup is optimized for large number of tiles and small number of polys per tile.
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Too many polygons per tile %d (max: %d).", m_pmesh->npolys, DT_MAX_TILES);
return false;
}
if (!dtCreateNavMeshTileData(m_pmesh->verts, m_pmesh->nverts,
m_pmesh->polys, m_pmesh->npolys, m_pmesh->nvp,
m_dmesh->meshes, m_dmesh->verts, m_dmesh->nverts, m_dmesh->tris, m_dmesh->ntris,
bmin, bmax, m_cfg.cs, m_cfg.ch, m_cfg.tileSize, m_cfg.walkableClimb, &navData, &navDataSize))
/* if (m_pmesh->npolys > DT_MAX_TILES)
{
// If you hit this error, you have too many polygons per tile.
// You can trade off tile count to poly count by adjusting DT_TILE_REF_TILE_BITS and DT_TILE_REF_POLY_BITS.
// The current setup is optimized for large number of tiles and small number of polys per tile.
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Too many polygons per tile %d (max: %d).", m_pmesh->npolys, DT_MAX_TILES);
return false;
}*/
if (!dtCreateNavMeshData(m_pmesh->verts, m_pmesh->nverts,
m_pmesh->polys, m_pmesh->npolys, m_pmesh->nvp,
m_dmesh->meshes, m_dmesh->verts, m_dmesh->nverts, m_dmesh->tris, m_dmesh->ntris,
bmin, bmax, m_cfg.cs, m_cfg.ch, m_cfg.tileSize, m_cfg.walkableClimb, &navData, &navDataSize))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
@ -882,7 +976,7 @@ unsigned char* Sample_TileMesh::buildTileMesh(const float* bmin, const float* bm
rcGetLog()->log(RC_LOG_PROGRESS, "TOTAL: %.1fms", rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f);
}
m_tileBuildTime = rcGetDeltaTimeUsec(totStartTime, totEndTime)/1000.0f;
dataSize = navDataSize;

View File

@ -18,7 +18,6 @@
#include "Sample_SoloMeshSimple.h"
#include "Sample_SoloMeshTiled.h"
#include "Sample_TileMesh.h"
#include "Sample_DynMesh.h"
#ifdef WIN32
# define snprintf _snprintf
@ -198,14 +197,12 @@ struct SampleItem
Sample* createSoloSimple() { return new Sample_SoloMeshSimple(); }
Sample* createSoloTiled() { return new Sample_SoloMeshTiled(); }
Sample* createTile() { return new Sample_TileMesh(); }
Sample* createDyn() { return new Sample_DynMesh(); }
static SampleItem g_samples[] =
{
{ createSoloSimple, "Solo Mesh Simple" },
{ createSoloTiled, "Solo Mesh Tiled" },
{ createTile, "Tile Mesh" },
{ createDyn, "Dyn Mesh" },
{ createSoloSimple, "Solo Mesh Simple" },
{ createSoloTiled, "Solo Mesh Tiled" },
{ createTile, "Tile Mesh" },
};
static const int g_nsamples = sizeof(g_samples)/sizeof(SampleItem);